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Abstract
Max-sum is a version of belief propagation that was adapted for solving distributed con-
straint optimization problems. It has been studied theoretically and empirically, extended 
to versions that improve solution quality and converge rapidly, and is applicable to multiple 
distributed applications. The algorithm was presented both as synchronous and asynchro-
nous algorithms. However, neither the differences in the performance of the two execution 
versions nor the implications of imperfect communication (i.e., massage delay and mes-
sage loss) on the two versions have been investigated to the best of our knowledge. We con-
tribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differ-
ences between the two execution versions of the algorithm, focusing on the construction of 
beliefs; (2) Empirically evaluating the differences between the solutions generated by the 
two versions of the algorithm, with and without message delay or loss; and (3) Establishing 
both theoretically and empirically the positive effect of damping on reducing the differ-
ences between the two versions. Our results indicate that, in contrast to recent published 
results indicating that message latency has a drastic (positive) effect on the performance 
of distributed local search algorithms, the effect of imperfect communication on Damped 
Max-sum (DMS) is minor. The version of Max-sum that includes both damping and split-
ting of function nodes converges to high quality solutions very fast, even when a large 
percentage of the messages sent by agents do not arrive at their destinations. Moreover, the 
quality of solutions in the different versions of DMS is dependent of the number of mes-
sages that were received by the agents, regardless of the amount of time they were delayed 
or if these messages are only a portion of the total number of messages that was sent by the 
agents.

Keywords  Belief propagation · Distributed constraints · Distributed problem solving

1  Introduction

Recent advances in computation and communication have resulted in realistic distributed 
applications in which humans and technology interact and aim to optimize mutual goals 
(e.g., IoT applications). A promising multi-agent approach to solve these types of problems 
is to model them as distributed constraint optimization problems (DCOPs), where decision 
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makers are modeled as agents that assign values to their variables. The goal in a DCOP is 
to optimize a global objective in a decentralized manner. Unfortunately, the communica-
tion assumptions of the DCOP model are overly simplistic and often unrealistic: (1) Mes-
sages are never lost; (2) Messages have very small and bounded delays; and (3) Messages 
arrive in the order that they were sent. These assumptions do not reflect real-world charac-
teristics, where messages may be disproportionately delayed, or dropped, due to congestion 
and bandwidth limitations.

Recently, a study that investigated the effect of message latency on common DCOP local 
search algorithms (e.g., MGM and DSA) has shown that message delays have a dramatic 
positive effect on the performance of the asynchronous versions of these algorithms [1]. 
Specifically, message latency generates an exploration effect, which significantly improves 
the quality of the solutions found. Nevertheless, this study did not investigate the effect on 
distributed incomplete inference algorithms (e.g., Max-sum), even though they have been 
shown to be very successful [2, 3].

Max-sum is a version of the belief propagation algorithm [4, 5] that is used to solve 
DCOPs. It has been used for solving multi-agent optimization problems in applications 
such as sensor networks [6, 7], task allocation for rescue teams in disaster areas [8], and 
smart homes [9]. As with most belief propagation algorithms, Max-sum is known to con-
verge to an optimal solution when solving problems represented by acyclic graphs. On 
problems represented by cyclic graphs, the beliefs may fail to converge, and the resulting 
assignments that are considered optimal under those beliefs may be of low quality [10, 11]. 
This occurs because the cyclic structure results in the propagation of duplicated informa-
tion, leading to computation of inaccurate and inconsistent information [4].

To decrease the effect of duplicated information propagation, damping can be used. 
It balances the weight of the new calculation performed in each iteration and the weight 
of calculations performed in previous iterations, resulting in an increased probability for 
convergence [3]. Recently, splitting nodes in the factor graph on which belief propagation 
operates has been shown to be an effective method for accelerating the convergence of the 
algorithm when combined with damping [3, 12].

Max-sum has been presented both as an asynchronous algorithm and as a synchronous 
algorithm [10, 11, 13]. In the synchronous version, agents perform in iterations. In each 
iteration, agents send messages to all their neighbors and wait for the messages sent to 
them from all their neighbors to arrive before moving to the next iteration. In the asynchro-
nous version, agents react to messages as and when they arrive.

