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Abstract
Surprisingly high levels of within-group cooperation are observed in conflict situa-
tions. Experiments confirm that external threats lead to higher cooperation. The
psychological literature suggests proximate explanations in the form of group pro-
cesses, but does not explain how these processes can evolve and persist. The
authors provide an ultimate explanation, in which cooperation is a rational response
to an external threat. In the model, groups vary in their willingness to help each
other against external attackers. Attackers infer cooperativeness of groups from
members’ behavior under attack and may be deterred by a group that bands
together against an initial attack. Then, even self-interested individuals may defend
each other when threatened in order to deter future attacks. A group’s reputation is
a public good with a natural weakest-link structure. The model extends to coop-
erative and altruistic behavior in general.
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Introduction

On August 6, 2011, a riot started in Tottenham Hale in North London, involving

arson and rampant looting. Over the next three days, riots spread to other parts of

London and several other cities in the United Kingdom. Within a few days of the

riots, people came together in large cooperative efforts to counter the riots and their

aftermath. People who were not personally threatened by the riots voluntarily

formed vigilante groups to deter further rioting in their communities, at personal cost

and risk to themselves (Beaumont, Coleman, and Laville 2011). Hundreds of volun-

teers arrived at riot-stricken areas to help with the clean-up efforts (BBC 2011;

Davies et al. 2011). How did the riots lead to such large-scale cooperation, when

people could just as easily stay home and free ride on the effort of others?

A fundamental puzzle for rationalist explanations of group conflict is that conflicts

involve individuals voluntarily cooperating, perhaps at great risk, to gain a collective

benefit (Olson 1974). Blattman and Miguel (2010), in a wide-ranging review of the

civil war literature, see ‘‘the sources of armed-group cohesion amid pervasive collec-

tive action problems’’ as a central unresolved theoretical puzzle, and designate ‘‘the

complex individual motivations underlying participation in armed groups’’ as ‘‘an

important area for future research.’’ Defense is a canonical example of a ‘‘public

good,’’ whose provision benefits not only the providers but also free riders who con-

tribute nothing. Accordingly, standard economic theory predicts that defense will be

underprovided unless the state enforces contributions. Nonetheless, in many conflicts,

people fight for their group against other groups, in the absence of state coercion.

Furthermore, there is considerable laboratory and field evidence that conflict increases

cooperativeness in general. Existing psychological theories, while they offer insight,

can provide only proximate explanations for this effect. In this article, we attempt

to provide an ultimate explanation, in terms of the rationality and evolutionary optim-

ality of cooperation during conflict.

We demonstrate a mechanism for the evolution of helping behavior between indi-

viduals from the same group, when those individuals come under attack by, for

example, a rival ethnic group, or a biological predator. The logic is that of reputation

building (Kreps et al. 1982; Milgrom and Roberts 1982). The argument runs as

follows:

1. Attacks against one group member are less likely to be successful if the member

is defended or supported by others in the group.

2. Groups vary in the willingness of their members to cooperate against attackers.

This can be for many reasons. For instance, some groups may be engaged in

long-term cooperative relationships (Trivers 1971; Fudenberg and Maskin

1986; Neyman 1985), which will be terminated when help is not provided to

attacked partners, either because of reciprocal strategies or because the partners

are killed (Garay 2008; Eshel and Shaked 2001); other groups may be individu-

ally self-sufficient members without a direct incentive to cooperate. Or, some
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groups may be composed of closely related kin, with high mutual altruism,

while others are made up of unrelated individuals.

3. Attackers are opportunistic: they attack so as to acquire group members’

resources (or, in the case of biological predators, for food). They are therefore

more willing to attack group members if they expect low levels of cooperation

in defense. Conversely, if they expect a strong defense from a group, they may

prefer to engage in an alternative, less risky activity, or to find a different group

to attack.1

4. Because of the previous point, attackers have an interest in finding out the type

of group they are facing. However, they cannot always observe a group’s level

of cooperativeness directly. Instead, they will find it optimal to make one or

more initial attacks, in order to gauge the cooperativeness of a particular group.

They can then decide whether to continue attacking or to break off.

5. As a result, even members of uncooperative groups have an interest in appearing

cooperative during the initial stages of an attack. By doing so, they may deter

the attacker, and prevent future attacks which would eventually fall on them-

selves. In the terminology of signaling games, less cooperative groups have

an incentive to pool with more cooperative groups.

6. A group’s appearance of being cooperative is itself a public good, so it might

seem that the collective action problem has been reintroduced at a higher level.

However, this public good has a natural ‘‘weakest-link’’ structure. If a single

group member fails to cooperate, pooling instantly fails; the attacker learns that

the group is not truly cooperative and can no longer be deterred from further

attacks; other group members then have no more incentive to cooperate. This

dramatic collapse of cooperation after a group member ‘‘breaks the chain’’ pro-

vides a strong incentive not to do so.

We aim to show that this logic holds in a simplified setup. To do so, we construct a

stylized model that include the basics of the framework outlined above, namely

asymmetric information with regard to the group type and opportunity for repeated

attacks that benefit the attacker only when the victim is not helped by a peer. We

wish to focus on the effect of collective reputation on cooperation in defense, and

therefore opt in some modeling choices for simplicity over realism. The outline of

the model and the results is as follows.

Some groups (henceforth strong types) participate in social interaction and will

therefore help their fellows who come under attack,2 whereas other groups (hence-

forth normal types) have weak intragroup connections and therefore are not moti-

vated to help their peers. An attacker makes one or more attacks on a group;

during each attack, the (randomly selected) target individual may be helped by

another randomly selected individual, at a cost to the helper which the helper privately

observes. After each attack, the attacker may break off and attack a new group.

When the maximum number of possible repeated attacks is large enough, this

model has a unique equilibrium that survives a natural refinement. The equilibrium
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has the following characteristics. First, for any fixed group size, so long as individ-

uals are patient enough, helping behavior can be sustained, even for arbitrarily large

costs of helping. These costs may even be larger than the benefit provided to the

helped individual. This holds because the motivation to help is provided not by the

benefit to the target but by the deterrence effect of driving off an attacker. In fact, our

results would hold even if helping purely harmed the attacker without benefiting the

defender, suggesting that this model might also explain the evolution of third-party

punishment. In human conflicts, seemingly trivial incidents such as insults of a

group member may lead to disproportionate responses.3 Second, it is irrelevant what

proportion of the groups are actually strong types: this can be arbitrarily small.

Third, cooperation among normal types becomes less likely as the number of previ-

ous attacks increases.4

Finally, cooperation is subject to sudden collapses: if a single individual does not

help, then everyone else stops helping. This is closely tied to the reputation logic of

the game. An individual who does not help provides an unambiguous signal to the

attacker that he is facing normal types, not strong types. Afterward the attacker can

no longer be deterred, and this removes the incentive for other group members to

help. Thus, our theory predicts that external threats should increase not only people’s

cooperativeness but also their sensitivity to each others’ behavior: they should only

help if others have also helped. This prediction goes beyond the standard social psy-

chology claim that group identity increases in response to threat, and could be used

to test our theory. It also suggests an alternative explanation for some cases of beha-

vior that resemble ‘‘indirect reciprocity’’ (Nowak and Sigmund 1998). Individuals

may condition on others’ previous behavior not so as to reward or punish them but

because others’ previous play alters the reputational value of one’s own cooperation.

In addition to providing an ultimate explanation for cooperation in conflict, our

article contributes to several other streams of the literature. Signaling explanations

of altruism are well known in theoretical biology (Zahavi 1975; Gintis, Smith, and

Bowles 2001; Lotem, Fishman, and Stone 2003). In these models, helping behavior

is a costly signal of individual quality, which benefits the individual helper by, for

example, making him or her a more attractive partner for reproduction. By contrast,

in our story, helping behavior signals a fact about the group and benefits the whole

group. Theorists have also examined the effect of intergroup conflict on cooperation:

Choi and Bowles (2007) show how ‘‘parochial altruism’’ could coevolve with inter-

group conflict by providing benefits at group level. We demonstrate that, even with-

out group-level selection, cooperation in defense may be evolutionarily stable.

