
Engineering Applications of Artificial Intelligence 126 (2023) 107074

0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Scheduling operations in a large hospital by multiple agents
Noam Gaon, Yuval Gabai Schlosberg, Roie Zivan ∗

Industrial Engineering and Management Department, Ben-Gurion University of the Negev, Beer Sheva, Israel

A R T I C L E I N F O

Keywords:
Distributed constraint optimization
Multi-agent system
Multi-agent applications
Operating-room scheduling
Distributed local search algorithms

A B S T R A C T

The scheduling of operations in a large hospital is performed jointly by several groups of people, each with
its own objective and constraints. It is a two-phase process, starting with the allocation of operating rooms to
wards, and followed by the scheduling of operations in each operating room of the hospital on each day. The
final schedule must satisfy all inter-ward hard constraints, such as the allocation of anesthetists, nurses, and
equipment to operations that are taking place in parallel, and ideally, it should also address soft constraints
such as taking the urgency and complexity of operations into consideration.

This study contributes to the ongoing effort of adapting multi-agent optimization models and algorithms
to real-world applications by modeling the problems in both phases as distributed constraint optimization
problems (DCOPs), with different properties. The first phase includes partially cooperative ward-representing
agents, allocating operating rooms for daily usage among themselves. In the second phase, ward-representing
agents interact with agents representing constraining elements, in order to generate daily operation schedules
for each operating room, thus forming a unique bipartite constraint graph. On one side are the ward
representatives, while on the other are the agents representing the constraining resources. Each agent has
a non-trivial local problem to solve, and its solution serves as the proposed assignment in the distributed
algorithm.

The study begins by discussing the properties required of the algorithms needed to solve the two phases. It
then proposes adjustments to existing distributed partially cooperative algorithms and local search algorithms
to solve these problems, and compares the results of different variants of these algorithms. The results obtained
for both phases emphasize that successful collaboration is predicated on two requirements: that agents hold
consistent information regarding their peers’ states and that the degree of exploration undertaken by the
algorithm is restricted in order to produce high-quality solutions.
1. Introduction

For many years, the study and development of multi-agent opti-
mization models and algorithms addressed abstract, random problems
such as random uniform constraint graphs, graph coloring and scale-
free networks. In the last two decades, researchers in this community
have repeatedly emphasized the importance of identifying practical ap-
plications in which it is essential to apply such models and algorithms.
The emergence of IoT-related research has produced a set of rele-
vant applications in which devices interact, and therefore, distributed
models and algorithms are adequate for solving them (Farinelli et al.,
2014; Rust et al., 2016). Yet, distributed problem-solving is mainly
motivated by the interests of humans (the humans that are represented
by the system’s agents), such as privacy and cooperation intentions, and
practical applications that include human-representing agents are still
uncommon. Therefore, the introduction of models and algorithms for
representing such applications and solving the corresponding problems

∗ Corresponding author.
E-mail addresses: noamga@bgu.ac.il (N. Gaon), gabaiyuv@bgu.ac.il (Y.G. Schlosberg), zivanr@bgu.ac.il (R. Zivan).

is an important and relevant challenge. Many real-world scheduling
problems include conflicting interests between interdependent entities.
An intuitive example is the scheduling of activities that require a
limited set of resources. Solving such problems requires the interac-
tion of autonomous entities (agents), each with its own objective and
constraints. The goal is to find a schedule that will satisfy the hard inter-
group constraints while also taking soft constraints into consideration.
Some examples are the scheduling of dental appointments, automobile
repairs, job interviews, and hospital operations. All of these applica-
tions have a similar combination of properties, including a level of
urgency, the requirement for experts and equipment, and a room or
venue in which the scheduled process takes place. Such applications
have a natural distributed structure, in which each autonomous entity
participating in the schedule has its own requirements for optimizing
its own performance, as well as its own preferences and constraints.

The last scenario mentioned above – that of scheduling operations
in a large hospital – is the focus of this study. A large hospital may
952-1976/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2023.107074
Received 1 March 2022; Received in revised form 8 March 2023; Accepted 28 Aug
ust 2023

https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
mailto:noamga@bgu.ac.il
mailto:gabaiyuv@bgu.ac.il
mailto:zivanr@bgu.ac.il
https://doi.org/10.1016/j.engappai.2023.107074
https://doi.org/10.1016/j.engappai.2023.107074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107074&domain=pdf


Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Symbol Table

 Set of agents in a DCOP/ADCOP
 Set of variables in a DCOP/ADCOP
 Set of variable domains in a DCOP/ADCOP
 Set of constraint domains in a

DCOP/ADCOP
𝑃𝐴 Partial assignments
𝜆𝑖 Level of cooperation intention of agent 𝐴𝑖
𝜇𝑖 Baseline cost of agent 𝐴𝑖
𝑐𝑖(𝑜) Cost of solution 𝑜 for agent 𝐴𝑖
𝑊 Set of wards in an ORDA
𝑅𝐷 Set of room-date allocations in an ORDA
𝐶𝐶𝑖 A cardinal constraint defining the utility

derived with respect to the number of 𝑅𝐷s
allocated to ward 𝑊𝑖 in a time interval in
an ORDA

𝐿𝐵𝑖 The minimal number of 𝑅𝐷s required by
ward 𝑊𝑖 in a time interval in an ORDA

𝑈𝐵𝑖 The maximal number of 𝑅𝐷s a ward 𝑊𝑖 can
use in a time interval in an ORDA

𝐶𝐴 A complete allocation of RDs to wards in an
ORDA

𝑈𝑖(𝐶𝐴) The utility derived by ward 𝑊𝑖 from the
𝑅𝐷s allocated to it in a 𝐶𝐴

𝑈 (𝐶𝐴) The global utility derived by the wards from
a 𝐶𝐴

𝑊𝑅 Set of ward-representing agents in an ODSP
𝑆𝑤𝑟 Set of surgeons of the ward represented by

𝑤𝑟 in an ODSP
𝑅𝑇𝐺𝑤𝑟 Set of operations that are ready to be sched-

uled by the ward represented by 𝑤𝑟 in an
ODSP

𝑅𝑤𝑟 Set of operating rooms per day allocated to
the ward represented by 𝑤𝑟 in an ODSP

𝑋𝑤𝑟
𝑠 Set of variables representing the alloca-

tion of surgeons to operations in the ward
represented by 𝑤𝑟 in an ODSP

𝑋𝑤𝑟
𝑠 Set of variables representing the schedul-

ing of operation requests for the ward
represented by 𝑤𝑟 in an ODSP

𝐶𝑤𝑟 Set of constraints of the ward represented
by 𝑤𝑟 in an ODSP

𝐶𝐸 Set of constraint element (CE) representing
agents in an ODSP

𝑋𝑐𝑒 Set of variables representing the assign-
ments performed by a constraint element
representing agent 𝑐𝑒 in an ODSP

𝐷𝑐𝑒 Set of domains including the possible as-
signments for variables in 𝑋𝑐𝑒

𝐶𝑐𝑒 Set of constraints of the constraint element
represented by agent 𝑐𝑒 in an ODSP

have several operating theaters, each with ten or more operating rooms.
Each operating room is associated with a team consisting of multiple
professionals, each of whom needs to be scheduled. In addition to sur-
geons, these teams include nurses, anesthetists, technicians, and more.
Furthermore, operations over a single day are performed by multiple
doctors belonging to numerous wards, and are performed on patients
who need to be prepared correctly for the operation at hand (Kroer
et al., 2018). The process of scheduling time slots for all operations
2

is complicated and time-consuming, not to mention cumbersome (and
potentially dispiriting) for all team members involved.

The process of scheduling operations can be separated into two
phases (Fei et al., 2006). The first is the allocation of operating rooms
to wards per day. Different wards in the hospital have different needs
for operating rooms. On a given day, each room is allocated solely to
a single ward. Constraints define which room can be used for which
type of operation, the level of concurrency at which wards can perform
operations, the preferences of each ward regarding the rooms to be
allocated and the days of the week, and the cardinal needs for operating
rooms for each ward (Blake and Donald, 2002).

The second part of the process is the generation of daily schedules of
operations by wards, for each room that was allocated to them on each
date. The daily schedule of each operating room must take into account
the available resources required for the operations to be performed,
such as nurses, anesthetists, and equipment. These considerations nat-
urally result in a multi-agent problem in which the ward-representing
agents need to coordinate their decisions with the representatives of
the constraining and shared elements. The multi-agent optimization
problem takes the form of a bipartite graph. On one side of the graph
are the ward agents (WR), each representing a hospital ward. On the
other side are the agents representing the constraining elements (CE).
Examples of such agents are the head nurse, the anesthetist’s ward
manager, and the surgical equipment agent (there may be others, such
as technicians or unlicensed assistive personnel). Hence, agents per-
forming this process must consider both the internal ward constraints
(e.g., the availability of surgeons) and medical constraints (e.g., the
urgency of the operation). In addition, all inter-ward constraints and
management preferences need to be considered, such as the required
equipment and personnel availability (Cardoen et al., 2010).

The final daily schedule involves the assignment of operation re-
quests, surgeons and required critical equipment to time slots and
operating rooms. Even though the participants are all autonomous
entities, they all belong to the same hospital. Thus, they share common
goals, such as the reputation and financial success of the hospital.

Multi-agent optimization scenarios are commonly represented as
distributed constraint optimization problems (DCOP) (Modi et al.,
2005; Petcu and Faltings, 2005; Rogers et al., 2011; Yeoh et al.,
2010; Zivan et al., 2014; Deng et al., 2021). When agents value the
possible outcomes differently in multi-agent problems (have different
constraints), the adequate model for representing the problems is the
asymmetric distributed constraint optimization problem (ADCOP) (Grinsh-
poun et al., 2013; Chen et al., 2020). The problems at the focus of this
study are indeed asymmetric. In the room-per-day allocation problem,
different wards have different needs and have different valuations
of particular allocations. In addition, since all wards are part of the
same hospital, they have an incentive for other wards to succeed;
thus, in this scenario, agents representing wards are partially coopera-
tive (Grubshtein et al., 2012; Ze’evi et al., 2018). In the inter-ward daily
scheduling problem, the agents representing the constraining elements
(e.g., nurses, anesthetists, technicians) and the underlying commu-
nication and constraint graph structure are unique. Different wards
have different preferences, and the representatives of the constraining
elements have their own interests.

ADCOPs are known to be NP-hard (see explanation in Section 3.2),
and thus the enormous size of the problem at hand rules out complete
ADCOP algorithms. Consequently, this study proposes ADCOP-based
models for representing the problems and distributed incomplete local
search algorithms for solving them.

This introduction concludes with a statement of the main goal
and objectives. The goal is to enhance the applicability of multi-agent
optimization models and algorithms to real-world scenarios by:

1. Proposing an extension of the socially motivated, partially coop-
erative model (proposed in Ze’evi et al., 2018), by applying it
to the case of periodic indivisible resource allocation, which is
relevant to the allocation of operating rooms per date to wards

in a large hospital.