To best of our knowledge, the implications of this difference in the execution of the 
algorithm on its performance have not been studied to date. Moreover, when message loss 
is considered, the synchronous version is not applicable since an agent may remain idle 
while it waits for the arrival of a message that was lost. While message latency does not 
affect the actions that agents perform (only delays them) in the synchronous version, intui-
tively, it is expected to have a major effect on the performance of the asynchronous version. 
The reason is that the beliefs included in messages are used by agents in the construction 
of beliefs that they propagate to others and in their assignment selection. In asynchronous 
execution, belief construction and assignment selection might be performed while consid-
ering imbalanced and inconsistent information.

In this paper, we make the following contributions1: 

1  This work is an extension of our published paper in the International Conference on Principles and Prac-
tice of Constraint Programming (CP) 2021 [14].
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1.	 We investigate the differences in the properties of the two execution versions of Max-
sum, synchronous and asynchronous. More specifically, using backtrack cost trees 
(BCTs) [15], we investigate the possible differences between the propagated beliefs in 
the two versions of Max-sum. Since BCTs, as originally defined [15], are applicable 
for the synchronous version only, in order to perform the analysis, we define a general 
BCT (GBCT) structure that is applicable for both modes of execution.

2.	 We investigate the effect of damping on asynchronous Max-sum. While there are clear 
indications (both empirical and theoretical) that damping improves the performance of 
the synchronous version of Max-sum [3, 15], to best of our knowledge, the effect of 
damping on the asynchronous version of Max-sum has not been studied prior to our 
study. We analyze this effect both theoretically and empirically. Both indicate that damp-
ing reduces the differences between synchronous and asynchronous execution.

3.	 We investigate the performance of the different versions of the algorithm in the presence 
of message latency and message loss. While the beliefs propagated and the computa-
tion that agents perform are not affected by message latency in the synchronous version 
(only delayed), this is not true for the asynchronous version. Once again, our empirical 
results reveal that damping reduces the differences. Moreover, the version of Max-sum 
proposed by Cohen et al. [3] that includes both damping and splitting maintains its fast 
convergence properties and high quality of solutions, even in asynchronous execution 
with message delays and when many messages are lost.

Our results include experiments that reveal that the quality of solutions produced by the 
different versions of DMS is mainly determined by the number of messages received by the 
agents, regardless of the time they were delayed or the number of messages that were sent. 
This finding is consistent with our theoretical results.

The paper is constructed as follows: We start by presenting related work in Sect. 2. Sec-
tion 3 details the relevant background. Our theoretical study on the effect of asynchronous 
execution of the Max-sum algorithm is presented in Sect.  4 followed by our empirical 
study in Sect. 5. Finally, our conclusions are presented in Sect. 6.

2 � Related work

Belief propagation was first introduced by Pearl [4] and was intensively studied before it 
was adopted by the multi-agent optimization community [16–19]. The version of belief 
propagation that was adapted to solve DCOPs, the Max-sum algorithm, was proposed by 
Farinelli et al. [10]. In that paper, the algorithm was described in its asynchronous version. 
Early on, researchers noticed that when the algorithm fails to converge, it performs poorly 
and, thus, they suggested versions that guaranteed convergence [20, 21].

Rogers et al. [20] proposed a manipulation of the factor graph that the algorithm uses 
that will guarantee its convergence. The algorithm starts by eliminating edges from the 
factor graph until a spanning tree of the original factor graph remains. Then the Max-sum 
algorithm is used in order to produce the optimal solution to the spanning tree factor graph. 
By accumulating the maximal additional cost of every removed edge, it is possible to cal-
culate a bound on the difference between the cost of the optimal solution for the spanning 
tree and the optimal solution for the original factor graph. Hence, this algorithm is known 
as Bounded Max-sum. Later studies proposed methods for selecting the spanning tree that 
improve the bound [22, 23]. Unfortunately, while the algorithm offered a bound from the 
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optimum, the cost of the solution it proposed was insignificantly better than the non-con-
verging standard version of Max-sum [11].