The model is also of interest to economic theorists interested in reputation-

building. Previous work has examined reputation-building in repeated games, either

with one patient player against an infinite set of short-run players (e.g., Kreps et al.

1982; Milgrom and Roberts 1982; Fudenberg and Levine 1989, 1992, 1994), two

players differing in patience (e.g., Schmidt 1993; Celetani et al. 1996), or with two

patient players (e.g., Cripps and Thomas 1995; Cripps, Dekel, and Pesendorfer

2005). For example, Kreps et al. (1982) show that the existence of a small proportion
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of cooperative types allows self-interested actors to cooperate in Prisoner’s Dilemma

setups. More recently, Tirole (1996) developed a theory of collective reputation,

constructed as an aggregate of the reputation of individuals overlapping generations

(see also, e.g., Bar-Isaac 2007; Winfree and McCluskey 2005). Healy (2007) has

shown how collective reputation can build up among individuals who are only con-

nected by their shared reputation through anonymous rematching. Here, we develop

a model of short-term collective reputation in a dynamic setup that is based on an a

priori correlation of types within groups. Thus, our unique brand of collective rep-

utation relies on group types rather than on aggregate individual types. We follow

the standard modeling technique in the literature, by assuming that a (small) propor-

tion of the reputation-building players is a ‘‘Stackelberg type,’’ who always plays the

action that gives him or her the long-term best response, assuming the other players

best respond. Similarly, our ‘‘strong types’’ play so as to maximize the welfare of

their group, and their proportion in the population can be arbitrarily small. A moti-

vation for the early reputation models was to rationalize predatory pricing, in which

a market incumbent might take losses so as to deter future entrants.

Market entry is also a potential application here. For instance, the Cooperation

before Conflict section could be interpreted as a cartel facing an entrant and

attempting to deter it by collective action.

Our article is organized as follows. In the next section we discuss the wide-rang-

ing literature on cooperation in conflict. The next three sections introduce our model

and describe the equilibrium. The final sections develop some extensions to the basic

model. In particular, the section on Cooperation before Conflict extends the basic

logic to public goods games which are played among defenders before the attacker

decides to attack. We can thus explain why in-group cooperativeness increases in the

face of external threats. We conclude by discussing possibilities for further work.

Cooperation in Conflict

Costly cooperation in an intergroup conflict has been demonstrated under

laboratory conditions and in field experiments (Bornstein 2003; Erev, Bornstein,

and Galili 1993). Bornstein and Ben-Yossef (1994) showed in a laboratory

experiment that group members’ contributions to a public good increased when

they were competing with a rival group, even though the competition did not

alter the monetary incentives in any relevant way. Tan and Bolle (2007) found

that competition without monetary incentive was enough to lead to increased

cooperation. It appears that humans naturally respond to intergroup conflict with

intragroup cooperation, somewhat mediated by the perception of in-group mem-

bers as collaborators and the emotional reactions to noncooperation once con-

flict is instated (Burton-Chellew, Ross-Gillespie, and West 2010; Puurtinen

and Mappes 2009). Cooperation in conflict is particularly apparent in civil wars,

where state coercion is diminished or nonexistent. Admittedly, some people may

be coerced into participation by other group members (Hardin 1997; Kalyvas
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and Kocher 2007). However, while we do not underestimate this aspect of the

phenomenon, we do not believe that it can be a complete explanation, and in

many historical episodes it seems unlikely to have played a large role. For

instance, the risks from taking an active part in the French Resistance, or the

Provisional IRA during the Troubles, were surely much higher than any risk

one’s own side might impose for not taking part.5

Cooperation in times of conflict extends beyond the conflict effort. Increased par-

ticipation in pro-social behaviors was documented in Britain during World War II

(Schmiedeberg 1942; Janis 1951, 1963). Similarly, the September 11 attacks trig-

gered pro-social behavior in the United States, such as volunteering and charity

(Penner et al. 2005; Steinberg and Rooney 2005) and blood donations (Glynn et al.

2003). There is a well-known ‘‘rally round the flag’’ effect in which expressed support

for political incumbents increases after a military or terrorist attack (Baker and Oneal

2001). Shayo and Zussman (2011) have shown that terrorist attacks in the local

region lead Jewish and Arab judges in small-claims courts in Israel to rule in favor

of a plaintiff of the same nationality as the judge. Once more, the effect has been

replicated under experimental conditions. In the classic Robbers’ Cave experiments,

Sherif (1958; Sherif et al. 1961) has shown how competition between groups breeds

out-group hostility and in-group solidarity. More importantly, an outside threat,

common to both groups, facilitated intergroup cooperation and induced positive atti-

tudes toward members of the out-group. Controlled experiments have similarly

manipulated external threat to induce cooperation between children (Wright 1943)

and decrease prejudice toward African American group members (Feshbach and

Singer 1957; Burnstein and McRae 1962).6 Hargreaves-Heap and Varoufakis

(2002) split participants into two groups and created a situation in which one group

suffered discrimination; subsequently, pairs of members of that group cooperated

more often in a Prisoner’s Dilemma than did pairs from the other group. Sociologists

and social psychologists have long been aware of this phenomenon and have argued

that ‘‘war with outsiders . . . makes peace inside’’ (Sumner 1906; Campbell 1965).

Social identity theorists explain that individuals’ sense of group identity is increased

by perceived threats to the group (Stephan and Stephan 2000). While these theories

offer insight, they give only a proximate, not an ultimate, explanation. We still do

not know how humans might have evolved a psychological mechanism that

responds to external threats by increasing group identity (and hence encouraging

altruistic behaviour, with associated costs to one’s own fitness). Indeed, the same

question arises in nonhuman biology, since some species seem to help unrelated con-

specifics against predators: examples include defensive rings, mobbing of predators,

and alarm calls (Edmunds 1974). Furthermore, as in humans, intergroup conflict

sometimes increases within-group altruistic behaviors (Radford 2008). Clearly,

social identity theory is unlikely to explain these instances of cooperation.

In our theory, the need to deter an attacker can mitigate the within-group collec-

tive action problem and thus allow for cooperation in defense by rational, self-

interested actors. We believe that this insight can extend the logic of the ‘‘security
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dilemma’’ (Posen 1993), in which actors in a conflict are driven to fight because they

fear attack from the other side, to collective settings. We also believe that attention

to the within-group collective action problem will help explain group dynamics even

in the absence of overt conflict. For example, if the motivation for cooperation is

given by the need to deter potential attackers, then people may be induced to coop-

erate by manipulating their perception of outside threats; that is, intergroup violence

can be used to construct a shared social identity (cf. Fearon and Laitin 2003).

Some of the examples provided earlier, such as ethnocentrism in court judgments,

are hard to explain as rational self-interested behavior. However, the theory can be

viewed either as a direct game-theoretic rationalization of helping behavior within

conflict, or, more indirectly, as explaining the evolution of psychological disposi-

tions to cooperate when threatened by attack. That is, these dispositions may have

evolved in strategic situations like those of the model, in which small groups faced

opportunist external enemies and needed to deter them. If so, these evolved disposi-

tions might still work the same way in larger and more specialized modern societies

(Cosmides and Tooby 1992).7 Thus, our theory can be interpreted as an ultimate

explanation for the proximate explanations developed by psychologists.