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

p
c
t
o
w
F
d
a
p
e
e
r
i

2. Proposing a bipartite distributed constraint optimization model.
The model is an extension of the ADCOP for representing prob-
lems in which agents attempt to schedule elements constrained
by the availability of resources. These resources are under the
control of other agents. All agents seek to reach a schedule
that does not violate hard constraints and that maximizes the
utility expressed by soft constraints. Each scheduled operation
includes the assignment of all elements involved. This model
applies to the problem of scheduling operations in operating
rooms allocated to wards on specific dates.

3. Proposing adjustments to distributed local search algorithms for
solving the two models that represent the resource allocation
and the scheduling problems, in which agents solve their local
problem using a centralized heuristic (e.g., simulated anneal-
ing) and exchange assignments with their neighbors to resolve
inter-constraints.

The empirical results presented in this paper demonstrate the im-
ortance of shared preferences, in cases where agents are partially
ooperative. Ignorance may lead to altruistic decisions, which hurt
he altruist agents more than they benefit their neighbors. On the
ther hand, exchanging information about the preferences of agents
ith regard to their neighbors’ actions triggers high-quality solutions.
urthermore, the results relating to the scheduling of daily operations
emonstrate the importance of using methods for establishing stability
s well as the importance of attempting to achieve incremental im-
rovement of interim solutions. Thus, they reveal that a limited level of
xploration is required in order to achieve high-quality solutions. This
xploration level can be achieved by allowing only a limited number of
evisions in each algorithm iteration or by penalizing schedule revisions
n such a way that only modifications with large benefits are performed.

The main contribution of the present research is that it formulates a
realistic scenario as a multi-agent system that includes multiple optimization
problems that need to be solved. In so doing, it paves the way for
heterogeneous teams of agents to better work together and thus provide
high-quality solutions for such problems.

2. Related work

This section presents related work that has been published on oper-
ation scheduling and on applications in which multi-agent optimization
is used.

2.1. Operating room planning and scheduling

Researching new directorial healthcare strategies to provide high-
quality services to patients in hospitals is becoming increasingly im-
portant. Hospitals wish to decrease costs and increase the utilization
level on the one hand, while maximizing the level of patient con-
tentment on the other. The operating theater is the hospital’s main
cost and revenue center (Denton et al., 2010) and has a significant
influence on the hospital’s performance. However, operating theater
management is challenging due to the lack of sufficient resources and
the participants’ conflicting priorities and preferences. Thus, there is
a need to develop improved planning and scheduling procedures that
will increase productivity.

Advanced scheduling, in the current context, refers to the method
of setting up a surgery date for a patient. Allocation scheduling, on
the other hand, defines the operating room and the start time of the
surgery on the day to which the surgery was assigned (Magerlein
and Martin, 1978). Two main patient groups are considered in the
literature with respect to operating room scheduling: elective and non-
elective patients. The first group includes patients whose surgery can be
scheduled in advance, while the second consists of patients that must
undergo an urgent and unexpected operation (Cardoen et al., 2010).
3

Previous studies on surgery scheduling problems can be separated
into two categories. First, single operating room (OR) scheduling prob-
lems aim to define the start times for a set of surgeries in an OR on
a given day (Denton et al., 2007; Sun and Li, 2011; Wang, 1993).
Second, multiple OR scheduling problems (Batun et al., 2011; Jebali
et al., 2006), which are also addressed in the present study, consider
the scheduling of parallel surgeries in various ORs.

Distinct methods have been used to solve surgery scheduling prob-
lems. These methods can be divided into four categories: queuing
models, simulation methods, optimization methods, and heuristic meth-
ods (Cardoen et al., 2010; Erdogan et al., 2011; Fei et al., 2008).
Queuing models are typically used to solve single OR scheduling prob-
lems. Simulations can be used to evaluate several scheduling heuristics
and are adjustable such that they can model ambiguity during surgery
scheduling. Regarding optimization methods, most researchers have
used deterministic or stochastic integer programming/mixed-integer
programming models and algorithms. Aside from exact methods, some
heuristic approaches have been applied, such as simulated annealing,
tabu search, and genetic algorithms. In addition, some centralized con-
straint programming (CP) approaches have been proposed for solving
the surgical scheduling problem (Zhao and Li, 2014). All of the above
methods require the centralization of all the problem’s constraints and
preferences to a single entity that performs the scheduling. The current
approach differs in this key aspect.

2.2. Applications of multi-agent optimization

Multi-agent optimization models and algorithms are used when
multiple entities, possibly heterogeneous, need to work together in
order to accomplish a mutual goal. The following review focuses on
a subset of the applications of this type of model that have been
addressed by researchers.

Meeting scheduling. One of the most common multi-agent optimization
benchmarks considers agents representing people who need to meet,
where each agent has its own existing schedule, constraints and prefer-
ences (Maheswaran et al., 2004b; Gershman et al., 2008). Thus, agents
interact with other agents with whom they need to meet and schedule
meetings. Two main approaches to represent such a problem were
suggested in Maheswaran et al. (2004b). The first considers the events
(meetings) as variables (EAV), and the domains include all the possible
times and locations for the events. The second defines the events as
private agent variables, with hard constraints among them (PEAV).
This model is more natural for the problem at hand; however, its
strict constraints structure prevents the use of distributed local search
algorithms (Grinshpoun et al., 2013). The problem addressed in this
paper may be considered as a sub-class of meeting scheduling, since
multiple elements need to be available and scheduled for an operation
to take place. However, the constraints structure in operating room
scheduling is unique and therefore requires the specific modeling and
algorithmic adjustments proposed in this paper.

Mobile sensor teams. A challenging application of multi-agent opti-
mization involves a team of mobile autonomous vehicles that carry
sensors (Stranders et al., 2009; Zivan et al., 2015; Yedidsion et al.,
2018). The aim of the team is to select a deployment of the sensors
that minimizes the difference between the required coverage and the
provided coverage. The problem is highly dynamic not only because the
environments in which the mobile sensor teams are operating include
dynamic elements, but also because any movement of a sensor results
in a revision to its domain and constraints (see Zivan et al., 2015 for
details). The common approach for solving such problems is iterative.
In each iteration, a distributed constraint optimization problem is gen-
erated and solved by the agents, to allow them to select new positions.
Thus, in each iteration, the agents can adjust the problem according
to the results of dynamic events (Yedidsion et al., 2018). While this
application is obviously very different from the application addressed
in this paper, there are similarities with regard to the system structure,
which includes targets that have some service (coverage) requirements

and agents that can meet these requirements.



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

p
w
m
o
a
h
m
t
T
s
e
a

3

l
s

3

w
a
r
r
f
a
m
i
b
i
s

a
a
a
t
a
u
v
i

d
a

b
t
r
e

D

Smart home device scheduling. Recently, IoT applications have become
opular, along with the expectation that different entities (agents)
ill communicate and coordinate their actions in order to achieve
utual goals. Such applications are well suited to the use of multi-agent

ptimization models and algorithms. The first application that received
ttention from the community was the scheduling of devices in smart
omes (Rust et al., 2016; Fioretto et al., 2017). This system includes
ultiple devices that need to operate in order to reach a level of service

hat is acceptable by the users (the humans living in the smart home).
he agents representing the different devices coordinate their actions
o that they satisfy the users’ needs while using a minimal amount of
lectricity. Again, while this application is very different from the one
ddressed here, there are similarities in terms of structure.

. Background

This section provides background on distributed optimization prob-
ems and on local search algorithms for solving such problems in
ymmetric, asymmetric and partially cooperative settings.

.1. Distributed constraint optimization

The distributed constraint optimization problem (DCOP) is a frame-
ork used to characterize combinatorial optimization problems that
re distributed by nature and include constraints. DCOPs can represent
eal-life problems that cannot be resolved in a centralized way for
easons such as autonomous decisions of the agents, user privacy, or in-
easibility of centralization. They usually involve many interdependent
gents, can be represented by a graphical model, and are solved using
essage passing algorithms. DCOPs have a broad range of applications

n MAS (Netzer et al., 2012). They constitute a scientific challenge
ecause they require the cooperation of various agents (each of which
s only aware of a minor component of the problem) to obtain global
olutions (Grubshtein et al., 2010).

A DCOP includes a set of agents, each holding at least one variable
nd a set of functions or constraints. The values assigned to the vari-
bles held by the agents are taken from finite, discrete domains. The
gents interact via messages to coordinate the selection of values for
heir variables, with the aim of optimizing a given global function. Usu-
lly, the objective is to minimize (or maximize) the sum of the costs (or
tilities) of the set of constraints between variables. Constraints among
ariables that are (possibly) held by distinct agents define the costs
ncurred or utilities derived from combinations of value assignments.

The following formal description of a DCOP is consistent with the
efinitions in many DCOP studies, e.g., Modi et al. (2005). A DCOP is
tuple ⟨, ,,⟩ in which  is a finite set of agents {𝐴1, 𝐴2,… , 𝐴𝑛}

and  is a finite set of variables {𝑥1, 𝑥2,… , 𝑥𝑚}. A common assumption
in DCOPs is that every variable is held by a single agent.  is a set of
domains {𝐷1, 𝐷2,… , 𝐷𝑚}, where each domain 𝐷𝑖 contains the finite set
of values that can be assigned to the variable 𝑥𝑖. An assignment of value
𝑑 ∈ 𝐷𝑖 to 𝑥𝑖 is denoted by an ordered pair ⟨𝑥𝑖, 𝑑⟩.  is a set of relations
(constraints). Each constraint 𝐶 ∈ 𝑅 defines a non-negative cost for
every possible value combination of a set of variables and is of the form
𝐶 ∶ 𝐷𝑖1×𝐷𝑖2×⋯×𝐷𝑖𝑘 → R+∪{0}. A binary constraint refers to precisely
two variables and is of the form 𝐶𝑖𝑗 ∶ 𝐷𝑖×𝐷𝑗 → R+∪{0}. A binary DCOP
is a DCOP in which all constraints are binary. A partial assignment (𝑃𝐴)
is a set of value assignments to variables in which each variable appears
at most once. 𝑣𝑎𝑟𝑠(𝑃𝐴) is the set of all variables that appear in the 𝑃𝐴.
A constraint  ∈  of the form 𝐶 ∶ 𝐷𝑖1 × 𝐷𝑖2 × ⋯ × 𝐷𝑖𝑘 → R+ ∪ {0}
applies to a 𝑃𝐴 if 𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑘 ∈ 𝑣𝑎𝑟𝑠(𝑃𝐴). The cost of a 𝑃𝐴 is the sum
of all constraints applicable to the 𝑃𝐴 over all the assignments in the
𝑃𝐴. A complete assignment (or a solution) is a partial assignment that
includes all the DCOP’s variables (𝑣𝑎𝑟𝑠(𝑃𝐴) = 𝑋). An optimal solution
is a complete assignment with minimal cost.
4

3.2. Asymmetric DCOP

In a DCOP, the costs incurred by all of the agents involved in each
constraint are equal. Therefore, the DCOP definition cannot correctly
characterize real-life problems in which agents value the outcomes of
decisions differently (Grinshpoun et al., 2013). For instance, in meeting
scheduling problems, agents might have separate valuations for the
meeting they were summoned to – a scenario that cannot be captured
by the standard DCOP model (Zivan et al., 2020a).