Zivan and Peled [21] proposed a different manipulation on the factor graph to trigger 
convergence. They converted the factor graph to a directed acyclic graph by selecting an 
order on all nodes of the graph and allowing messages to be sent only in this order. This 
algorithm is guaranteed to converge in linear time. However, in order to consider all con-
straints, the order was reversed. The best outcome was achieved by performing a small 
number of phases in alternating directions, and then performing a number of phases that 
include value propagation. Chen et al. [2] later extended this algorithm to versions that bal-
ance between exploration and exploitation.

Later, Cohen et al. [3] introduced a version of the algorithm that included damping, a 
method for encouraging convergence that was used in other versions of belief propaga-
tion [16], and splitting of function nodes, a method that was theoretically investigated by 
Ruozzi and Tatikonda [12]. This version converged very fast to high quality solutions.

Recently, a number of papers addressed the main limitation of Max-sum, which is the 
exponential calculation required by function-nodes in order to produce the messages they 
send to neighboring variable nodes [13, 24]. While these proposed methods evidently 
reduce the computation effort required for producing messages by function-nodes, the pro-
cess is still exponential in the arity of the constraints. Thus, as in prior work [3, 11], we 
focus on binary DCOPs where Max-sum performs efficiently in this work as well.

Max-sum has been used to solve asymmetric DCOPs [25] by having each agent involved 
in a constraint hold a function-node representing its personal costs for that constraint. Thus, 
for each binary constraint, there were two representing function-nodes. The study showed 
that, in contrast to other DCOP algorithms, Max-sum versions maintain the quality of the 
solutions that they produce when applied to asymmetric problems. The main difference 
with respect to the splitting method [3] is that, the use of more than one function-node for 
a single constraint was intended to represent the given natural structure of an asymmetric 
problem [25]. In contrast, in the work by Cohen et al. [3] (and in this study), it was used as 
an algorithmic method to accelerate convergence.

3 � Background

In this section we provide background on graphical models, distributed constraint opti-
mization problems (DCOPs), the DCOP versions of belief propagation—Max-sum and 
its variants—and backtrack cost tree (BCT)—the tool we use to analyze the algorithms’ 
behavior. While the Max-sum variants that we discuss are actually solving a min-sum 
problem [12], we will still refer to them as “Max-sum” since this name is commonly used 
in the DCOP literature [10, 11, 26].

3.1 � Graphical models

Graphical models such as Bayesian networks or constraint networks are a widely used rep-
resentation framework for reasoning and solving optimization problems. The graph struc-
ture is used to capture dependencies between variables [27]. Our work extends the theory 
established by Weiss [17] that considered the Maximum a posteriori (MAP) assignment, 
which is solved using the Max-product version of belief propagation.
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The relation between MAP and constraint optimization is well established [10, 27, 28] 
and, thus, results that consider Max-product for MAP apply to Max/Min-sum for solving 
constraint optimization problems, as well as the other way around [12]. Therefore, without 
loss of generality, we will focus on constraint optimization in this paper. Moreover, we will 
consider the distributed version of the problem since it is a natural representation for mes-
sage passing algorithms. Nevertheless, our results apply to any version of problem repre-
sented by a graphical model and solved by distributed belief propagation.

3.2 � Distributed constraint optimization problems

A distributed constraint optimization problem (DCOP) is defined by a tuple ⟨A,X,D,R⟩ , 
where:

•	 A is a finite set of agents {A1,A2,… ,An}.
•	 X  is a finite set of variables {X1,X2,… ,Xm} , where each variable is held by a single 

agent and an agent may hold more than one variable.
•	 D is a set of domains {D1,D2,… ,Dm} , where each domain Di contains the finite set of 

values that can be assigned to variable Xi . We denote an assignment of value x ∈ Di to 
Xi by an ordered pair ⟨Xi, x⟩.

•	 R is a set of relations (constraints), where each constraint Rj ∈ R defines a non-nega-
tive cost for every possible value combination of a set of variables, and is of the form 
Rj ∶ Dj1

× Dj2
×… × Djk

→ ℝ
+ ∪ {0}.