Model

The ‘‘defenders’’ are a group of size N, one of a large population of such groups. An

attacker makes one or more attacks on a randomly chosen member (the ‘‘target’’) of

the group. Another randomly chosen member of the same group (the ‘‘supporter’’)

may assist the target at a cost c to its own fitness. The attack costs the defender A and

gives the attacker a benefit of A if the helper does not help, and costs the defender/

benefits the attacker a < A if the helper helps. We normalize defender welfare at 1

per round. Nothing in the results would change if the benefit to the defender of being

helped, A� a, were decoupled from the cost to the attacker, also currently A� a;

this assumption is purely to simplify the exposition.

A proportion p of the groups are ‘‘strong’’ types, meaning that their members

always help the target; the rest are ‘‘normal.’’ Several different interpretations are

possible. Strong types may be altruistic toward one another, perhaps because they

are genetically related, while normal types are purely self-interested. Alternatively,

strong types may be in long-term relationships, beyond the scope of the attack epi-

sode, and able to enforce cooperation by conditioning their future behavior on play

during the attack episode, whereas normal types do not expect to interact after the

attack episode. In the animal kingdom, migratory birds may either join communities

of sedentary birds who have bred together before, and may be in relationships of

long-term reciprocity, or communities of other migrants who are mutually anon-

ymous (Krams and Krama 2002).

After every attack, the attacker may stay, or may costlessly move to a different

group. (We assume that the number of groups is large enough that the chance of

returning to the same group later is effectively 0, or, alternatively, that the attacker
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can avoid groups that he has already moved away from.) However, the attacker

may make no more than T attacks on any one group, perhaps because thereafter the

group can move beyond the attacker’s reach.8 Defenders and attackers share a dis-

count rate d. There are N defenders in each group. The cost to the supporter of help-

ing, c, is random and drawn independently in each round from C � Rþ, with cdf

FðCÞ ¼ Prðc � CÞ. We assume F is continuous. Only the supporter observes c in

each round. We assume that the cost is sometimes high, specifically

Fð �CÞ < 1;where �C ¼ d
1� d

A

N
: ð1Þ

This assumption ensures that a decision to help is always informative to the

attacker.9 The right-hand side of (1) is the discounted cost of a 1=N chance of being

attacked for infinite rounds, so (1) means that at least sometimes, the cost of helping

is above that value.10

The defenders and the attacker observe the history of attacks within a given

group, and whether the target was helped in each case. We assume that neither the

attacker nor the other defenders observe the specific identity of the defender and

supporter at each round. This is realistic in many conflict situations.11

Equilibrium Analysis12

The set of histories of length t is Ht ¼ f0; 1gt
, where 1 indicates that the defender

was helped, with typical element ht. (Write H0 ¼ ;.) The set of all histories is

H ¼
ST

t¼0 Ht. A strategy for the attacker is z : H ! ½0; 1�, giving the probability

of playing stay after each history. (We will often write zðhÞ 2 fstay;moveg for

clarity: that is, define stay ¼ 1 and move ¼ 0.) A pure strategy for a normal type

defender is s : H � C! f0; 1g, giving the probability of helping.13 (Strong types

always help.) The attacker’s subjective probability that he is facing a group of strong

types is m : H ! ½0; 1�.
Define pt as the t-length history of 1s, that is, the t-length history in which

supporters always helped, and let p0 ¼ ;. Let P ¼ fp0; p1; p2; . . . g. We call these

‘‘histories of (perfect) helping.’’ We look for the following equilibrium strategies.

If the defender has always been helped in the past, the attacker moves to a different

group. Otherwise, the attacker attacks the same group forever. Thus, zðhÞ ¼ move if

h 2 P; and zðhÞ ¼ stay otherwise.

Defenders help at round t (after a history ht�1) if and only if (1) all previous

defenders have helped (2) c is less than a finite cut point Ct. Formally,

sðht�1; cÞ ¼ 1 if ht 2 P and c � Ct; sðht�1; cÞ ¼ 0 otherwise.

Notice in particular that the attacker moves after observing a single episode of

helping. Because of this, histories p2; p3; . . . are off the equilibrium path. In order

to ensure reasonable attacker beliefs at these histories, we use the sequential equili-

brium concept (Kreps and Wilson 1982).
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Proposition 1: For T high enough, if (1) holds, the game has a Sequential Equili-

brium of the above form (along with appropriate beliefs).

The remainder of this section gives the proof.

Supporter Behavior

Given the attacker’s strategy, and other defenders’ strategies, if at round t ht =2 P, then

a supporter’s play does not affect future events in the game (future supporters will

never help, and the attacker will always stay). Since c > 0 it is never optimal to help.

If at round t, ht 2 P, then the supporter’s behavior determines future play. Help-

ing will cause the attacker to move. Since the attacker never returns to the group, the

remaining T rounds are enjoyed undisturbed. Not helping will cause the attacker to

stay and all future supporters not to help. Thus helping is optimal if

1� cþ
XT�t

s¼1

ds � 1þ
XT�t

s¼1

ds 1� A

N

� �
;

equivalently,

c � Ct ¼
d� dT�tþ1

1� d
A

N
: ð2Þ

Ct is decreasing in t, and in particular, CT ¼ 0. Also, since Ct < d
1�d

A
N
¼ �C, there is

always positive probability that the supporter does not help. Note that defender

strategies are necessarily symmetric, since Ct is uniquely optimal and the same for

all defenders.

As T !1, Ct approaches �C ¼ d
1�d

A
N

for any finite t. We can use the expression

for �C to get a sense of the strength of the motivation to support the target. A useful

benchmark is the cost a defender would be prepared to pay to prevent a single attack

on himself or herself: this is exactly A. So, when d
1�d � N , supporters would bear as

high a cost to protect the target as they would to avoid an attack on themselves. For

example, in a group of N ¼ 100, this will hold for d � 0:99. Since d is the discount

rate between attacks, if these are relatively closely spaced, cooperation in large

groups can be sustained for what are thought of as typical human discount rates.

Attacker Behavior

Given these cut points, we can calculate the attacker’s beliefs. The initial belief

mð;Þ ¼ p. Since only normal types ever fail to help, mðhtÞ ¼ 0 unless ht 2 P.14 Write

VðhtÞ for the attacker’s equilibrium value after a history ht, and V ¼ Vð;Þ. Also,

write

VSðhtÞ

Hugh-Jones and Zultan 335

 at BEN GURION UNIV NEGEV on April 30, 2013jcr.sagepub.comDownloaded from 

http://jcr.sagepub.com/


for the attacker’s value after ht if he stays, and subsequently plays his equilibrium

strategy.

Equilibrium strategies give

VðhtÞ ¼ VSðhtÞ ¼
XT�t�1

s¼0

dsAþ dT�tV ; if ht =2 P: ð3Þ

In other words, after observing any non-helping, the attacker stays and receives A per

round until the number of rounds is up.

Otherwise,VðhtÞ ¼ V since the attacker moves (or has just arrived). To show that

these are a best response, we can apply the One-Shot Deviation Principle: to check if

a strategy is a best response, we need only to compare it against deviations involving

a single action at one information set.15 Thus, we need to show that

VðhtÞ � V if ht =2 P; ð4Þ

so that after observing a failure to help, it is optimal for the attacker to stay. This is

true by equation (3) and the fact that V �
P1

s¼0 d
sA given that the attacker’s

maximum per-round payoff is A. We also need to show that

V � VSðhtÞ if ht 2 P; ð5Þ

so that after observing helping, it is optimal for the attacker to move rather than to

stay. The right-hand side here is the counterfactual value from staying for a further

attack. This can be calculated as VSðhtÞ ¼ mðhtÞ½aþ dV � þ ð1� mðhtÞÞ FðCtþ1Þf
½aþ dV � þ ð1� FðCtþ1ÞÞ½Aþ dVððht; 0ÞÞ�g if ht 2 P: Here, the first term is the

value if one is facing strong types: the supporter helps, so the attacker receives a and

then moves at once. Similarly, if the attacker is facing normal types but the support-

er’s cost drawn is lower than the cut point, then the supporter helps, the attacker

receives a and moves. Finally, if the cost is higher than the cut point, the attacker

receives A and the game proceeds. In equilibrium, applying equation (3),

V ððht; 0ÞÞ ¼ VSððht; 0ÞÞ ¼
XT�t�2

s¼0

dsAþ dT�t�1V ;

and plugging this into the previous equation gives

VSðhtÞ ¼ ½mðhtÞ þ ð1� mðhtÞÞFðCtþ1Þ�½aþ dV � 	 	 	

þ ð1� mðhtÞÞð1� FðCtþ1ÞÞ½
XT�t�1

s¼0

dsAþ dT�tV � if ht 2 P:
ð6Þ

We now show that for T high enough, equation (5) holds, given defender behavior.