The asymmetric DCOP (ADCOP) was introduced by Grinshpoun
et al. (2013). In this expanded framework, each agent is allowed to
hold its own valuated cost for each constraint in which it is involved.
ADCOPs generalize DCOPs by explicitly defining, for each combination
of assignments of constrained agents, the exact cost for each participant
in the constraint (Grinshpoun et al., 2013). Each combination of value
assignments is mapped to a tuple of costs, one for each constrained
agent, and each agent holds only its part of the constraint.

Formally, an ADCOP is defined by a tuple ⟨, ,,⟩, where , ,
and  are defined in the same way as for a DCOP. Each constraint
𝐶 ∈ 𝑅 of an asymmetric DCOP defines a set of non-negative costs for
every possible value combination of a set of variables, and it takes the
form 𝐶 ∶ 𝐷𝑖1×𝐷𝑖2×⋯×𝐷𝑖𝑘 → {R+∪{0}}𝑘, where {R+∪{0}}𝑘 is a vector
that contains, for each agent 𝐴𝑗 , 1 ⩽ 𝑗 ⩽ 𝑘, its cost for each combination
of value assignments. This way, each agent 𝐴𝑗 , 1 ⩽ 𝑗 ⩽ 𝑘, holds its part
of the constraint 𝐶𝑗 , 𝐶𝑗 ∶ 𝐷𝑖1 ×𝐷𝑖2 ×⋯×⋯𝐷𝑖𝑘 → R+ ∪{0} such that its
privacy is maintained. As in the case of a DCOP, an optimal solution
to an ADCOP is a complete assignment to all variables with a minimal
sum of all agent costs.

An ADCOP can represent any division of a constraint between
the agents participating in it, including a symmetric division as in a
DCOP (Zivan et al., 2020b; Cohen et al., 2020). Thus, solving an ADCOP
must be at least as hard as solving a DCOP. Since the DCOP is known
to be NP-hard (Modi et al., 2005; Gershman et al., 2009; Yeoh et al.,
2010), the ADCOP must be NP-hard as well.

3.2.1. Distributed stochastic algorithm
The distributed stochastic algorithm (DSA) is a simple distributed

local search algorithm in which, following an initial step where agents
(randomly) choose a starting value for their variable, the agents per-
form a series of steps (looped iteratively) until some termination con-
dition is met. In every step, an agent sends its value assignment to its
neighbors in the constraint graph and collects the value assignments of
its neighbors. Once the value assignments of all its neighbors have been
collected, an agent decides whether to keep its value assignment or to
modify it. This decision has a significant effect on the performance of
the algorithm. If an agent in DSA cannot upgrade its current state by
substituting its present value, it does not do so. On the other hand, if
the agent can improve (or maintain, depending on the version used) its
current state, it decides whether to replace its value assignment using
a stochastic strategy.

3.3. Partial cooperation

In contrast to early studies of ADCOPs, which assumed full cooper-
ation by the agents (Brito et al., 2009; Grubshtein et al., 2010), partial
cooperation models represent agents that cooperate only under some
conditions. The level of cooperation (which is represented by 𝜆) de-
termines the reference point according to which agents’ intentions are
modeled. In order to allow the agents to consider solutions with high
global quality, which may reduce their personal utility, the parameter 𝜆
ounds the losses that an agent is willing to incur in order to contribute
o the global objective, i.e., agents perform actions only if they do not
esult in a cost that exceeds the maximum cost they are willing to
ndure. Formally, the following parameters are used by the model:

efinition 1. Denote by 𝜇𝑖 the baseline cost of agent 𝐴𝑖 (i.e., the cost
that agent 𝐴 assumes it will pay if it acts selfishly).
𝑖



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

𝑙

w

m

f
i

D
a
s

𝑂

3

t
e
s
m
f
t
a
a
n
a

1
r
p
e
c
a
c
p
m
s
I
n

𝜇
𝑙
s
w

Algorithm 1 AGC
input: 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖, 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖 and 𝜆𝑖

𝑣𝑎𝑙𝑢𝑒 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖;
𝜇𝑖 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖;
𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 ← 𝑛𝑢𝑙𝑙;

send(𝑣𝑎𝑙𝑢𝑒) to 𝑁(𝑖);
hile stop condition not met do
PHASE 1:

Collect all 𝑣𝑎𝑙𝑢𝑒 messages and update 𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤
⟨𝑣𝑎𝑙𝑖, 𝑔𝑎𝑖𝑛𝑖⟩ ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡();
send(⟨𝑣𝑎𝑙𝑖, 𝑔𝑎𝑖𝑛𝑖⟩) to 𝑁(𝑖);

PHASE 2:
Collect all

⟨

𝑣𝑎𝑙𝑗 , 𝑔𝑎𝑖𝑛𝑗
⟩

messages;
𝑎𝑗 ← agent in 𝑁(𝑖) ∪ 𝐴𝑖 with maximal 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛 s.t.

𝑐𝑖(𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 including received 𝑣𝑎𝑙𝑗 ) ≤ 𝜇𝑖 ⋅ (1 + 𝜆𝑖);
send(𝑁𝑒𝑔!) to 𝑁(𝑖) ⧵ 𝑎𝑗 ;

PHASE 3:
Collect 𝑁𝑒𝑔! messages;
if did not receive 𝑁𝑒𝑔! & can improve then

𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑖;
send(𝑣𝑎𝑙𝑢𝑒) to 𝑁(𝑖);

Definition 2. The cooperation intention parameter 𝜆𝑖 ≥ 0 defines the
aximal increase in the value of 𝜇𝑖 that is acceptable to agent 𝐴𝑖.

These cooperation bounds can significantly decrease the number of
easible outcomes for a distributed incomplete algorithm, as can be seen
n the next definition.

efinition 3. A feasible outcome for a distributed algorithm is defined
s any outcome (solution) 𝑜, in the set of all possible outcomes 𝑂, that
atisfies the following condition:
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 =

{

𝑜 ∈ 𝑂 | ∀𝐴𝑖 ∈ , 𝑐𝑖(𝑜) ≤ 𝜇𝑖 ⋅ (1 + 𝜆𝑖)
}

,

where 𝑐𝑖(𝑜) is the cost for agent 𝐴𝑖 in outcome 𝑜.

.4. Partially cooperative local search

The asymmetric gain coordination (AGC) algorithm guarantees that
he personal cost of an agent does not exceed the predefined coop-
rative intention limit, while constantly seeking globally improved
olutions. Agents executing this algorithm exploit possible improve-
ents until they converge on some local optimum, which cannot be

urther improved without breaching the cooperation bound of one of
he agents. Before replacing a value assignment, an agent requests the
pproval of its neighbors, which is only granted if the updated value
ssignment does not cause a breach of the cooperative bound of the
eighbor. Only if all neighbors approve does the agent replace its value
ssignment.

The pseudo-code for the AGC algorithm is presented in Algorithm
. It highlights the three phases that constitute the algorithm. The algo-
ithm begins once the agents have computed a baseline assignment by
erforming a simple non-cooperative interaction between them. Thus,
ach agent can select its baseline value assignment and use the baseline
ost as a reference point. After exchanging their value assignments, the
gents loop over the three phases of the algorithm until a termination
ondition is met, e.g., a predefined number of iterations. In the first
hase, each agent selects an action (an assignment replacement) that
aximizes its gain, and sends messages to its neighbors in which it

uggests executing the action and it communicates its expected gain.
n the second phase, agents receiving the suggested actions of their
5

eighbors approve an action that does not cause damage that they
Algorithm 2 SM_AGC
input: 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖, 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖, 𝜆𝑖 and 𝛺𝑖

𝑣𝑎𝑙𝑢𝑒 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖;
𝑖 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖;
𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 ← 𝑛𝑢𝑙𝑙;
end(𝑣𝑎𝑙𝑢𝑒) to 𝑁(𝑖);
hile stop condition not met do
PHASE 1:

Collect all 𝑣𝑎𝑙𝑢𝑒 messages and update 𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤
for each 𝐴𝑗 ∈ 𝑁(𝑖) do

𝜋𝑖,𝑗 ← 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠(𝐴𝑗 );
send(𝜋𝑖,𝑗) to 𝐴𝑗 ;

PHASE 2:
Collect all 𝜋 messages;
𝛱𝑖 ← 𝜋𝑗∈𝑁(𝑖) ∪ 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠(𝐴𝑖);
𝑎𝑙𝑡𝑒𝑟𝑉 𝑎𝑙𝑖 ← 𝑠𝑜𝑐𝑖𝑎𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝛱𝑖, 𝛺𝑖);
send(𝑎𝑙𝑡𝑒𝑟𝑉 𝑎𝑙𝑖, 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛𝑖) to 𝑁(𝑖);

PHASE 3:
Collect all

⟨

𝑎𝑙𝑡𝑒𝑟𝑉 𝑎𝑙𝑗 , 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛𝑗
⟩

messages;
𝑎𝑗 ← agent in 𝑁(𝑖) ∪ 𝐴𝑖 with maximal 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛 s.t.

𝑐𝑖(𝑣𝑗 ← 𝑎𝑙𝑡𝑒𝑟𝑉 𝑎𝑙𝑗 |𝑆𝑡) ≤ 𝜇𝑖 ⋅ (1 + 𝜆𝑖);
send(𝑁𝑒𝑔!) to 𝑁(𝑖) ⧵ 𝑎𝑗 ;

PHASE 4:
Collect 𝑁𝑒𝑔! messages;
if did not receive 𝑁𝑒𝑔! & can improve then

𝑣𝑎𝑙𝑢𝑒 ← 𝑎𝑙𝑡𝑒𝑟𝑉 𝑎𝑙𝑖;
send(𝑣𝑎𝑙𝑢𝑒) to 𝑁(𝑖);

cannot endure (if such an action exists), and send Neg! messages in
response to the agents that suggested the remaining actions. In the third
phase, agents that did not receive a Neg! message from their neighbors
perform the assignment replacement they have proposed.

3.5. Socially-motivated local search

In the AGC algorithm described above, agents cooperate by approv-
ing or rejecting assignment replacements suggested by their neighbors,
and thus preserve a level of personal utility that is acceptable to them.
To allow agents to exploit the cooperative intentions of their neigh-
boring agents, thereby improving the solution’s quality, an approach
involving a partially cooperative local search, in which agents take an
extra step in the interaction process before selecting an assignment, was
proposed in Ze’evi et al. (2018). In this additional stage, agents share
with their neighbors some information regarding their preferences over
their assignment selection, i.e., an indication of the anticipated benefits
(or costs) should the neighbors decide to change their current value
assignment. After exchanging this information, agents attempt to find
an alternative value assignment, taking into consideration their own
preferences as well as the indications received from their neighbors.
This approach was combined with the AGC algorithm, resulting in the
socially motivated (SM) AGC (Ze’evi et al., 2018).