A binary constraint refers to exactly two variables and is of the form 
Rij ∶ Di × Dj → ℝ

+ ∪ {0}.2 For each binary constraint Rij , there is a corresponding cost 
table Tij with dimensions |Di| × |Dj| in which the cost in every entry exy is the cost incurred 
when x is assigned to Xi and y is assigned to Xj . A binary DCOP is a DCOP in which all 
constraints are binary. A partial assignment is a set of value assignments to variables, in 
which each variable appears at most once. vars(PA) is the set of all variables that appear 
in partial assignment PA (i.e.,   vars(PA) = {Xi ∣ ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA} ). A constraint 
Rj ∈ R of the form Rj ∶ Dj1

× Dj2
×… × Djk

→ ℝ
+ ∪ {0} is applicable to PA if each of 

the variables Xj1
,Xj2

,… ,Xjk
 is included in vars(PA). The cost of a partial assignment PA 

is the sum of all applicable constraints to PA over the value assignments in PA. A complete 
assignment (or a solution) is a partial assignment that includes all the DCOP’s variables 
(i.e., vars(PA) = X  ). An optimal solution is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one vari-
able (i.e., n = m ) and we concentrate on binary DCOPs. These assumptions are common in 
the DCOP literature [29, 30]. In addition to the standard motivation for focusing on binary 
DCOPs, in the case of Max-sum, it is essential since the runtime complexity of each itera-
tion of Max-sum is exponential in the arity of the constraints.

2  We say that a variable is involved in a constraint if it is one of the variables the constraint refers to.
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3.3 � The max‑sum algorithm

Max-sum operates on a factor graph, which is a bipartite graph in which the nodes 
represent variables and constraints [31]. Each variable-node representing a variable of 
the original DCOP is connected to all function-nodes representing constraints that it is 
involved in. Similarly, a function-node is connected to all variable-nodes representing 
variables in the original DCOP that are involved in it. Variable-nodes and function-
nodes are considered “agents” in Max-sum (i.e.,  they can send and receive messages 
and can perform computation).

A message sent to or from variable-node X (for simplicity, we use the same notation 
for a variable and the variable-node representing it) is a vector of size |DX| , including a 
cost for each value in DX . These costs are also called beliefs. Before the first iteration, 
all nodes assume that all messages they previously received (in iteration 0) are vectors 
of zeros. A message sent from a variable-node X to a function-node F in iteration k ≥ 1 
is formalized as follows:

where Qk
X→F

 is the message that variable-node X intends to send to function-node F in iter-
ation k, FX is the set of function-node neighbors of variable-node X, and Rk−1

F�
→X

 is the mes-
sage sent to variable-node X by function-node F′ in iteration k − 1 . � is a constant that is 
reduced from all beliefs included in the message (i.e., for each x ∈ DX ) in order to prevent 
the costs carried by messages throughout the run of the algorithm from growing arbitrarily 
large.

A message Rk
F→X

 sent from a function-node F to a variable-node X in iteration k 
includes for each value x ∈ DX:

where PA−X is a possible combination of value assignments to variables involved in F 
not including X. The term cost(⟨X, x⟩,PA−X) represents the cost of a partial assignment 
a = {⟨X, x⟩,PA−X} , which is:

where f(a) is the original cost in the constraint represented by F for the partial assignment 
a, XF is the set of variable-node neighbors of F, and (Qk−1

X�
→F

)x� is the cost that was received 
in the message sent from variable-node X′ in iteration k − 1 , for the value x′ that is assigned 
to X′ in a. X selects its value assignment x̂ ∈ DX following iteration k as follows:

In the synchronous version (Syn_Max-sum), in each iteration, an agent waits to receive all 
messages sent to it in the previous iteration before performing computation and generating 
the messages to be sent in the current iteration [11]. In the asynchronous version (Asy_
Max-sum), agents react to messages they receive. Whenever a node receives a message, it 
performs computation and sends out messages to its neighbors, taking into consideration 

(1)Qk
X→F

=
∑

F�∈FX ,F
�≠F

Rk−1
F�
→X

− �

(2)min
PA−X

cost(⟨X, x⟩,PA−X)

(3)f (a) +
�

X�∈XF ,X
�≠X,⟨X�,x�⟩∈a

(Qk−1
X�
→F

)x�

(4)x̂ = argmin
x∈DX

∑

F∈FX

(Rk
F→X

)x
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the last message received from each of its neighbors [10]. In both versions, the logic for the 
actions of the agents are identical, only the trigger for performing those actions is different.