First, we show that after enough rounds, it always holds. This is simply because the

attacker’s subjective probability that he is facing a strong type group becomes

increasingly close to certainty after observing enough rounds of cooperation.
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Lemma 1. There is an M such that for any value of T � M , at all rounds t � M ,

equation (5) holds.

Proof. First observe that V > aþ dV since the attacker’s minimum payoff in the first

round is a and since the attacker receives A with strictly positive probability in

equilibrium. Next, write mt 
 mðptÞ for short (we will keep using this notation) and

use Bayes’ rule to write

mt ¼
p

pþ ð1� pÞ
Qt

s¼1 FðCsÞ
: ð7Þ

Observe that since Cs < �C for all s,

mt > �mt 

p

pþ ð1� pÞFð �CÞt
: ð8Þ

Next observe that aþ dV < V �
PT�t�1

s¼0 dsAþ dT�tV , since in V the attacker

receives a with positive probability in some rounds. Therefore, starting at equation (6),

VSðptÞ < mtðaþ dVÞ þ ð1� mtÞð
XT�t�1

s¼0

dsAþ dT�tVÞ

< �mtðaþ dVÞ þ ð1� �mtÞð
XT�t�1

s¼0

dsAþ dT�tVÞ

< �mtðaþ dVÞ þ ð1� �mtÞ
A

1� d
;

where A
1�d is the discounted value of an infinite series of As. Given the above chain of

inequalities, at any t and T , it will suffice to show that

V � �mtðaþ dVÞ þ ð1� �mtÞ
A

1� d
: ð9Þ

Note that the RHS of the above only depends on T via V . But as t becomes large,

mt ! 1 since Fð �CÞt ! 0: Therefore the right-hand side of equation (9) approaches

aþ dV . We have already shown that V > aþ dV , so equation (9) must hold for high

enough t. Pick M to be the lowest value of t for which equation (9) holds.16

The next part of the argument demonstrates the same for early rounds. This relies

on choosing T high enough that Ct is very close to �C. The logic is as follows. Obser-

ving a further round of helping has three effects on the attacker. First, it increases his

probability that he is facing a strong type group. This encourages him to move to a

different group. Second, the end of the T rounds is now closer, and third, as a result,

the defenders’ cut point decreases somewhat (i.e., Ctþ1 < Ct). These effects may

encourage the attacker to stay. However, when T is large, they become negligible,

since the end of the game is far away and (for that reason) the defenders’ cut point

changes very little. Therefore, the first effect dominates.
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Lemma 2. For any M , for T high enough, VSð;Þ > VSðp1Þ > . . . > VSðpM Þ.17

Combining these Lemmas, along with the fact that VSð;Þ ¼ V , we can choose M and T

large enough that V � VSðhtÞ for ht 2 P, both for t > M and for t � M as equation (5)

requires. This completes the proof of Proposition 1.

Uniqueness

Here we investigate whether there are other equilibria. We continue to write V for

the value of the game to the attacker, which is also the attacker’s value after choosing

move. First, we demonstrate that behavior for ht =2 P is always the same as in the

equilibrium above. The argument is essentially by backward induction: after the

attacker has become certain he is facing a normal type group, then he cannot be dri-

ven off by any further helping, and then cooperation cannot be preserved among the

defenders since the game has finite periods.

Lemma 3. Suppose mðhtÞ ¼ 0. Then in any equilibrium, zðhtÞ ¼ stay and

sðht; cÞ ¼ 0 for all c.

Sequential equilibrium ensures that mðhtÞ ¼ 0 for all ht =2 P,18 so this Lemma shows

that in any equilibrium, when ht =2 P, sðht; cÞ ¼ 0 for all c and zðhtÞ ¼ stay, just as

in the previous section. Therefore, the only source of variation in equilibria must be

in different attacker and defender responses to a history of helping pt.

We now show that for T large enough, there is no equilibrium with zðptÞ > 0 for

t � 1. Thus, the equilibrium of the previous section is the unique sequential

equilibrium.19

The proof works as follows. First, we observe that for t large enough,

zðptÞ ¼ move, since it becomes increasingly certain that the defenders are strong

types. Next, we show that when there are enough rounds, the defenders’ cut point

is higher at the end of a set of periods for which the attacker stays with positive prob-

ability even after observing helping, than at the beginning of these periods. The logic

is that at the end, one’s own action decides whether the attacker will leave or not. At

the beginning, on the other hand, the attacker will stay until some future round and

will then only leave if all other supporters have also helped. Thus, the incentive to

help is greater in the later round. On the other hand, the future history of play which

one can affect may be shorter in the later round; but when T is large enough, this

makes little difference.

We then examine the attacker’s value at round F, the last round in which

zðpFÞ > 0, and at the last earlier period L� 1 at which zðpL�1Þ ¼ 0 (or if there is

none such, at the beginning of the game). At F the attacker’s belief that he is facing

a strong type group is strictly higher, and (as we showed) the normal types’ cut point

is also higher. Combining these facts reveals that, since the attacker is more likely to

observe a further round of defense VSðpL�1Þ > VSðpFÞ. By our assumption that at
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L� 1, moving is optimal, V � VSðpL�1Þ. Thus, we arrive at V > VðpFÞ, which

contradicts the assumption that staying is optimal at pF .

Proposition 2. For T large enough, zðptÞ ¼ move for all t � 1.

Evolutionary Stability

So far we have used a ‘‘rationalist’’ game theory approach. Given our applications to

biology, and the evolutionary tone of our argument in Cooperation in Conflict sec-

tion, it is interesting to ask whether the equilibrium of the previous section is evo-

lutionarily stable. Technically, it is not an Evolutionarily Stable Strategy, since

both defenders and attackers may play differently at histories which are not on the

equilibrium path (e.g., pt for t � 2), without affecting their welfare. However, for T

large enough, all Weak Perfect Bayesian equilibria satisfy zðð1ÞÞ ¼ move (and C1 as

defined in equation (2), and zðhÞ ¼ stay and sðh; cÞ ¼ 0; 8c; for h =2 P). It would

therefore be surprising if the equilibrium outcome given by these actions were not

evolutionarily stable.

Indeed, define Q ¼ fð0Þ; ð0; 0Þ; ð0; 0; 0Þ . . . g as the set of histories in which no

defender helps, and define the following sets of strategies:

Z ¼ fzð	Þ : zðð1ÞÞ ¼ move; zðhÞ ¼ stay for all h 2 Qg
S ¼ fsð	; 	Þ : sð;; cÞ ¼ 1 iff c � C1;sðh; cÞ ¼ 0; 8h 2 Q;8cg

Strategies in these sets result in the same behavior as our equilibrium, along the path

of play. Taking the game’s payoff functions as a measure of fitness, we can then

show the following:

Lemma 4. For high enough T : if defenders are playing any s 2 S, then any z 2 Z

gives the attacker strictly higher fitness than any z0=2Z; and if the attacker is

playing z 2 Z and other defenders are playing ŝ 2 S, then any s 2 S gives any

defender strictly higher fitness than any s0 =2 S.20

Thus, these strategy sets are evolutionarily stable in the sense that a single mutant

defender or a single mutant attacker will be selected against.21

Proof.