Algorithm 2 presents the pseudo-code of the SM_AGC. Like the
original AGC version, the algorithm begins after agents have computed
a baseline assignment, giving them a baseline cost that they can use
as a reference point. Similar to AGC, after exchanging their value
assignments, the agents loop over a set of phases of the algorithm (four
in the case of SM_AGC) until a termination condition is met.

In Phase 1, each agent, after receiving the value assignments from
its neighbors, sends each neighbor an indication regarding its prefer-
ences for their value assignment selection. In Phase 2, after receiving
the preference indications of its neighbors, each agent attempts to find

an alternative social improving value assignment by selecting a value that



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

s
P

4

h
A

4

o

i
𝑊
⟨

𝑣
w

t

d

w
𝑅

c
r
t
t
m
s
(
e
t
a
t
w
t
p

a
o

5

f
c
r
a
r
h
a
a
i
p
b

takes its own preferences into consideration as well as the neighbors’
preference indications.1 After selecting the alternative value, the agent
ends it to its neighbors along with the calculated expected social gain.
hases 3 and 4 are identical to Phases 2 and 3, respectively, of AGC.

. Formalization of the problems

This section presents a model to represent each of the problems at
and, and then, presents implementations of each of the models as an
DCOP.

.1. Operating room per date allocation to wards

An operating room per date allocation (ORDA) problem is composed
f: A set of 𝑛 wards 𝑊 = {𝑊1,𝑊2,… ,𝑊𝑛} and a set of 𝑚 pairs of the

form ⟨𝑟𝑜𝑜𝑚, 𝑑𝑎𝑡𝑒⟩, 𝑅𝐷 = {𝑅𝐷1, 𝑅𝐷2,… , 𝑅𝐷𝑚}. The atomic time unit in
which a resource can be allocated in this problem is a day, and the
number of days on which rooms can be allocated (the time horizon 𝐻)
s finite. Each room-date pair 𝑅𝐷𝑗 is assigned solely to one of the wards
𝑖 ∈ 𝑊 . Thus, an allocation of a room on some date to a ward is a pair

𝑊𝑖, 𝑅𝐷𝑗⟩. A complete allocation CA is a set of exactly 𝑚 allocation pairs
such that each room-date pair 𝑅𝐷𝑗 (1 ≤ 𝑗 ≤ 𝑚) is included exactly once
in this set.

Each ward 𝑊𝑖 has a cardinal constraint 𝐶𝐶𝑖 that defines the utility
it derives with respect to the number of RDs it receives in the specified
time interval, and two bounds: a lower bound that defines the minimal
number of RDs required in the time interval (𝐿𝐵𝑖), and an upper bound
that defines the maximal number of RDs the ward can use (𝑈𝐵𝑖). Each
of these bounds defines a different utility/cost scheme. An allocation
that does not satisfy the lower bound incurs a high cost. It can be a
fixed cost or a cost related to the number of RDs allocated. The upper
bound (𝑈𝐵𝑖) defines the number of RDs allocated to ward 𝑊𝑖 such that
if it is allocated an additional RD, there is no increase in its utility.

The utility that a ward 𝑊𝑖 derives from a complete allocation CA is
denoted by 𝑈𝑖(𝐶𝐴). The global utility of CA is the sum of the individual
utilities of the wards, 𝑈 (𝐶𝐴) =

∑𝑛
𝑖=1 𝑈𝑖(𝐶𝐴).

ORDA as an ADCOP: In order to represent an ORDA as an asymmetric
DCOP, the possible allocations of RDs to wards are defined in terms of
variables held by agents and domains of values that can be assigned
to them. Furthermore, the utility calculation needs to be decomposed
into asymmetric constraints that agents (representing wards) can com-
pute and aggregate. Agent 𝐴𝑖 representing ward 𝑊𝑖 holds variables
𝑖1 , 𝑣𝑖2 ,… , 𝑣𝑖𝑘 , where 𝑘 is the maximal number of resources that the
ard may be allocated. The domains include all the relevant RDs.

The utility that an agent derives from an allocation is defined by
he agent’s personal constraints. Denote by 𝐶𝑖 the set of constraints

of agent 𝐴𝑖. A constraint 𝑐 ∈ 𝐶𝑖 includes a set of 𝑞 assignments,
𝑞 ≥ 1 and the utility the agent derives from this constraint, i.e., 𝑐 =
[⟨𝐴𝑖1 , 𝑅𝐷𝑗1 ⟩,… , ⟨𝐴𝑖𝑞 , 𝑅𝐷𝑗𝑞 ⟩, 𝑢𝑖]. Personal preferences are represented
by unary constraints. Cardinal constraints, which are also unary con-
straints, include all the resources allocated to a single agent. The utility
that agent 𝐴𝑖 derives from an allocation, 𝑈𝑖, is the sum of the utilities
it derives from all the constraints in which it is involved.

4.2. Operation day scheduling

Operation day scheduling (ODS) is a multi-agent optimization prob-
lem where each agent has a complex local problem and there are
inter-agent constraints. The natural structure of this problem consists
of agents representing wards (i.e., ward representatives, WRs) that
need to schedule the operations in the operating rooms that were
assigned to them on specific days, on one side, and agents representing

1 𝛺 is used to assess the weights of the preferences of neighbors. For more
etails, see Ze’evi et al. (2018).
6

t

coordinators of constraining elements (CEs) on the other. The resulting
structure is a bipartite graph.

Formally, the operation day scheduling problem (ODSP) includes
two sets of agents: WR, the agents representing the wards, and CE,
the agents representing the constraining elements. The problem solved
by each 𝑤𝑟 ∈ 𝑊𝑅 is the tuple ⟨𝑆𝑤𝑟, 𝑅𝑇𝐺𝑤𝑟, 𝑅𝑤𝑟, 𝑋𝑤𝑟

𝑠 , 𝑋𝑤𝑟
𝜎 , 𝐶𝑤𝑟

⟩,
here 𝑆𝑤𝑟 = {𝑆𝑤𝑟

1 , 𝑆𝑤𝑟
2 ,… , 𝑆𝑤𝑟

𝑛 } is the set of the ward’s surgeons and
𝑇𝐺𝑤𝑟 = {𝜎1, 𝜎2,… , 𝜎𝑚} is the set of surgery requests that must be

scheduled. Further, 𝑅𝑤𝑟 defines the availability of operating rooms to
the ward on the relevant dates; for example, 𝑟𝑤𝑟

𝑖,𝑗 ∈ 𝑅𝑊𝑅 represents the
allocation of room 𝑗 to the ward on day 𝑖. 𝑋𝑤𝑟

𝑠 and 𝑋𝑤𝑟
𝜎 are two sets

of variables defined as follows: 𝑋𝑤𝑟
𝑠 includes variables that represent

the assignment of surgeons to operations, e.g., the assignment of 𝑆𝑤𝑟
𝑖

to an operation 𝑜. The domain of a variable 𝑥 ∈ 𝑋𝑤𝑟
𝑠 includes all

surgeons that are available on the specific day. 𝑋𝑤𝑟
𝜎 consists of variables

representing the allocation of an operation request (OR) to an operation
𝑜 that will take place in a specific room on that day. The value of 0 <
𝑜 ≤ 𝑘 is the position of this operation in the order of the 𝑘 operations
that are scheduled to be performed in that room on that day. If 𝑜 = 1
then the operation is the first to be held in that room on that day. The
domain of variable 𝑥 ∈ 𝑋𝑤𝑟

𝜎 includes all the ward’s 𝑅𝑇𝐺𝑠. Finally, 𝐶
is the set of constraints. It includes hard constraints, e.g., a constraint
that prevents the same surgeon from being allocated to two different
operations simultaneously, and soft constraints, which represent, for
example, surgeons’ preferences and the urgencies of operation requests.
The constraints also define the utility derived from the assignment
combination of a surgeon and an operation request. For example, if
the surgeon cannot perform the type of surgery requested, the utility
derived is −∞, while for valid combinations, the utility is positive.

An agent 𝑐𝑒 ∈ 𝐶𝐸 solves a standard COP problem, i.e., a problem
that is represented by a tuple ⟨𝑋𝑐𝑒, 𝐷𝑐𝑒, 𝐶𝑐𝑒

⟩, where 𝑋 is the set of
variables, 𝐷 is a set of domains for these variables and 𝐶 is a set of
onstraints. However, 𝑋 has a unique structure, since the variables
epresent the resource requirements in ordered operation slots for all
he operating rooms in the hospital. Thus, 𝑋 is an 𝑛 over 𝑘 over 𝑟
able, where 𝑛 is the number of operating rooms in the hospital, 𝑘 is the
aximal number of operations that can be performed in a room in a

ingle day, and 𝑟 is the maximal number of units of the relevant element
resource) that can be required by an operation. Thus, an individual
ntry in the table, 𝑥𝑖,𝑜,𝑗 , represents an assignment of the 𝑗’th element to
he 𝑜’th operation in room 𝑖 on a given day. The domains include all the
vailable elements on a given day, e.g., nurses and X-ray machines. For
his assignment problem, hard constraints prevent invalid assignments
hile soft constraints define the degree of suitability of the elements to

he surgery taking place and the preferences. Constraints also represent
riorities with respect to wards and types of surgery.

The global utility for a complete assignment to this distributed
llocation problem, as is standard in ADCOPs, is the sum of the utilities
f all agents.

. Distributed local search algorithms

This section presents distributed incomplete local search algorithms
or solving the problems formulated above. While a distributed lo-
al search is used to solve both types of problem, the two models
equire the design of algorithms that implement different solution
pproaches. In the first, agents need to achieve a balance between the
equirements of the wards they represent and the global good of the
ospital to which they belong. Thus, partial cooperation algorithms are
ppropriate (Grubshtein et al., 2012; Ze’evi et al., 2018). For the gener-
tion of daily room schedules, besides each ward’s internal constraints,
nter-ward resource constraints exist, i.e., the resources required for
erforming operations are limited. These constraints are represented
y agents that manage the assignment of resources to operations. Thus,

hese types of problem include two unique features:



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Fig. 1. AGC_ORDA and SM_AGC_ORDA flow chart.
1. The local problem that each of the agents must solve is, in its
own right, a complex multi-variable problem.

2. The constraint graph is bipartite, where on one side, there are
agents representing wards and on the other side, there are agents
representing the constraining elements.

5.1. Partially cooperative algorithms for the operating room per date allo-
cation problem

The ADCOPs representing the ORDA problems were solved by ad-
justing partially cooperative local search algorithms (including socially
motivated partially cooperative algorithms) such that they would be
compatible with ORDA problems (Grubshtein et al., 2012; Ze’evi et al.,
2018). The main difference between general partially cooperative al-
gorithms and the algorithms adjusted for the ORDA problem is that
the actions in ORDA algorithms are specific requests for the release or
exchange of RDs. The expected benefit of an agent is either the utility
they expect to derive from the RD that is released for their use, or the
increment in utility as a result of an exchange.