3.3.1 � Damped max‑sum

Damped Max-sum (DMS) has an additional feature, which is the damping of the propa-
gated beliefs. In order to add damping to Max-sum, a parameter � ∈ [0, 1) is used. Before 
sending a message in iteration k, a node in the factor graph (whether it is a variable-node or 
a function-node) performs calculations as in standard Max-sum. We use m̂k

i→j
 to denote the 

result of the calculation made by node Ni for the content of a message intended to be sent 
from Ni to node Nj in iteration k and mk−1

i→j
 to denote the message sent by Ni to Nj at iteration 

k − 1 . Notice that mk
i→j

 can be either a Q message or a R message. The message sent by Ni 
to Nj at iteration k is calculated as follows:

Thus, � expresses the weight given to previously performed calculations with respect to 
the most recent calculation performed. Moreover, when � = 0 the resulting algorithm is 
standard Max-sum.

We use Syn_DMS and Asy_DMS to denote the synchronous and asynchronous versions 
of DMS, respectively, in this paper.

3.3.2 � Asynchronous execution

All the definitions used for describing Max-sum (and DMS) above use the iteration number 
k. It was used to describe how a message is generated, using the information received by 
the factor graph node in the previous iteration ( k − 1 ). In asynchronous execution, their 
are no iterations, and agents perform computation steps whenever they receive messages. 
Thus, in asynchronous execution, the information that a node Ni uses to generate a message 
at time  t is the information included in the last message received from each of its neigh-
bors prior to t, regardless of when it was sent by the neighbors. If no message has been 
received from a particular neighbor yet, Ni uses a vector of zeros in its computation for that 
neighbor.

Notice, that in the presence of message delays, a node Ni may receive messages from 
its neighbor not in the order they were sent. This is true for both the synchronous and the 
asynchronous versions of the algorithm. Nevertheless, the agents use the messages in the 
order in which they were received. In order to avoid this phenomenon, we implemented a 
time-stamp method that allows the agents receiving messages to consider the information 
they include in the order that they were sent. However, the results were not significantly 
different from the results obtained when this method was not used. Thus, we do not report 
these results in our empirical study.

3.3.3 � Max‑sum with split constraint factor graphs

When Max-sum is applied to an asymmetric problem, the representing factor graph has 
each (binary) constraint represented by two function-nodes, one for each part of the 

(5)mk
i→j

= �mk−1
i→j

+ (1 − �)m̂k
i→j
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constraint held by one of the involved agents. Each function-node is connected to both 
variable-nodes representing the variables involved in the constraint [32]. Figure 1 presents 
two equivalent factor graphs that include two variable-nodes, each with two values in its 
domain, and a single binary constraint. On the left, the factor graph represents a (symmet-
ric) DCOP including a single constraint between variables X1 and X2 ; hence, it includes a 
single function node representing this constraint. On the right, the equivalent factor graph 
representing the equivalent asymmetric DCOP is depicted. It includes two function-nodes 
representing the parts of the constraint held by the two agents involved in the asymmetric 
constraint. Thus, the cost table in each function-node includes the asymmetric costs that 
the agent holding this function-node incurs. In this example, function-node F′

12
 is held by 

agent A1 , while F′
21

 is held by A2 . The factor graphs are equivalent since the sum of the two 
cost tables held by the function-nodes representing the constraints in the factor graph on 
the right, is equal to the cost table of the single function-node representing this constraint 
in the factor graph on the left (see [25] for details). Such split constraint factor graphs 
(SCFGs) can be used as an enhancement method for Max-sum [3, 12]. This is achieved 
by splitting each constraint that was represented by a single function-node in the original 
factor graph into two function-nodes. The SCFG is equivalent to the original factor graph 
if the sum of the cost tables of the two function-nodes representing each constraint in the 
SCFG is equal to the cost table of the single function-node representing the same con-
straint in the original factor graph. By tuning the similarity between the two function-nodes 
representing the same constraint one can determine the level of asymmetry in the SCFG. 
The use of symmetric SCFGs was shown to trigger very fast convergence to high qual-
ity solutions. However, generating mild asymmetry, postpones convergence and generates 
some exploration, which results in improved solution quality [3].