1. Suppose s 2 �S ¼ fsð	; 	Þ : sð;; cÞ ¼ 1 iff c � C1;sðh; cÞ ¼ 0; 8h =2 P; 8cg.
Then in equilibrium, only the histories fð1Þg [ Q are observed by the attacker

with positive probability. In each of these cases any strategy z 2 Z is strictly

optimal. This follows simply from noticing that the arguments in Lemmas 2

and 1 suffice to prove the strict versions of the inequalities in equations (4)

and (5).
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2. Suppose z 2 �Z ¼ fzð	Þ; : zðð1ÞÞ ¼ move; zðhÞ ¼ stay for all h =2 Pg, and sup-

pose that all other defenders are playing ŝ 2 �S. Then, in equilibrium, only the

histories ; [ Q are observed by a defender with positive probability. Defen-

ders’ payoffs from helping are strictly decreasing in cost c, so the strict

optimality of s 2 S is trivial from the definition of C1, and from observing

that for h 2 Q, the attacker’s and the other defenders’ behavior is unchanged

by helping.

3. The conclusion follows since S � �S and Z � �Z.

Relaxing the Assumptions

We now informally discuss some ways in which the model’s assumptions could be

relaxed. First, we have assumed that strong types always help. This gives coopera-

tion in defense its weakest-link structure: a single episode of not helping is immedi-

ate proof that the group is normal type. Nevertheless, this structure will remain, so

long as strong types help with probability close enough to 1. For, a single episode of

not helping will still provide strong evidence that the group is normal type; for a

fixed round t, if T is large enough, the attacker will then prefer to stay (as he or she

preferred to stay in the previous round, and now puts a higher probability on facing a

normal group). The attacker may still be deterred by observing further rounds of

helping, but if this requires more than one round, then the incentive for future sup-

porters to help will be diminished in all but the last of these rounds (since helping

does not instantly deter the attacker). Thus, not helping will continue both to alter

the attacker’s and future supporters’ behavior.

Second, in many realistic conflict scenarios, multiple defenders may be able to help

in a given round. This would introduce two new dimensions: (a) the helping technol-

ogy—is it sufficient for one supporter to help (best shot technology), must all sup-

porters help (weakest-link technology), or something in between (e.g., additive

benefits from helping)? and (b) the correlation between the individual costs of help-

ing c within a round. For one case, our result should extend quite easily. Suppose that

individual costs are perfectly correlated in a given round. Then there will be two

equilibria. If nobody else helps, then helping is pointless, since the attacker will infer

type from observing other people’s not helping. So there is an equilibrium where no

normal types help. If all other supporters will help, then each defender becomes

pivotal, since not helping reveals the group’s type. Thus, there will be an equilibrium

in which all types help up to some common cut point defined analogously with (2).

When individual costs vary and supporters observe only their own costs, their pro-

pensity to help will be decreased by the possibility that others will have high costs

and not help. If individual costs vary and are mutually observed by supporters, then

the highest cost supporter is likely to determine all others’ behavior. The set of

potential models is large, and further research on this topic would be useful. In gen-

eral, it seems likely that the main message of this article will survive insofar as

defenders can coordinate their behavior.
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Third, suppose that the attacker faces some cost in moving to a new group (e.g.,

search costs). The main difference this makes is that p now becomes relevant. In the

model, the probability of the existing group being strong type is exactly balanced by

the probability that any other group is strong type. Introducing fixed costs of moving

would drive a wedge between the values of moving and staying. However, if moving

costs are low, a single episode of helping will remain sufficient to deter the attacker,

and defender behavior will be unchanged.

Finally, we have assumed that defenders are harmed but not killed by the attack.

Killing is more than a large welfare loss; it also alters the strategic structure of future

rounds, by removing some actors. In particular, allowing defenders to be killed

would bring the partner effect into play (Eshel and Shaked 2001): each death shrinks

the group, and therefore increases the probability that an individual survivor will be

targeted in a given round. At large group sizes, this effect is negligible (since
1
N
� 1

N�1
), but at smaller group sizes it would strengthen the incentive to help.

Cooperation Before Conflict

In the Introduction, we mentioned the evidence that cooperative and helping beha-

vior seems to increase when there is an attack, or the threat of an attack, from the

outside. We can extend the model to give a natural explanation for this. The setup

is kept as simple as possible to focus on the intuition.

Suppose now that the attacker must commit before the game to attacking for all

T periods, or moving. This resembles an irrevocable decision to launch a war. In

the period before making his choice, the attacker observes K randomly selected

group members playing a one-shot Prisoner’s Dilemma. Each player may cooperate

or defect; a player’s cooperation gives R 2 ð1=K; 1Þ to each of these K players, at a

cost of q to the player. The value of q is common knowledge among defenders, but is

not known by the attacker; it is drawn from a distribution with pdf Cð	Þ, supported

on ðR; 1Þ. After observing play in the Prisoner’s Dilemma, the attacker either

attacks, or does not, earning a payoff of P. This could be the expected payoff from

attacking a different group, or the payoff from some other activity.

We assume that strong types always cooperate, and, as before, always support

each other against attacks.22 Normal types never help during the attack itself, since

the attacker cannot be deterred. We assume that

XT

t¼1

dt a

N
< P <

XT

t¼1

dt A

N
:

The expected loss to each defender from facing an attack is

XT

t¼1

dt A

N
:

There is always an equilibrium in which normal types do not cooperate.
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However, there may also be cooperation in equilibrium, for the same signaling

reason as before. We seek an equilibrium in which all normal types cooperate if q

is below some level �q.

It must be the case that such cooperation (and only such cooperation) deters the

attacker. The attacker’s belief after observing full cooperation is

m ¼ p
pþ ð1� pÞCð�qÞ ; ð10Þ

and he or she is deterred if

m
XT

t¼1

dt a

N
þ ð1� mÞ

XT

t¼1

dt A

N
� P: ð11Þ

If attacker observes any noncooperation, he or she learns for sure that the defenders

are normal types, and attacks (since
PT

t¼1 d
t A

N
> P).

Since m in equation (10) is decreasing in �q, equation (11) provides an upper limit

for �q. Above this upper limit, cooperation is not convincing enough since too many

normal types are doing it. Call this the ‘‘attacker deterrence constraint.’’

If the attacker is deterred by full cooperation, and q � �q so that other defenders

will cooperate, then it is optimal for each defender to join in cooperating if

R� q � �
XT

t¼1

dt A

N
;

equivalently if

q � Rþ
XT

t¼1

dt A

N
:

This provides another upper limit on �q. Call it the ‘‘reward constraint,’’ since it

requires that the reward from cooperation be large enough to justify the cost. Of

course, �q may be lower than these, since no defender will cooperate if, for a given

value of q, he or she expects the others not to cooperate. To sum up, there is a set of

equilibria in which normal type defenders cooperate for q � �q, where

0 � �q � min Rþ
XT

t¼1

dt A

N
; q̂

( )
;

where

q̂ 
 C�1 p
1� p

PT
t¼1 d

t A�a
NPT

t¼1 d
t A

N
� P

 ! !
;

is the solution to equations (10) and (11).
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Examining the upper bound for �q reveals the following; (1) if only the attacker’s

deterrence constraint is binding, so that the upper bound is given by q̂, then it is

weakly increasing in P and p. An increase in the value of the outside option, or in

the probability the attacker puts on the defenders being strong types, will make him

easier to deter. Also, in this case the upper bound is decreasing in A23 and a: a greater

benefit for the attacker from finding either kind of group makes him harder to deter.

Finally, the upper bound increases if C increases (in the sense of first order stochas-

tic dominance): when average costs get higher, then cooperation up to a higher cost

level will still persuade the attacker that he is facing a strong group. (2) If only the

reward constraint is binding, then the upper bound is increasing in R and A: cooper-

ation is sustainable at higher levels when it is more efficient in itself, and when the

cost of an attack is high.