In more detail, the AGC_ORDA version of 𝐴𝐺𝐶 (depicted in Algo-
rithm 3) includes three synchronous phases (iterations) in each step of
the algorithm. In the first phase, agents select one of their neighbors
and send a request for the release of an RD or an RD exchange,
including their expected gain from this action. In the second phase,
each agent selects the offer with the highest reported gain (including
its own) that does not cause a reduction in utility beyond its limitations,
and then sends an accept message to the proposer and Neg! messages
to all other neighbors. In the third phase, requests that were not met
with a Neg! message are performed, whether they are transfers or
exchanges of RDs. Note that in contrast to the standard version of the
𝐴𝐺𝐶 algorithm, here, only the agents involved in a request (the agent
sending the request and the one receiving it) must approve the request
in order for it to be implemented.

A similar adjustment is required in order to use the SM_AGC algo-
rithm in ORDA scenarios (pseudo-code depicted in Algorithm 4). In the
first phase, agents exchange preferences regarding the RDs they would
like to receive from their neighbors. In the second phase, each agent
calculates the social gain associated with each request from a neighbor
for an exchange or a release of an RD it holds, and selects the one with
the highest social gain (the combined gain of itself and the other agent
involved). Note that here, only the agents involved in the exchange of
a resource affect the gain; thus, for each request it receives, an agent
7

Algorithm 3 AGC_ORDA
input: 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖, 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖 and 𝜆𝑖

𝑎𝑙𝑙𝑜𝑐 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖;
𝜇𝑖 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖;
𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 ← 𝑛𝑢𝑙𝑙;
send(𝑎𝑙𝑙𝑜𝑐) to 𝑁(𝑖);
while stop condition not met do
PHASE 1:

Collect all 𝑎𝑙𝑙𝑜𝑐 messages and update 𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤
⟨𝑟𝑖𝑞 , 𝑔𝑎𝑖𝑛𝑖⟩ ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡();
send(⟨𝑟𝑖𝑞 , 𝑔𝑎𝑖𝑛𝑖⟩) to 𝐴𝑞 ;

PHASE 2:
Collect all

⟨

𝑟𝑗𝑖, 𝑔𝑎𝑖𝑛𝑗
⟩

messages;
𝑎𝑗 ← agent in 𝑁(𝑖) ∪ 𝐴𝑖 with maximal 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛 s.t.

𝑐𝑖(𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 after performing 𝑟𝑗𝑖) ≤ 𝜇𝑖 ⋅ (1 + 𝜆𝑖);
send(𝑁𝑒𝑔!) to 𝑁(𝑖) ⧵ 𝑎𝑗 ;

PHASE 3:
Collect 𝑁𝑒𝑔! messages;
if did not receive 𝑁𝑒𝑔! from 𝐴𝑞 and from 𝐴𝑖 & can improve
then perform 𝑟𝑖𝑞 ;

else if did not receive 𝑁𝑒𝑔! from 𝐴𝑗
then perform 𝑟𝑖𝑞 ;

send(𝑎𝑙𝑙𝑜𝑐) to 𝑁(𝑖);

only needs to take into consideration the preferences of the sender
of the request and its own preferences. After comparing the expected
social gains of all the requests that it could, in principle, send, the
agent selects the request with the highest social gain and sends it to the
relevant neighbor along with the expected social gain. The subsequent
actions, in the third and fourth phases of the algorithm, are similar
to the second and third phases of the AGC_ORDA algorithm described
above.

Fig. 1 presents a flow chart of the AGC_ORDA and the
SM_AGC_ORDA algorithms. The different colors represent the actions
performed in different phases. The green boxes are performed only in
SM_AGC_ORDA, and the box with the action ‘‘Send Exchange/Transfer
Request’’ corresponds to Phase 1 for the AGC_ORDA algorithm and
Phase 2 for the SM_AGC_ORDA algorithm. Note that transfer and release
are used interchangeably in this context.



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

𝜇
𝑙

h
a
p
O
a
d
d
r
w
a
f
f

Fig. 2. Hospital operating rooms example.
I
a
c
f
w
a
r

f

O
4

5

p
o
a
d
2
a
a
s
e
I

Algorithm 4 SM_AGC_ORDA
input: 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑙𝑙𝑜𝑐𝑖, 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖, 𝜆𝑖 and 𝛺𝑖

𝑎𝑙𝑙𝑜𝑐 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐴𝑙𝑙𝑜𝑐𝑖;
𝑖 ← 𝑏𝑎𝑠𝑒𝐿𝑖𝑛𝑒𝐶𝑜𝑠𝑡𝑖;
𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 ← 𝑛𝑢𝑙𝑙;

send(𝑎𝑙𝑙𝑜𝑐) to 𝑁(𝑖);
while stop condition not met do
PHASE 1:

Collect all 𝑎𝑙𝑙𝑜𝑐 messages and update 𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤
for each 𝐴𝑗 ∈ 𝑁(𝑖) do

𝜋𝑖,𝑗 ← 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠(𝐴𝑗 );
send(𝜋𝑖,𝑗) to 𝐴𝑗 ;

PHASE 2:
Collect all 𝜋 messages;
𝛱𝑖 ← 𝜋𝑗∈𝑁(𝑖) ∪ 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠(𝐴𝑖);
𝑟𝑖𝑞 ← 𝑠𝑜𝑐𝑖𝑎𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝛱𝑖, 𝛺𝑖);
send(𝑟𝑖𝑞 , 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛𝑖) to 𝐴𝑞 ;

PHASE 3:
Collect all

⟨

𝑟𝑗𝑖, 𝑠𝑜𝑐𝑖𝑎𝑙𝐺𝑎𝑖𝑛𝑗
⟩

messages;
𝑎𝑗 ← agent in 𝑁(𝑖) ∪ 𝐴𝑖 with maximal socialGain s.t.

𝑐𝑖(𝑙𝑜𝑐𝑎𝑙𝑉 𝑖𝑒𝑤 after performing 𝑟𝑗𝑖) ≤ 𝜇𝑖 ⋅ (1 + 𝜆𝑖);
send(𝑁𝑒𝑔!) to 𝑁(𝑖) ⧵ 𝑎𝑗 ;

PHASE 4:
Collect 𝑁𝑒𝑔! messages;
if did not receive 𝑁𝑒𝑔! from 𝐴𝑞 or from 𝐴𝑖 & can improve
then perform 𝑟𝑖𝑞 ;

else if did not receive 𝑁𝑒𝑔! from 𝐴𝑗
then perform 𝑟𝑗𝑖;

send(𝑎𝑙𝑙𝑜𝑐) to 𝑁(𝑖);

Consider the example depicted in Fig. 2. It is an example of the
ospital operating room scheduling problem described above. The ex-
mple includes three wards and two operating rooms that are allocated
er day for a period of five days. Ward1 can only use operating room
R1, Ward3 can only use OR2 and Ward2 can use both. The minimal
nd maximal number of room-day allocations required by each ward is
epicted on the left (lower and upper bound). Assume that a ward that
oes not satisfy its lower bound incurs a cost of 100. In Fig. 2, for each
oom that can be allocated to a ward, next to the line connecting the
ard and the room, the personal preferences of the ward are specified
s an array of natural numbers between zero and nine. The preferences
or day 1 are presented in the first cell of each array, the preferences
or day 2 in the second cell, and so forth.
8

s

Consider a situation in which the current allocation specifies that:

• OR1 is allocated to Ward1 for the first two days of the week.
• OR1 is allocated to Ward2 for the rest of the week (days 3, 4 and

5).
• OR2 is allocated to Ward2 for the first three days of the week.
• OR2 is allocated to Ward3 for the last two days of the week.

f the agents are performing AGC, then in Phase 1, Ward1 sends Ward2
request to transfer OR1 to them on day 4 with a gain of 108 (since

urrently, this ward is not satisfying its lower bound). The preferences
or this day are high for Ward2; however, if 𝜆 is large enough, they
ill agree to release OR1 to Ward1 on day 4, since they will remain
bove their lower bound. If the agents are performing SM_AGC, the
esults would be the same because the preferences of Ward3 are not

relevant for OR1 and the gain for Ward1 is much larger than the loss
or Ward2. However, in the next iteration, if the agents are performing

AGC, Ward1 can ask for OR1 on day 3 as well, and the request will
be granted for similar reasons. On the other hand, if the agents are
performing SM_AGC, Ward1 would not make this request because the
social gain is negative.

At the same time, Ward3 asks Ward2 to exchange the allocations of
R2 on days 1 and 5. Ward2 has already agreed to release OR1 on day
and therefore it sends a Neg! message to Ward3. In the next step of

the algorithm, it will agree to exchange the days of OR2 with Ward3.
The resulting schedule will be as follows: OR1 is allocated to Ward1 on
days 1, 2 and 4; OR2 is allocated to Ward3 on days 1 and 4; and the
rest of the allocations are to Ward2. The utility of each of the wards is
𝑈1 = 15, 𝑈2 = 25, and 𝑈3 = 13, and the global utility is 53.

.2. Distributed local search for generating daily schedules

The model described above for representing the daily scheduling
roblem includes a bipartite graph of agents, where each agent has its
wn complex local search problem. Distributed local search algorithms
re synchronous algorithms in which agents exchange information and
ecide whether to update their local assignments (Maheswaran et al.,
004a; Zhang et al., 2005). Thus, to design a distributed local search
lgorithm, it first needs to be specified how agents generate local
ssignments. In all of the algorithm implementations described in this
tudy, the agents used simulated annealing (SA) (Reeves, 1993; Schon-
veld et al., 1997) to generate the first solution to their local problem.
n some versions, SA was used at each iteration of the distributed

earch.



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

f
i
a

C

r
b
—
g
t
u

t
r
g
a
a
s
m
s
b

d
i
a
s
i
e
I

This study examines two main approaches for the design of the
distributed local search algorithms. In the first, inspired by the dis-
tributed stochastic algorithm (DSA) (Fitzpatrick and Meertens, 2001;
Zhang et al., 2005), an agent generates a solution to its local problem
and sends it to its neighbors in the bipartite graph. Then, at each
iteration, the agent searches for an improving assignment and, if it finds
one, replaces its current assignment with probability 𝑝 (in the current
experiments, 𝑝 = 0.7). Note that, in contrast to the standard DSA (Zhang
et al., 2005), the graph’s structure is bipartite; thus, agents send their
(complex) assignment only to agents of the other type, i.e., WRs to CEs
and vice versa.

The second approach considers the natural role of CEs, which is to
provide service to the operating wards. Thus, a query-response protocol
is proposed in which the wards suggest schedules and the CEs react to
these suggestions, specifying to which of the scheduled operations they
are able to allocate the required element.

The pseudo-code of the proposed query-response daily schedule
algorithm (QRDSA) is presented in Algorithm 5. The main difference
between QRDSA and standard DSA lies in the query response struc-
ture. Thus, the pseudo-code for the WR agents starts by selecting an
assignment for their local problem using SA. Then, each WR agent, 𝑤𝑖,
sends its selected schedule to its CE neighbors (in set 𝐶𝐸𝑖) and waits
or their response. Once these responses have been received, it updates
ts local information and revises its local assignment before sending it
gain. On the other hand, the CE agent 𝑐𝑒𝑖 waits for the assignments of

its WR neighbors (𝑊𝑅𝑖) to arrive before it performs its computation.
It updates its local operation schedule and proposes its corresponding
assignment of constrained elements to this schedule. Finally, it sends
each of its neighboring WR agents the projection of this assignment
onto the schedule relevant to that neighbor.