3.3.4 � Non‑concurrent logic operations

In order to evaluate the runtime performance of distributed algorithms performing in a 
distributed environment, independent of the implementation details, there is a need to 
establish which of the operations performed by agents could not have been performed 
concurrently. Thus, the runtime performance of the algorithm is the longest non-con-
current sequence of operations that the algorithm performed. This method was first 

Fig. 1   An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right)
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proposed for the evaluation of asynchronous distributed algorithms for solving distrib-
uted constraint satisfaction problems (DisCSPs) [33]. As the basic logic operations of 
DisCSP algorithms are constraint checks, researchers have measured their runtimes in 
terms of non-concurrent constraint checks (NCCCs) [33]. To better compare different 
logic operations in other classes of algorithms, researchers generalized NCCCs to non-
concurrent logic operations (NCLOs) [34]. We adopt NCLOs in this study.

3.4 � Backtrack cost trees

For analyzing the behavior of Max-sum on factor graphs with an arbitrary (finite) num-
ber of cycles, Zivan et  al. [15] proposed the use of a backtrack cost tree (BCT). It 
allows one to trace, for each belief, the entries in the cost tables held by function-nodes 
that were used to compose this belief. In other words, the components of the assign-
ment’s cost. Their analysis included insights regarding the construction of beliefs from 
costs incurred by constraints. Thus, for every pair of constrained variables Xi and Xj , 
for each x ∈ Di , x� ∈ Dj , the cost incurred by the constraint for assigning x to Xi and x′ 
to Xj was denoted as R(Xi = x,Xj = x�) . Formally, a BCT is defined as follows:

Definition 1  (Backtrack Cost Tree (BCT)) A BCT is defined for a belief that appears either 
in a message sent from variable Xi at time t to a function node connecting it to a variable 
Xj or in a message sent from that function node to variable Xi . The belief is on the cost of 
assigning some value x ∈ Di to variable Xi . Without loss of generality, we will elaborate on 
the first among these two and denote it as BCTt

i=x→j
.

The belief, as constructed by the Max-sum algorithm, is a sum of various components 
and the tree is composed from them. At the root is the decision to assign some value to a 
variable (e.g., assigning some x ∈ Di to Xi ) and the directed edges from its children in the 
tree include the beliefs that were summed in order to generate the cost (the belief) for this 
assignment. These edges lead to nodes representing the neighboring nodes from which Xi 
received messages in time t − 1 . Each of those nodes is connected to the nodes from which 
they received messages at time t − 2 , with the edges containing the beliefs that passed to it 
and their sum ended up in its message. The tree leaves are all at time 0 (see Fig. 2b).

For a single-cycle factor graph, the BCT for every belief is a chain. Factor graphs 
with multiple cycles include variable-nodes with more than two neighbors and, thus, 
the BCTs of their beliefs include nodes with multiple children.

A BCT starts from an end point (e.g., the root of the BCT as presented in Fig. 2b), 
which is the belief (cost) of assigning to Xi some value x from its domain Di , as sent 
to a neighboring node (in our example it is the assignment of x ∈ D1 to X1 . The values 
from which that belief was calculated can then be backtracked to the messages and 
costs due to all the individual constraints that were summed up to create that belief. An 
example of such a tree for a belief generated when Max-sum solves the factor-graph 
depicted in Fig. 2a is depicted in Fig. 2b.

For each BCT, there is an implied assignment tree that consists of the value assign-
ments that the variables at each time-point of the tree would need to be assigned in 
order to incur the costs included in the BCT. The value assignment selected by a vari-
able at time t is the one with the minimal sum of beliefs sent to the corresponding vari-
able-node at iteration t − 1 . The tree for this minimal sum of beliefs will be denoted by 
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BCTt
i
 , as it does not depend on any specific belief that appears in a message to another 

variable.