It is clear that this logic could be extended to many different game forms, includ-

ing episodes of pairwise cooperation or altruism—any behavior that correlates with

the desire to cooperate in an actual attack.

Conclusion

Economists, political scientists, and biologists have puzzled over the problem of

cooperation in group conflict. This article demonstrates one possibility: if there is

even some small uncertainty regarding the cohesiveness of the group, then a group

consisting of selfish unrelated individuals may cooperate against outside attackers so

as to deter them by appearing cohesive. The resulting cooperation levels decrease in

group size, but can be arbitrarily high if the time horizon of the attack is long enough

and defenders are patient enough.

The collaborative efforts that followed the 2011 riots in England can be thus

explained by an effort to signal to rioters that they stand to face cooperative resis-

tance from communities. Activists made statements to convey that efforts were col-

laborative as part of a cohesive community rather than individual charitable helping.

A dedicated website set up to coordinate efforts was reported to state that ‘‘This is

not about the riots. This is about the clean up—Londoners who care, coming

together to engender a sense of community’’ (BBC England, August 9, 2011). In our

theoretical framework, both vigilante actions and cleanup efforts can be seen as a

way to signal that people in the community are willing to sacrifice in order to help

their neighbors, by that reducing the incentives to riot and loot. In line with this

reasoning, empathy and helping effort declined once the deterrence effect was

achieved.24

Our analysis provides an ultimate explanation for the proximate mechanisms

identified in the psychological literature for cooperation in conflict. Those proxi-

mate mechanisms should generally lead to the rational behavior identified in our

model. Therefore, our analysis can be instrumental in directing future empirical

research, as it points at the necessary conditions for cooperation to be selfishly ben-

eficial in the long run. Our results heavily rely on a strategic attacker, who can
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condition his decisions on observed cooperation within the group. Cooperation in

conflict is thus predicted to be reduced when these conditions are not satisfied. For

example, cooperation should diminish if it is not visible to enemies; cooperation

should be higher in the face of threats from other groups than of a natural threat.

Although proximate mechanisms sometimes generalize beyond the context for

which they are adapted, our analysis raises interesting new questions that merit

empirical investigation and may lead to new insights regarding human behavior in

conflict.

We see scope for further theoretical work in the following areas: first, can the

uniqueness result be generalized to a wider class of games with group reputation?

Second, extending the model to multiple groups, and/or differentiating between

leaders and followers within groups, would help us to understand how leaders can

manipulate followers’ willingness to take part in group conflict. Finally, in our the-

ory, defensive cooperation is due to group members’ expectations of further attacks.

In the model, groups are exogenously given. However, a group might also be defined

by the attacker’s (perhaps arbitrary) choice of targets. This could provide a model of

‘‘violence and the social construction of identity’’ (Fearon and Laitin 2003).

Appendix

Proof of Lemma 2

Proof. Rewrite equation (6) as

VSðptÞ ¼ ð1� m̂tÞ½aþ dV � þ m̂t½
XT�t�1

s¼0

dsAþ dT�tV �; ðA1Þ

where

m̂t ¼ ð1� mtÞð1� FðCtþ1ÞÞ:

Now,
PT�t�1

s¼0 dsAþ dT�tV is strictly decreasing in t and is greater than aþ dV . To

prove this: first, Aþ dV > V , equivalently 1
1�d A > V , since 1

1�d A is the value of an

infinite series of successful attacks while V is the value of an infinite series of attacks

which are not always successful. A similar proof shows that aþ dV < V . Now writePT�t�1
s¼0 dsAþ dT�tV ¼ Aþ dV for t ¼ T � 1; ¼ Aþ dAþ d2V ¼ Aþ dðAþ dV Þ

for t ¼ T � 2, and so on. Comparing these, and using Aþ dV > V , shows that the

second is larger. Continuing thus shows that at t ¼ T � 3, Aþ dAþ d2Aþ
d3V ¼ Aþ dðAþ dðAþ dVÞÞ is larger still, and so on. Finally, all of these are

greater than V which is greater than aþ dV as we mentioned.

Since
PT�t�1

s¼0 dsAþ dT�tV is strictly decreasing in t and is greater than aþ dV ,

to show equation (A1) is strictly decreasing in t, it will suffice if m̂t is decreasing in t;
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for if so, then the expression on the RHS of equation (A1) will put increasing weight

on the smaller aþ dV term.

Rewrite this expression, using the definition of mðhtÞ in (7), as

m̂t ¼ 1� p

pþ ð1� pÞ
Qt

s¼1 FðCsÞ

 !
ð1� FðCtþ1ÞÞ:

The above expression approaches

ð1� �mtÞð1� Fð �CÞÞ ðA2Þ

as T !1, where �mt is as defined in equation (8). This expression is strictly decreas-

ing in t, since �mt is strictly increasing in t. Define e ¼ mint2f0;:::;M�1gð1� �mtþ1Þ
ð1� Fð �CÞÞ � ð1� �mtÞð1� Fð �CÞÞ and note that e > 0. Now, by selecting T large

enough, we can ensure that

ð1� pÞ
Qt

s¼1 FðCsÞ
pþ ð1� pÞ

Qt
s¼1 FðCsÞ

ð1� FðCtþ1ÞÞ � ð1� �mtÞð1� Fð �CÞÞ
�����

����� <
e
2

for all t;

and this, combined with our definition of e, ensures that m̂t is decreasing, since

each value of m̂t has been made sufficiently close to the corresponding value of

equation (A2).

Lemma 5. In any equilibrium, after any history ht, normal types do not help with

probability of at least 1� Fð �CÞ > 0.

Proof. Normal types help if

1� cþ dW � 1þ dW 0;

where W and W 0 are continuation values from helping and not helping, respectively.

These are bounded below by
PT�t

s¼0 d
s 1� A

N

� �
and above by

PT�t
s¼0 d

s. The above

bound is reached if the attacker leaves; the lower bound holds because the defender

can achieve at least this payoff by never helping. The maximum difference between

dW and dW 0 is thus d
PT�t�1

s¼0 ds A
N
¼ d�dT�tþ1

1�d
A
N

< �C; so for c � �C the inequality

above will not be satisfied.

Lemma 6. In any sequential equilibrium, beliefs mðptÞ must be as given in equa-

tion (7), while mðhtÞ ¼ 0 for ht =2 P.

Proof. First, observe that in any equilibrium, defender play sðpt; cÞ can be charac-

terized by a (perhaps infinite) cut point Ct, because if sðpt; cÞ ¼ 1 is optimal, then

sðpt; c
0Þ must be strictly optimal for c0 < c. Since pt may be off the equilibrium path

of play, permissible beliefs must be derived by constructing a sequence of equilibria

of perturbed games (for n ¼ 1; 2; . . .) in which (1) defenders’ probability of helping
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at ht, snðht; cÞ is bounded within a subinterval of ð0; 1Þ, with the interval approaching

½0; 1� as n!1, for all ht and c; (2) snðht; cÞ ! sðht; cÞ as n!1 (to avoid compli-

cations we assume that this convergence is uniform across all c); and (3) attack-

er’s probability of leaving or staying is similarly bounded between 0 and 1 and

converges to 0 or 1 according to zðhtÞ 2 fstay; moveg. We also assume that nor-

mal defenders help with probability 1� Znðht; cÞ ! 1 as n!1. We then apply

Bayes’ rule to give the attacker’s beliefs. For pt, this results in

mnðptÞ ¼
p
Qt

s¼1

Ð
ð1� Znðps; cÞÞdFðcÞ

� �
p
Qt

s¼1

Ð
ð1� Znðps; cÞÞdFðcÞ

� �
þ ð1� pÞ

Qt
s¼1

Ð
snðps; cÞdFðcÞ

� � :
As n!1, we arrive at the limit

mðptÞ ¼
p

pþ ð1� pÞ
Qt

s¼1

Ð
snðps; cÞdFðcÞ

� � ;
and in the equilibrium the main text, since snðps; cÞ ! 1 for c � Cs, snðps; cÞ ! 0

otherwise, this must reduce to

mðptÞ ¼
p

pþ ð1� pÞ
Qt

s¼1 FðCsÞ
;

as in equation (7).