Three different methods were used to select the revised assignment
at each iteration in both algorithms:

1. Single change (SC): The variables (operations) are ordered. Ac-
cording to this order, the agent searches for the first operation
that did not receive all elements required for the operation to
take place (such that it is not fully scheduled). The assignment
for this variable is revised. If the agent’s utility decreases due
to this change, the change is reversed, i.e., the variable is reas-
signed its previous value and the agent attempts to change the
value assignment of the following ordered variable.

2. Single change with exploration (SC_e): A random variable is
selected. The agent tries to replace this selected variable’s as-
signment with an alternative value to improve its utility. If
the alternative value assignment does not increase the utility,
the variable’s previous value is reassigned and another random
variable is chosen, until a stop condition is met.

3. Simulated annealing (SA): The agent performs a new SA search
to select its assignment at every iteration.

Algorithm 5 QRDSA
WR:
1: while Not Terminated do
2: sched ← assign(localProblem)
3: send(sched) to 𝐶𝐸𝑖
4: receive 𝑟𝑒𝑠𝑝𝑗 from all 𝑐𝑒𝑗 ∈ 𝐶𝐸𝑖 and update(localInfo)
E:
5: while Not Terminated do
6: receive 𝑠𝑐ℎ𝑒𝑑𝑗 from 𝑊𝑅𝑖 and update (localInfo)
7: sched ← assign(localProblem)
8: for all 𝑤𝑟𝑗 ∈ 𝑊𝑅𝑖 do
9: 𝑟𝑒𝑠𝑝𝑗 ← {𝑠𝑐ℎ𝑒𝑑 ↓ 𝑟𝑒𝑠𝑝𝑗}

10: send 𝑟𝑒𝑠𝑝𝑗 to 𝑤𝑟𝑗
9

In addition, a stability factor (sf) was introduced that penalizes a
change in the assignment of an operation, i.e., whenever an operation
that was fully scheduled is moved to a different slot or postponed to
an undetermined future allocation, there is a reduction in the utility
derived by the agent. The stability factor was examined by implement-
ing different versions of the algorithm, which used different methods to
achieve stability. The first assumed that unsuccessful attempts are not
recorded (𝑠𝑓 ). The second used a dynamic memory structure, which
stores ‘‘no-good’’ solutions (𝑠𝑓 _𝑛𝑔) visited throughout the algorithm’s
un. These solutions consist of surgery requests that were scheduled
ut did not result in a full allocation of all the constraining resources

in the expanded formulation. Scheduling a surgery request with a no-
ood structure results in a reduction in the agent’s utility. Furthermore,
he size of the penalty is relative to the time that has passed since the
nsuccessful attempt to schedule the operation request.

All versions of the algorithm used forward checking, i.e., values
hat were not consistent with previously performed assignments were
emoved from the domains. In the single change versions of the al-
orithms, two methods were used to select value assignments from
mong the consistent values in the domains. The first involved selecting
random value and the second involved selecting the value that

eemed most promising (the one expected to increment the utility the
ost). The experiments conducted in this study demonstrated that the

econd method required many more calculations and was not always
eneficial.

Fig. 3 presents a small example of the daily scheduling problem
escribed above. It includes two wards and two operating rooms, and
t demonstrates the scheduling of a single day on which each ward is
llocated a single operating room. The problem further consists of a
ingle constraining element (CE) agent that schedules the use of an
ndivisible resource (e.g., an X-ray machine). The day in this small
xample is two hours long, and the length of each operation is one hour.
t is further assumed that surgery requests 𝑠𝑟1𝐴 and 𝑠𝑟2𝐴 both require

the equipment unit. Consider the initial local schedules chosen by each
of the three agents, as presented in the tables included in Fig. 3. As
depicted in the CE agent table, in its initial schedule, the agent allocates
the equipment unit such that each ward has it for one surgery slot.
However, the two surgery requests that require the equipment overlap
in the current schedule; thus, revisions must be made for the daily
schedule to be feasible.

6. Experimental evaluation

The experiments conducted in this study included scenarios based
on real data for both problem types. To avoid breaching privacy, some
of the parameters of the problems were selected randomly. However,
the distributions from which they were selected were realistic accord-
ing to the analytical review of the data and according to interviews
performed with hospital personnel. In all sets of experiments, t-tests
were used to examine statistical significance.

6.1. Evaluation of RD allocation algorithms

This set of experiments included different versions of socially mo-
tivated local search algorithms, used to solve the hospital operating
room date allocation problem. Agents represented hospital wards with
different needs. The resources being allocated were operating rooms,
each with specific properties that make it attractive to some of the
wards, but useless for others. The problem included 10 wards and 15
operating rooms, where each room needs to be allocated to a single
ward on a given day. The allocation was for a five-day working week,
i.e., each room was allocated five times. For each problem, the personal
constraints representing the preferences of wards for days of the week
and operating rooms were specified by selecting an integer between
zero and 9. Among the 15 rooms, 7 could be used by all the wards, one
could be used by a single ward, two could be used by two wards, three



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Fig. 3. Daily schedule generation example.
could be used by three wards and the last two could be used by four
wards.

To examine the relationship between the results and the problem
structure, two additional, less realistic sets of problems were generated:
A set of sparse problems, in which every ward was able to use exactly
two operating rooms, and a dense set, in which every ward was able to
use exactly five operating rooms. The three sets of problems are referred
to as original, sparse and dense, respectively.

The versions of the partially cooperative local search algorithms
compared included (corresponding notations in brackets):

• AGC with 𝜆 = 0.1 (𝐴𝐺𝐶_0.1)
• AGC with 𝜆 = 0.7 (𝐴𝐺𝐶_0.7)
• SM_AGC with 𝜆 = 0.1 (𝑆𝑀_0.1)
• SM_AGC with 𝜆 = 0.7 (𝑆𝑀_0.7)
• SM_AGC with bounds (agents reject any request that may cause

a reduction beneath their lower bound and are willing to release
rooms they hold beyond their upper bound) (𝑆𝑀_𝐿𝐼𝑀)

• SM_AGC with bounds and with 𝜆 = 0.1 (𝑆𝑀_𝐿𝐼𝑀_0.1)
• SM_AGC with bounds and with 𝜆 = 0.7 (𝑆𝑀_𝐿𝐼𝑀_0.7).

Fig. 4(a) presents the global utility (social welfare) derived from the
allocations generated by the versions of the algorithms listed above, as
a function of the number of iterations performed. Consistent with the
results presented in Ze’evi et al. (2018), the present results demonstrate
the clear advantage of the socially motivated versions over the standard
AGC. Moreover, they demonstrate that intentions to cooperate (repre-
sented by 𝜆) must be combined with preference-sharing among agents,
in order to increase social welfare. Thus, in all socially motivated
versions, the 𝜆 = 0.7 versions outperform the 𝜆 = 0.1 versions. On the
other hand, the 𝜆 = 0.1 version is more successful in the case of the AGC
algorithm. Finally, it can be seen that among the socially motivated
versions of the algorithm, the ones using bounds are more successful.

One may wonder whether the use of partially cooperative methods
prevents outcomes in which some of the agents derive very low utility
from the allocation. To answer this question, Fig. 4(b) presents the
average of the minimum utility derived by an agent from the allocations
produced by the different algorithms. It is clear that socially motivated
algorithms with 𝜆 = 0.7 are most successful when considering this
egalitarian measure.

Fig. 5 presents the social welfare (global utility) of the allocations
generated by the algorithms for (a) the sparse and (b) the dense
synthetic problem sets, respectively. The most apparent difference is
that for the sparse problems, the version that only uses bounds is
most successful, while for the dense problems, the two versions that
use 𝜆 = 0.7 (with and without bounds) produce better solutions. It
seems that when agents do not have many options for operating rooms
to be allocated to them, only the bounds are relevant, while when
more options are available, a more balanced intention to cooperate is
beneficial.
10
6.2. Evaluation of daily schedule algorithms

This set of experiments included different versions of local search
algorithms that were used to solve the problem of the daily scheduling
of operations. The experiments were conducted using a simulator in
which the realistic distributed scheduling problem was represented
according to the model described. In all experiments, the instance
of the bipartite graph described above consisted of 10 𝑊𝑅 agents
representing 10 different surgical wards, and 3 𝐶𝐸 agents representing
the nurses, anesthetists and surgical equipment allocation coordinators.

All problems included 500 patients awaiting surgery. Each pa-
tient had a birth date sampled uniformly between 01/01/1925 and
01/01/2020. Every patient was associated with a list consisting of at
least one surgery request. Different parameters defined each surgery
request:

• The type of surgery was uniformly selected from all the ward’s
possible surgery types.

• The number of cancellations (NC) was defined as the number
of times that the surgery request had been scheduled and can-
celed. For every surgery request, the number of cancellations was
sampled uniformly between 0 and 10: 𝑁𝐶 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10).

• The entrance/referral date denoted the date when the surgery
request entered the hospital’s system and joined the queue of
surgery requests awaiting implementation. The date was sampled
uniformly from a period of one year prior to the scheduling day.

• A surgery request may or may not be assigned in advance to a spe-
cific surgeon. Usually, the surgery requests assigned in advance to
a particular surgeon are unique and complex cases. To simulate
this kind of case, for every ward, a random surgery type was
chosen. Then, all surgery requests of this type were assigned to a
specific surgeon randomly selected from all highly rated surgeons
qualified for this surgery type.

300 surgery types were randomly assigned to the wards. For every
surgery type, the following parameters were selected: urgency, com-
plexity, duration, and utility derived by the hospital. The hospital that
is located in the authors’ hometown refers to six levels of urgency
and six levels of complexity for its surgeries, such that level 1 is the
lowest level and level 6 is the highest. In the current experiments, for
every surgery type, the urgency and complexity were chosen using the
following discrete distribution:

𝑃𝑟(𝑋 = 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

1
12 , if 𝑥 = 1, 6
1
6 , if 𝑥 = 2, 5
1
4 , if 𝑥 = 3, 4
⎩

0, else



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.

i
d

u
o
s
c
s
T
r
o
s
t

a
o
h
s
u

e

Fig. 4. (a) Average global utility for the original problem set and (b) average minimum utility for the original problem set.
Fig. 5. Average social welfare for (a) the sparse problem set and (b) the dense problem set.
The duration of every surgery type was uniformly sampled from an
nterval in which the minimum duration was 30 min and the maximum
uration was the surgical day length (𝐿): 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(30, 𝐿).

The number of surgeons for each ward was selected randomly
sing a uniform distribution that ranged from the maximal number
f operating rooms allocated to the ward on a day to the number of
urgery types offered by the ward multiplied by 3. Every surgeon was
onsidered to have a set of graded skills that determines the type of
urgeries that she is qualified to perform and the level of expertise.
he size of this skill set differed between the surgeons, and was selected
andomly between a value of 1 and the number of surgery types carried
ut by the ward. The level of expertise of each surgeon for each of the
urgery types in their skill set was also randomly selected, ensuring that
here would be at least a single expert surgeon for every surgery type.