3.5 � Convergence properties

Belief propagation converges in linear time to an optimal solution when the problem’s 
corresponding factor graph is acyclic [4]. For a single-cycle factor graph, we know that 
if belief propagation converges, then it is to an optimal solution [17, 18]. Moreover, 
when the algorithm does not converge, it periodically changes its set of assignments. In 
order to explain this behavior, Forney et al. [18] show the similarity in the performance 
of the algorithm on a cycle to its performance on a chain, whose nodes are similar to the 
nodes in the cycle, but whose length is equal to the number of iterations performed by 
the algorithm. One can consider a sequence of messages starting at the first node of the 
chain and heading towards its other end. Each message carries beliefs accumulated from 
costs added by function-nodes. Each function-node adds a cost to each belief, which is 
the constraint value of a pair of value assignments to its neighboring variable-nodes. 
Each such sequence of cost accumulation (route) must at some point become periodic, 
and the minimal belief would be generated by the minimal periodic route. If this peri-
odic route is consistent (i.e., the set of assignments implied by the costs contain a single 
value assignment for each variable), then the algorithm converges. Otherwise, it does 
not.

Recently, these insights were generalized such that similar statements can be made 
when the algorithm is solving factor graphs with multiple cycles. Specifically (using 

Fig. 2   a A lemniscate factor-graph. b An example of a BCT for a belief in the message sent from X
1
 to the 

function-node F
13

 at time t = 6 in the lemniscate depicted on the left hand side
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BCTs), Zivan et al. [15] proved that, as in the single cycle case, on every finite factor 
graph, Max-sum at some point in time starts to repeatedly follow a path that minimizes 
its beliefs.

4 � Effect of asynchronous execution

In order to analyze the differences in performance of the synchronous version of Max-sum 
(Syn_Max-sum) and the asynchronous version of Max-sum (Asy_Max-sum), one must 
investigate the differences in the structure of the BCTs of beliefs sent by the algorithms’ 
nodes. However, in Sect. 3.4, BCTs were defined with respect to synchronous execution, 
referring to messages sent in a specific time. Thus, there is a need for a more general defi-
nition that will apply to both synchronous and asynchronous execution, as well as environ-
ments that include message latency and message loss.

Definition 2  (General BCT (GBCT)) A GBCT is defined for a belief that appears either 
in a message sent from variable Xi to a function node connecting it to a variable Xj or in a 
message sent from that function node to variable Xi . The belief is on the cost of assigning 
some value x ∈ Di to variable Xi . Without loss of generality (as we did above), we will 
elaborate on the first among these two and denote it as GBCTt

i=x→j
.

As in a standard BCT, at the root of a GBCT is the decision to assign some value to 
a variable (e.g., assigning some x ∈ Di to Xi ) and the directed edges from its children in 
the tree include the beliefs that were sent to Xi , which were summed in order to generate 
the cost (the belief) for this assignment. Similar to a BCT, the definition is recursive and 
applies to every cost sent by a node in the tree that was summed in order to generate the 
belief at the root of the tree. For every node Xj , that sent a message with a belief x� ∈ Dj , 
the cost on an edge connecting it to a child is the belief carried by the last message received 
by Xj from that child, before Xj sent the message with the belief for x′.

In contrast to the definition of the standard BCT, in GBCT, we do not know when the 
messages were sent or received. All we know is the content of the messages that were 
received. Specifically, the last message that was received by Xi from each of its neighbors 
(except for the neighbor to whom b is sent), before generating the message with the belief 
b for the assignment ⟨x,Xi⟩ , is the one that is considered in the GBCT. Each of the nodes 
sending these messages is the parent in the tree of the nodes sending messages to it. For 
example, assume that Fij sent a message m to Xi with a cost for value x and that this cost 
corresponds to the assignment of x� ∈ Dj . Further assume that m was the last message that 
Xi received from Fij before producing b. Thus, Fij is the child of the node Xi in the GBCT 
and Xj is the child of Fij . The cost on the edge between Fij and Xi is the belief correspond-
ing to x in m. Fij is the parent of Xj and the cost on the edge between them is the cost 
included in the last message received by Fij before it produced the belief that was sent in m.