For ht =2 P, in any equilibrium, write ht ¼ ðr1; r2; . . . ; rtÞ, with rs 2 f0; 1g for

s 2 f1; . . . ; tg. Bayes’ rule gives

mnðhtÞ ¼
p
Qt

s¼1 rs

Ð
ð1� Znðhs; cÞÞdFðcÞ þ ð1� rsÞ

Ð
Znðhs; cÞdFðcÞ

� �
D

;

with

D ¼ p
Yt

s¼1

rs

ð
ð1� Znðhs; cÞÞdFðcÞ þ ð1� rsÞ

ð
Znðhs; cÞdFðcÞ

	 


þ ð1� pÞ
Yt

s¼1

rs

ð
snðps; cÞdFðcÞ þ ð1� rsÞ

ð
ð1� snðps; cÞÞdFðcÞ

	 

:

Since rs ¼ 0 for at least one s, the numerator of the above expression goes to 0 as

n!1, and the denominator D remains bounded above 0 since, after any history,

normal types sometimes fail to help (Lemma 5). Thus mðhtÞ ¼ 0.

Lemma 7. Suppose that zððht; 0; hþÞÞ ¼ zððht; 1; hþÞÞ for all continuation

histories hþ of length 0 or more. Then in any equilibrium, sðht; cÞ ¼ 0 for

all c.

Proof. We prove by backward induction over the T periods. First, in a final period

history hT�1, sðhT�1; cÞ ¼ 0 for all c, since supporter behavior cannot affect future
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play. Next, at T � 2, sðhT�2; cÞ ¼ 0 for all c, since the supporter cannot affect either

future supporter play (as we have just shown) or the attacker’s future play

(by assumption). Then at T � 3, sðhT�3; cÞ ¼ 0 for all c for the same reason, and

so on.

Proof of Lemma 3

Proof. Again, start at the end. Since mðhT�1Þ ¼ 0, the attacker is certain that the

defenders are normal types, and since sðhT�1; cÞ ¼ 0 for all c, the attacker will

gain his maximum per-round payoff of A next round by staying, giving a

continuation value of Aþ dV > V (since there is positive probability of receiv-

ing a in the first round, V < A=ð1� dÞ). Thus zðhT�1Þ ¼ stay is strictly optimal.

Now consider zðhT�2Þ. Since mðhT�2Þ ¼ 0, the attacker’s belief will stay at 0 for

any continuation history. Thus, zððhT�2; 0ÞÞ ¼ zððhT�2; 1ÞÞ ¼ stay as we have just

shown. Therefore, the assumption of Lemma 7 holds for histories of length T � 2.

Applying Lemma 7, we conclude that sðhT�2; cÞ ¼ 0 for all c. Therefore,

zðhT�2Þ ¼ stay. For, given that sðhT�2; cÞ ¼ sððhT�2; 0Þ; cÞ ¼ sððhT�2; 1Þ; cÞ ¼ 0

for all c, and that mðhT�2Þ ¼ 0, the continuation value for staying is

Aþ dAþ d2V > V . We have now proved the conclusion of the Lemma for histories

of length T � 2.

At hT�3, if zðhT�3Þ ¼ stay then the previous paragraph shows that

zððhT�3; hþÞÞ ¼ stay, for any positive-length continuation history hþ. Again this

allows us to apply Lemma 7 and shows that sðhT�3; cÞ ¼ 0 for any c, and again this

shows that zðhT�3Þ ¼ stay. This plus the previous paragraph proves the conclusion

of the Lemma for histories of length T � 3. Continuing thus, we prove it for histories

of any length.

Lemma 8. There is some �t such that in any equilibrium for a game of any length

T , zðptÞ ¼ move for all t � �t.

Proof. Applying equation (7), Lemma 5 shows that in any equilibrium mðptÞ is

strictly increasing in t, and so approaches 1. Furthermore, in any equilibrium, since

the probability of helping is no more than Fð �CÞ, mðptÞ � �mt as defined in equation (8).

Therefore, the set of beliefs mðptÞ, defined over all equilibria, approaches 1 uni-

formly as t!1: for any e > 0, there is some �te such that mðp�teÞ � �m�te > 1� e in any

equilibrium.

Now, the value to the attacker of staying in equilibrium can be written

VSðptÞ ¼ mðptÞ½aþ dV 0� þ ð1� mðptÞÞV 00: ðA3Þ

where V 0 is the continuation value conditional on the defenders being strong types,

and V 00 is the value if the defenders are normal types. Since strong types always help,

the best response when faced with them is to leave; therefore, aþ dV 0 � aþ dV .

Furthermore,

Hugh-Jones and Zultan 347

 at BEN GURION UNIV NEGEV on April 30, 2013jcr.sagepub.comDownloaded from 

http://jcr.sagepub.com/


V � ðpþ ð1� pÞFð �CÞÞaþ ð1� pÞð1� Fð �CÞÞAþ dV

¼ aþ dV þ ð1� pÞð1� Fð �CÞÞðA� aÞ;

since (1) the probability of normal types helping is no more than Fð �CÞ and (2) the

attacker can achieve at least the payoff on the RHS, by leaving after the first round.

Therefore, in any equilibrium, aþ dV 0 � V � e2 where e2 ¼ ð1� pÞð1� Fð �CÞÞ
ðA� aÞ. Plugging this into equation (A3), and using the fact that V 00 is bounded

above by
P1

s¼0 d
sA, gives for any e some �te such that

VSðp�teÞ � ð1� eÞðV � e2Þ þ e
X1
s¼0

dsA

� V � ð1� eÞe2 þ e
X1
s¼0

dsA:

Choosing e so that the right-hand side is strictly less than V for any equilibrium value

of V , we can set �t ¼ �te. Then, it is sequentially rational to leave after p�t, so

zðp�tÞ ¼ leave.

Proof of Proposition 2

Proof. Suppose false, so that zðptÞ > 0 for some t > 0. If T � �t, zðptÞ ¼ 0 (i.e., leave)

for t high enough, as Lemma 8 shows. So, for T large enough we may take F such

that zðpFÞ > 0, but zðpFþ1Þ ¼ 0. Now, define L ¼ minft � 1 : zðpt0 Þ > 0 for all

t � t0 � Fg. Observe that if zðptÞ ¼ 0 for all t < F, then L ¼ F; if zðptÞ > 0 for all

t < F, then L ¼ 1.

First we show that CL < CFþ1. After pF , the attacker will condition on the

next round, staying until T if he observes no helping and leaving otherwise.

Thus,

CFþ1 ¼
d� dT�F

1� d
A

N
;

just as in equation (2). Observe that for any T , F < �t, by Lemma 8. Therefore, as T

becomes large,

CFþ1 ! �C ¼
X1
t¼1

dt A

N
: ðA4Þ

Now examine the supporter’s problem in round L. The benefit of not helping is

1þ
XT

t¼Lþ1

dt�L 1� A

N

� �
: ðA5Þ

The benefit of helping is
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1� cþ
XF

t¼Lþ1

dt�L

1� Nohelpt

A

N
� Attackt

1

N

ðCt

0

ĉdFðĉÞ þ 1

N
½FðCtÞaþ ð1� FðCtÞÞA�

	 
� �

þ
XT

t¼Fþ1

dt�L1� NohelpFþ1

A

N

� �
;

ðA6Þ

where Nohelpt gives the probability that at least one defender failed to help between

rounds Lþ 1 and t � 1, and Attackt gives the probability that the attacker is still

present at time t even though all defenders helped. That is, until round F, the attacker

may still be present even after observing helping. If so, the defender bears the

expected cost in curly brackets, which includes the expected cost of being a sup-

porter and helping if c � Ct, and the expected cost of being attacked and perhaps

helped. From round F þ 1 onward, either the attacker has observed perfect helping

and left, or h =2 P, the attacker is staying forever and no defenders help.