Each problem included 15 operating rooms, and each of them had
list of compatible surgery types. For every room, a random number

f surgery types between 1 and the number of surgery types of the
ospital (300) was sampled. Each ward had rooms allocated to it on
pecific dates. For each room and each date, a random ward was chosen
niformly from all the wards that offered a compatible surgery type.

In addition, 100 nurses and 100 anesthetists were available for
11

very problem. The nurses had different skills that defined the types
of surgery they could be allocated to. For every surgery type in the
problem, a set of nurses was selected as qualified to perform this
surgery type. The number of nurses in this set was drawn uniformly
between 1 and the number of hospital nurses. In hospitals, it is common
for operating room nurses to first qualify as scrubbing nurses and only
later to become circulating nurses. It was therefore assumed that not
only is every nurse associated with a set of surgery types that she is
eligible to perform, but also, that for a subset of these surgery types, she
is able to operate as a circulating nurse. The experiments also assumed
that the nurses performed surgeries by shifts, where a shift refers to a
full day in a single operating room. Therefore, the number of nurses
assigned to a surgical shift was chosen to be precisely the number of
nurses needed, i.e., the number of operating rooms multiplied by 2 (for
every surgery, there is a need for a circulating nurse and a scrubbing
nurse). The nurses for each shift were randomly and uniformly chosen
from all the nurses in the problem.

The anesthetists were separated into three ranks according to their
experience — Intern, Expert, or Senior. Each rank was associated with
a set of roles that the anesthetist could perform. For every problem
instance, the data generator ensured at least a single Senior anesthetist,
and for every ward, the generator ensured at least one Intern and one

Expert. The ranks of the remaining anesthetists were sampled from the



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Fig. 6. Average global utility for the original set (a) without and (b) with the best-selection approach.
following discrete distribution:

𝑃𝑟(𝑋 = 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.45, if 𝑥 =Intern
0.4, if 𝑥 =Expert
0.15, if 𝑥 =Senior
0, else

The current ward rotation of an Intern anesthetist was selected
uniformly and randomly from among all the surgical wards. It was
assumed that an Intern is certified to perform surgery in all her past
rotations’ wards, but not for all surgery types. For every Intern, a
different number of wards was sampled to simulate her past rotations.
This number was determined uniformly between 0 and the number of
surgical wards in the hospital. For every surgery type, the number of
Interns certified to perform it was sampled uniformly between 1 and the
number of Interns who are or were in rotation of its ward. Anesthetists
also perform surgeries by shifts. Every shift is staffed by precisely the
number of anesthetists needed, which depends on the different ranks
required by the various operations performed during the surgical day.

The problems included three types of equipment that could be
required, depending on the type of surgery. First, the total number
of available units of each type of equipment was selected randomly
and uniformly between 1 and 15 (the number of operating rooms).
Then, the surgery requests that required each type of equipment were
randomly selected.

To examine the dependency of the results on the structure of the
problem, four less realistic scenarios were also modeled. The effect
of two of the problem parameters on the quality of the algorithms
was investigated: the number of operating rooms in the hospital and
the length of the operating day. The number of operating rooms was
increased to twenty-five in one set of experiments to simulate a sparser
problem. In another set of experiments, the operating day was pro-
longed to a ten-hour shift (from a seven-hour shift). Finally, to simulate
a denser set of problems, two additional sets of experiments were
conducted. In the first, the number of operating rooms was decreased to
five, and in the second, the operating day was shortened to a four-hour
shift. In addition, an analysis was performed to determine the effect of
using a stability factor.

6.3. Experimental results

In this section, the results are compared for two approaches, the first
of which implements the DSA algorithm while the second implements
the QRDSA algorithm described above. In both cases, the following
versions of the algorithms were investigated:
12
1. 𝑠𝑐 - single change
2. 𝑠𝑐𝑒 - single change with exploration
3. 𝑠𝑎 - simulated annealing in each iteration
4. 𝑠𝑓 - the addition of a stabilization factor
5. 𝑛𝑔 - the addition of a no-good dynamic memory structure to the

stabilization factor
6. 𝑏𝑒𝑠𝑡 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 - the addition of the feature that the value

selected from a domain is the value that results in the greatest
improvement in utility.

Non-concurrent logical operations (NCLO) were used as a time
measure (Netzer et al., 2012; Zivan and Meisels, 2006). Each algorithm
solved fifty random instances. In the graphs that follow, for each
algorithm, the results correspond to the average utility of the solutions
of these fifty instances.

Fig. 6(a) presents the results for the original set, which represents
the most realistic setting, i.e., seven-hour shifts and 15 operating rooms.
It can be seen that the versions that use a stability factor have a
significant advantage over those that do not. A second observation is
that the versions of the algorithms that use a single change with explo-
ration yield the best performance, both for DSA and QRDSA. All single
change versions of DSA outperform the simulated annealing versions.
Moreover, the quality of the solutions produced by DSA version that use
simulated annealing deteriorate (instead of improving) over the course
of the execution. In the case of the QRDSA, the simulated annealing
version outperforms the single change version. When using a single
change with exploration, the DSA versions significantly outperform the
QRDSA versions. When using simulated annealing, QRDSA dominates.
Clearly, the use of the no-good dynamic memory structure does not
yield substantial improvement.

It is notable that the curves of the simulated annealing versions have
a different trend than the curves of the single change versions. Unlike
these versions of the algorithm, which make incremental changes to
the current solution, in the simulated annealing versions, an assignment
change that affects multiple variables is possible in each iteration. Such
changes are carried out while considering only the local agent utility,
and thus, they may improve the solution locally while reducing the
global utility. The stability factor, sf, prevents the agents from selecting
solutions that are too different from the current solution and thus from
reducing the global utility too dramatically. Nevertheless, while the in-
cremental versions continue to improve as the algorithm advances, the
simulated annealing versions offer very limited improvements relative
to the first high-quality solution they find.

Fig. 6(b) presents the results of the algorithms when solving the
original set while using the best value selection method (best-selection).



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Fig. 7. Average global utility for problems with 5 rooms (a) without and (b) with best-selection.
Fig. 8. Average global utility for problems with 25 rooms (a) without and (b) with best-selection.
Obviously, when compared with the results of Fig. 6(a), this method
is less successful than random value selection. This result can be
explained by the limited view of the agents on the constraints of the
distributed problem, e.g., a WR can repeatedly select surgery requests
of a particular surgery type, which, from its point of view, will make
the greatest contribution to increasing its ward’s utility; yet it could
be the case that on this specific day, there are no qualified nurses
for this surgery type. It is also worth noting that both single change
with exploration versions of both algorithms are still in a climbing
trend at the end of the 50,000 non-concurrent logical operations. The
moderate rate of increase can be explained by the large number of value
assessments for each variable’s value change.

Figs. 7 and 8 present the results of the algorithms when solving
problems in which the number of operating rooms available in a
day is either smaller (5 in Fig. 7) or larger (25 in Fig. 8) than in
the original set. When the number of rooms is reduced, the problem
becomes tighter. As a result, the advantage of the single change explore
versions with the stabilization factor becomes more prominent, while
the other versions using sf (apart from the simulated annealing DSA
version) produce similar results. On the other hand, when solving the
less tight version with 25 rooms, the deterioration of the DSA simulated
annealing versions over time is steeper than that of the same versions
13
solving the other benchmark problems. Also, it is interesting to note
that in the tighter scenario, the algorithm versions produce similar
results irrespective of whether or not the best-selection method is
implemented. It seems that when the problem’s constraints are tighter,
the strategy of selecting the best value is more beneficial, and a random
selection has lower probability of being successful.

The results for all scenarios emphasize the importance of stability
in such a distributed environment where agents aim to resolve con-
flicts between them. If agents make too many changes to their local
assignment, their neighbors’ decisions are generated while considering
obsolete information. The experimental results indicate that in the sim-
ulated annealing versions, agents make an average of 17.67 operation
assignment changes at each iteration in the original setting. In contrast,
the single change versions make at most one assignment change. Fur-
thermore, when the algorithm explores the different possibilities for
this single change, this effort is worthwhile.

6.4. Results summary

The results presented above show the advantage of the proposed
multi-agent approach in solving multi-agent resource allocation and
scheduling problems. It was demonstrated that high-quality results can



Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
be achieved when the wards share limited information, but at the same
time, represent themselves in the process and insist on maintaining the
properties required for serving their patients well. The most successful
ORDA algorithms were the socially motivated versions in which, on
the one hand, agents share their preferences, but on the other, they
maintain their lower and upper bounds explicitly. For the operation
day scheduling problem, the best results were achieved using the DSA
versions in which agents acted autonomously, but at the same time,
used means of stabilizing the solutions and performed incremental
revisions of their schedules. Again, a balance between the autonomy
of the units of the organization and partial cooperation produced the
best results.

7. Conclusions

The operating room allocation and scheduling application presented
in this paper is a realistic application that requires distributed models
and algorithms in order to preserve the natural structure of the problem
and the autonomy and privacy of the involved parties. The problem
includes agents representing wards (or ward directors), each with its
own interests, which belong to a large organization (a hospital) such
that, alongside their personal objectives, there is a global mutual goal.

Each of the two phases of the problem includes unique properties,
which trigger the design of non trivial models for representing them.
In the room per date allocation problem, partially cooperative agents
divide a mutual resource among themselves and maximize a global
goal while satisfying their local needs. In the daily scheduling phase,
wards optimize their complex operation schedule, while interacting
with agents that represent the hospital’s constraining elements.

The results of this study demonstrate the effectiveness of an iterative
process, the importance of cooperation among agents, and the benefit
of maintaining a balance between exploration and solution stability,
in such multi-agent applications. The results are encouraging, since
they show that it is possible to produce high-quality solutions while
allowing agents the autonomy to select their own assignments rather
than submitting their preferences to a central entity.

The plan for future work is to explore similar realistic distributed
applications and to investigate the suitability of incomplete inference
algorithms for solving these realistic problems.

CRediT authorship contribution statement

Noam Gaon: Conducted the research, Produced the results, Gen-
erated the graphs. Yuval Gabai Schlosberg: Conducted the research,
Produced the results, Generated the graphs. Roie Zivan: Initiated the
research, Wrote the paper.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Noam Gaon and Yuval Gabai reports financial support was provided
by Israeli innovation Authority. Roie Zivan has patent ASSIGNING
SURGICAL OPERATIONS TO OPERATING ROOMS pending to US. In
this work we collaborated with the staff of the Soroka hospital, from
which we received data.

Data availability

The data that has been used is confidential.

Acknowledgment

This research was supported by the Innovation Authority of the
14

Israeli Ministry of Science (ref: 0496-20).
References

Batun, S., Denton, B.T., Huschka, T.R., Schaefer, A.J., 2011. Operating room pooling
and parallel surgery processing under uncertainty. INFORMS J. Comput. 23 (2),
220–237.

Blake, J.T., Donald, J., 2002. Mount Sinai hospital uses integer programming to allocate
operating room time. Interfaces 32 (2), 63–73.

Brito, I., Meisels, A., Meseguer, P., Zivan, R., 2009. Distributed constraint satisfaction
with partially known constraints. Constraints 14 (2), 199–234.

Cardoen, B., Demeulemeester, E., Beliën, J., 2010. Operating room planning and
scheduling: A literature review. European J. Oper. Res. 201 (3), 921–932.

Chen, D., Deng, Y., Chen, Z., He, Z., Zhang, W., 2020. A hybrid tree-based algorithm
to solve asymmetric distributed constraint optimization problems. Auton. Agents
Multi Agent Syst. 34 (2), 50.

Cohen, L., Galiki, R., Zivan, R., 2020. Governing convergence of Max-sum on DCOPs
through damping and splitting. Artificial Intelligence 279.

Deng, Y., Yu, R., Wang, X., An, B., 2021. Neural regret-matching for distributed
constraint optimization problems. In: Zhou, Z. (Ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event
/ Montreal, Canada, 19-27 August 2021. ijcai.org, pp. 146–153.

Denton, B.T., Miller, A.J., Balasubramanian, H.J., Huschka, T.R., 2010. Optimal
allocation of surgery blocks to operating rooms under uncertainty. Oper. Res. 58
(4-part-1), 802–816.

Denton, B., Viapiano, J., Vogl, A., 2007. Optimization of surgery sequencing and
scheduling decisions under uncertainty. Health Care Manag. Sci. 10 (1), 13–24.

Erdogan, S.A., Denton, B.T., Cochran, J., Cox, L., Keskinocak, P., Kharoufeh, J.,
Smith, J., 2011. Surgery planning and scheduling. In: Wiley Encyclopedia of
Operations Research and Management Science. Wiley, Hoboken, NJ.

Farinelli, A., Rogers, A., Jennings, N.R., 2014. Agent-based decentralised coordination
for sensor networks using the max-sum algorithm. Auton. Agents Multi Agent Syst.
28 (3), 337–380.

Fei, H., Chu, C., Meskens, N., Artiba, A., 2008. Solving surgical cases assignment
problem by a branch-and-price approach. Int. J. Prod. Econ. 112 (1), 96–108.

Fei, H., Meskens, N., Chu, C., 2006. An operating theatre planning and scheduling
problem in the case of a" block scheduling" strategy. In: 2006 International
Conference on Service Systems and Service Management, Vol. 1. IEEE, pp. 422–428.

Fioretto, F., Yeoh, W., Pontelli, E., 2017. A multiagent system approach to scheduling
devices in smart homes. In: Workshops at the Thirty-First AAAI Conference on
Artificial Intelligence.

Fitzpatrick, S., Meertens, L.G.L.T., 2001. An experimental assessment of a stochastic,
anytime, decentralized, soft colourer for sparse graphs. In: Steinhöfel, K. (Ed.),
Stochastic Algorithms: Foundations and Applications, International Symposium,
SAGA 2001 Berlin, Germany, December 13-14, 2001, Proceedings. In: Lecture Notes
in Computer Science, vol. 2264, Springer, pp. 49–64.

Gershman, A., Grubshtein, A., Rokach, L., Meisels, A., Zivan, R., 2008. Scheduling
meetings by agents. In: DCR Workshop at AAMAS 2008. Estoril, Portugal.

Gershman, A., Meisels, A., Zivan, R., 2009. Asynchronous forward bounding. J. Artificial
Intelligence Res. 34, 25–46.

Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A., 2013. Asymmetric
distributed constraint optimization problems. J. Artif. Intell. Res. (JAIR) 47,
613–647.

Grubshtein, A., Zivan, R., Grinshpon, T., Meisels, A., 2010. Local search for distributed
asymmetric optimization. In: AAMAS 2010. pp. 1015–1022.

Grubshtein, A., Zivan, R., Meisels, A., 2012. Partial cooperation in multi-agent local
search. In: ECAI 2012 - 20th European Conference on Artificial Intelligence.
Including Prestigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31, 2012. pp. 378–383.

Jebali, A., Alouane, A.B.H., Ladet, P., 2006. Operating rooms scheduling. Int. J. Prod.
Econ. 99 (1–2), 52–62.

Kroer, L.R., Foverskov, K., Vilhelmsen, C., Hansen, A.S., Larsen, J., 2018. Planning and
scheduling operating rooms for elective and emergency surgeries with uncertain
duration. Oper. Res. Health Care 19, 107–119.

Magerlein, J.M., Martin, J.B., 1978. Surgical demand scheduling: a review. Health Serv.
Res. 13 (4), 418.

Maheswaran, R.T., Pearce, J.P., Tambe, M., 2004a. Distributed algorithms for DCOP:
A graphical-game-based approach. In: PDCS). pp. 432–439.

Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P., 2004b.
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In: 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY, USA.
IEEE Computer Society, pp. 310–317.

Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M., 2005. ADOPT: asynchronous distributed
constraints optimizationwith quality guarantees. Artificial Intelligence 161:1-2,
149–180.

Netzer, A., Grubshtein, A., Meisels, A., 2012. Concurrent forward bounding for
distributed constraint optimization problems. Artif. Intell. J. (AIJ) 193, 186–216.

Petcu, A., Faltings, B., 2005. A scalable method for multiagent constraint optimization.
In: IJCAI. pp. 266–271.

Reeves, C.R. (Ed.), 1993. Modern Heuristic Techniques for Combinatorial Problems.
John Wiley & Sons, Inc., New York, NY, USA.

http://refhub.elsevier.com/S0952-1976(23)01258-7/sb1
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb1
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb1
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb1
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb1
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb2
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb2
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb2
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb3
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb3
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb3
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb4
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb4
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb4
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb5
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb5
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb5
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb5
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb5
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb6
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb6
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb6
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb7
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb8
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb8
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb8
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb8
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb8
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb9
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb9
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb9
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb10
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb10
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb10
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb10
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb10
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb11
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb11
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb11
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb11
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb11
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb12
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb12
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb12
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb13
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb13
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb13
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb13
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb13
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb14
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb14
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb14
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb14
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb14
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb15
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb16
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb16
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb16
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb17
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb17
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb17
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb18
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb18
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb18
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb18
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb18
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb19
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb19
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb19
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb20
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb21
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb21
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb21
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb22
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb22
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb22
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb22
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb22
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb23
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb23
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb23
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb24
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb24
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb24
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb25
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb26
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb26
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb26
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb26
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb26
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb27
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb27
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb27
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb28
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb28
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb28
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb29
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb29
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb29


Engineering Applications of Artificial Intelligence 126 (2023) 107074N. Gaon et al.
Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R., 2011. Bounded approximate
decentralized coordination via the max-sum algorithm. Artificial Intelligence 175
(2), 730–759.

Rust, P., Picard, G., Ramparany, F., 2016. Using message-passing DCOP algorithms to
solve energy-efficient smart environment configuration problems. In: Kambham-
pati, S. (Ed.), Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. IJCAI/AAAI
Press, pp. 468–474.

Schoneveld, A., de Ronde, J.F., Sloot, P.M.A., 1997. On the complexity of task
allocation. J. Complexity 3, 52–60.

Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R., 2009. Decentralised coordination
of mobile sensors using the max-sum algorithm. In: IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009. pp. 299–304.

Sun, Y., Li, X., 2011. Optimizing surgery start times for a single operating room via
simulation. In: Proceedings of the 2011 Winter Simulation Conference (WSC). IEEE,
pp. 1306–1313.

Wang, P.P., 1993. Static and dynamic scheduling of customer arrivals to a single-server
system. Nav. Res. Logist. 40 (3), 345–360.

Yedidsion, H., Zivan, R., Farinelli, A., 2018. Applying max-sum to teams of mobile
sensing agents. Eng. Appl. Artif. Intell. 71, 87–99.

Yeoh, W., Felner, A., Koenig, S., 2010. BnB-ADOPT: An asynchronous branch-and-bound
DCOP algorithm. Artif. Intell. Res. (JAIR) 38, 85–133.
15
Ze’evi, T., Zivan, R., Lev, O., 2018. Socially motivated partial cooperation in multi-agent
local search. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018. pp. 2150–2152.

Zhang, W., Xing, Z., Wang, G., Wittenburg, L., 2005. Distributed stochastic search
and distributed breakout: properties, comparishon and applications to constraints
optimization problems in sensor networks. Artificial Intelligence 161:1-2, 55–88.

Zhao, Z., Li, X., 2014. Scheduling elective surgeries with sequence-dependent setup
times to multiple operating rooms using constraint programming. Oper. Res. Health
Care 3 (3), 160–167.

Zivan, R., Meisels, A., 2006. Message delay and DisCSP search algorithms. Ann. Math.
Artif. Intell. 46 (4), 415–439.

Zivan, R., Okamoto, S., Peled, H., 2014. Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence 211.

Zivan, R., Parash, T., Cohen-Lavi, L., Naveh, Y., 2020a. Applying Max-sum to asymmet-
ric distributed constraint optimization problems. Auton. Agents Multi-Agent Syst.
34 (1), 1–29.

Zivan, R., Parash, T., Cohen-Lavi, L., Naveh, Y., 2020b. Applying Max-sum to asymmet-
ric distributed constraint optimization problems. Auton. Agents Multi Agent Syst.
34 (1), 13.

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.P., 2015. Distributed
constraint optimization for teams of mobile sensing agents. Auton. Agents Multi
Agent Syst. 29 (3), 495–536.

http://refhub.elsevier.com/S0952-1976(23)01258-7/sb30
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb30
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb30
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb30
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb30
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb31
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb32
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb32
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb32
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb33
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb34
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb34
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb34
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb34
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb34
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb35
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb35
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb35
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb36
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb36
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb36
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb37
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb37
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb37
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb38
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb39
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb39
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb39
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb39
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb39
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb40
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb40
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb40
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb40
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb40
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb41
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb41
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb41
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb42
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb42
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb42
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb43
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb43
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb43
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb43
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb43
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb44
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb44
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb44
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb44
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb44
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb45
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb45
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb45
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb45
http://refhub.elsevier.com/S0952-1976(23)01258-7/sb45

	Scheduling operations in a large hospital by multiple agents
	Introduction
	Related Work
	Operating Room Planning and Scheduling
	Applications of Multi-Agent Optimization

	Background
	Distributed Constraint Optimization
	Asymmetric DCOP
	Distributed Stochastic Algorithm

	Partial Cooperation
	Partially Cooperative Local Search
	Socially-Motivated Local Search

	Formalization of the Problems
	Operating Room per Date Allocation to Wards
	Operation Day Scheduling

	Distributed Local Search Algorithms
	Partially Cooperative Algorithms for the Operating Room per Date Allocation Problem
	Distributed Local Search for Generating Daily Schedules

	Experimental Evaluation
	Evaluation of RD Allocation Algorithms
	Evaluation of Daily Schedule Algorithms
	Experimental Results
	Results Summary

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