We can calculate Attackt as

Yt�1

s¼Lþ1

FðCsÞzðpsÞ;

which is positive by definition of L, and Nohelpt, recursively, as

Nohelpt�1 þ ð1� Nohelpt�1Þzðpt�2Þð1� FðCt�1ÞÞ;

with NohelpLþ1 ¼ 0 since by assumption the current supporter helped. That is, even

if every supporter helped up till t � 2, if the attacker continued to stay, then at t � 1

the supporter may have failed to help. All that matters is that both Attackt and

Nohelpt are positive, since zðptÞ is positive for L � t � F.

Rearranging equation (A6) and (A5), and taking T !1, gives

CL !
T!1

XF

t¼Lþ1

dt�L

1� Nohelptð Þ A

N
� Attackt

1

N

ðCt

0

ĉdFðĉÞ þ 1

N
½FðCtÞaþ ð1� FðCtÞÞA�

	 
� �

þ
X1

t¼Fþ1

dt�L 1� NohelpFþ1

� � A

N
¼ VðpFÞ:

Comparing this with equation (A4) shows CL < CFþ1, since each term of the above

sum is less than A
N

.
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Now, VSðpL�1Þ ¼ ½mL�1 þ ð1� mL�1ÞFðCLÞÞ�ðaþ dV ðpLÞÞ þ ð1� mL�1Þð1� F
ðCLÞÞðAþ dAþ :::þ dT�LAþ dT�Lþ1VÞwhere the first term in brackets gives the

probability of the supporter helping, and VðpLÞ is the value after pL. Observe that

aþ dVðpLÞ < Aþ dAþ :::þ dT�LAþ dT�Lþ1V ;

since VðpLÞ involves a sequence of no more thanT � L attacks which can give no

more than A, followed by V , and since V < Aþ dV implies V < Aþ dAþ :::þ
dt�1Aþ dtV for any t � 1. Therefore, we can write

VSðpL�1Þ > ½mF þ ð1� mFÞFðCFþ1ÞÞ�ðaþ dVðpLÞÞ þ ð1� mFÞð1� FðCFþ1ÞÞ
ðAþ dAþ :::þ dT�LAþ dT�Lþ1VÞ
ðby mF > mL�1 and CL < CFþ1; and aþ dVðpLÞ
< Aþ dAþ :::þ dT�LAþ dT�Lþ1VÞ
> ½mF þ ð1� mFÞFðCFþ1ÞÞ�ðaþ dVÞ þ ð1� mFÞð1� FðCFþ1ÞÞ
ðAþ dAþ :::þ dT�F�1Aþ dT�FVÞ
ðsince VðpLÞ � V ; as must always hold given that leaving is an option;

and V < Aþ dV ) dT�FV < dT�FAþ dT�Fþ1Aþ :::
þ dT�LAþ dT�Lþ1VÞ ¼ VðpFÞ:

But since, by definition of L, either zðpL�1Þ ¼ 0, or VSðpL�1Þ ¼ V if L ¼ 1, it must

be that V � VSðpL�1Þ. We therefore arrive at V > VðpFÞ which contradicts

zðpFÞ > 0.
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Notes

1. We treat attackers as single self-interested agents, thus abstracting away from two-sided

group conflicts. This would be an interesting extension to the theory.

2. Intuitively, helping in time of attack can be maintained in an equilibrium of a larger game

that includes long-term interactions such as trading.
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3. Many examples can be found in Horowitz (2001). Stephan and Stephan (2000) discuss

‘‘symbolic threats’’ from a social psychological point of view.

4. In equilibrium, the attacker moves on at once after observing a single episode of helping,

so this statement holds for off-path behavior.

5. Weinstein (2007) provides case studies of insurgencies where material rewards and

punishments played a minor role in motivating fighters.

6. For an extensive review of the classic sociological and psychological literature, see Stein

(1976).

7. Evolutionary explanations are sometimes accused of being ‘‘just-so stories,’’ that is, ex

post rationalizations of existing data. However, our model generates the novel prediction

that cooperation under threat should be highly sensitive to other players’ behavior, so it is

not just just-so.

8. We use finite repetitions so as to avoid folk-theorem style results where there are multiple

equilibria even if the attacker does not condition on defender behavior: we want to focus

on the stark case where repeated play among defenders alone could not sustain cooper-

ation. This also enables us to find a unique equilibrium.

9. For our results, Fð �CÞ can be taken to reflect the attacker’s beliefs about the distribution of

supporter types. Accordingly, it is not necessary to assume that high costs exist in the pop-

ulation, as long as the attacker cannot rule out their existence with certainty.

10. If (1) is falsified, there are equilibria in which the attacker plays a mixed strategy in early

rounds while supporters help. These are complex and appear not to add much insight, so

we do not investigate them further.

11. Allowing identity to be observed would not remove the equilibrium described below, but

would complicate the notation considerably. We also believe it would not add new equi-

libria. Observe that punishment strategies cannot be used among defenders since after any

supporter has not helped, all supporters stop helping and the attacker attacks forever.

12. Since strong types always help by assumption, the following analysis deals strictly with

normal types.

13. The limitation to pure strategies is innocuous because defenders will only be indifferent

between helping and not for a single value of c (which occurs with 0 probability by

continuity ofF). Technically, a defender could condition behavior on his own costs of help-

ing in previous rounds when he was a supporter. Allowing this would not affect our results.

14. This is shown for beliefs off the path of play in Lemma 6, where the sequential equili-

brium refinement is used.

15. Hendon, Jacobsen, and Sloth (1996) prove the principle for Sequential and Perfect

Bayesian Equilibrium.

16. Technically, a little more work is necessary to show that only the beliefs of equation (7)

are possible in sequential equilibrium. See Lemma 6 in the Appendix.

17. Proofs not given in the main text are in the Appendix.

18. See Lemma 6 in the Appendix.

19. There may be Weak Perfect Bayesian equilibria with zðp1Þ ¼ 0 (i.e., move), zðptÞ > 0 for

some t > 1, in which case, pt is never reached in equilibrium. However, all Weak Perfect

Bayesian equilibria have zðp1Þ ¼ move.
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20. Technically, we require that, after at least one history h 2 Q [ ;, ŝðh; cÞ 6¼ sðh; cÞ for all

c 2 C, a set occurring with positive probability.

21. We also expect that these sets are stable against simultaneous mutations by defenders and

attackers, but showing it would be more complex. The logic is that if a small proportion of

attackers becomes more aggressive in staying after a helping episode, then optimal defen-

der cut points will be lower; this, however, makes helping a stronger signal that defenders

are strong types, and increases the fitness of the less aggressive attackers.

22. The Prisoner’s Dilemma itself may be the basis for the differentiation between group

types. For example, strong types can be engaging in the game repeatedly with the same

partners, and condition their cooperation on helping during the attacks as well as on coop-

eration in previous rounds of the Prisoner’s Dilemma. Conversely, normal types often

reconstruct new groups with strangers, and therefore have no incentives to cooperate

in the absence of an imminent attack. The attacker observes only one period of the

repeated game, and therefore cannot distinguish between partner and stranger groups.

23. To show this, differentiate q̂, recalling that P >
PT

t¼1 d
t a

N
.

24. The website www.riotcleanup.com, for example, stopped publishing calls for donations

immediately after the riots ended.
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