In Syn_Max-sum, the height of a BCT for a belief included in a message sent at itera-
tion t is t and, for each node in the tree, the heights of the sub-trees rooted by each of its 
children nodes are equal. On the other hand, in Asy_Max-sum, messages can have different 
delays and, thus, each sub-tree in a GBCT can have a different height.

Our first theoretical property addresses the results proved by Zivan et al. [15] regarding 
the convergence of Syn_Max-sum. More specifically, we prove that the property that was 
proved in Lemma 1 in [15], and was used to prove the main theorem of that study (i.e., the 
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main theorem in [15]), is not guaranteed when Max-sum operates asynchronously in an 
environment that includes message delays.

Proposition 1  In the presence of message delays, Asy_Max-sum is not guaranteed to con-
verge to a minimal repeated route.

Proof  The structure of the GBCTs of the beliefs that are exchanged by agents depends 
on the arrival times of messages from which they are composed. Each GBCT (and, as a 
result, its corresponding belief) is an outcome of a specific combination of message arriv-
als, depending on whether messages were lost or delayed and by how much. These con-
sequences result in different orders of message arrivals and the number of such combina-
tions is exponential in the maximal number of messages that the beliefs they carry can be 
included in the GBCT. Moreover, due to message losses and delays, a specific minimal 
route of beliefs is not guaranteed to repeat itself. Thus, even if the algorithm reaches a 
minimal route, it may not repeat it. 	�  ◻

In order to provide an intuitive explanation to Proposition  1, we present an 
example in Fig.  3, which includes a leminiscate factor graph with three vari-
able nodes and two function nodes. When performing Max-sum where mes-
sages arrive instantaneously, the algorithm oscillates between solutions: 
⟨X1 = a,X2 = a,X3 = a⟩, ⟨X1 = b,X2 = a,X3 = a⟩, ⟨X1 = b,X2 = a,X3 = b⟩, ⟨X1 = b,X2 = b,X3 = b⟩,
⟨X1 = a,X2 = b,X3 = b⟩, ⟨X1 = a,X2 = a,X3 = b⟩, ⟨X1 = a,X2 = a,X3 = a⟩..., If mes-
sages from function nodes F12 and F21 to variable node X2 are delayed while messages from 
other nodes arrive instantaneously, then the algorithm performing on the cycle including 
X2,F23,X3 and F32 will converge to the solution ⟨X2 = a,X3 = a⟩3 and X1 will maintain its 
current assignment. When the messages from function nodes F12 and F21 will finally arrive 
and the communication limitation is resolved, the algorithm will oscillate once again.
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Fig. 3   Example of how message delays affect convergence

3  This is because this assignment results in a normalized cost that is lower than any alternative oscillating 
path. See [18, 35] for details.
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Therefore, Proposition 1 seems to put an end to the natural wish that the convergence 
properties of Syn_Max-sum can be established for Asy_Max-sum as well. However, the 
differences between the executions of the two versions of the algorithm can be minimized. 
More specifically, the effect caused by sub-trees of the GBCTs having different heights in 
Asy_Max-sum can be significantly reduced through the use of damping.

Let layerk denote the set of nodes of a GBCT with depth k (distance from the root) and 
GBCTk denote the layers of the GBCT with depth k or less. We say that a layerk is effective 
if and only if there exists a number k̂ ≥ k , such that the belief calculated by GBCTk̂ is dif-
ferent than the belief calculated by GBCTk−1 . For each GBCT G, we say that its effective 
GBCT G′ is GBCTk′ such that layerk′ is effective and, for any layerk that is effective in B, 
k′ ≥ k.

In the proofs of the following properties, we assume that the messages have bounded 
delays and a probability of message loss that is small enough to prevent starvation 
(i.e., there is no agent Ai and number of non-concurrent steps ns′,4 such that following ns′ , 
Ai does not receive messages anymore), and there is a limit e for the number of consecutive 
messages that can be lost on a communication link (i.e., that are sent from an agent Ai to 
another agent Aj).

Lemma 1  When asynchronous DMS (Asy_DMS) is performed with a large enough damp-
ing factor,5 there exists a finite number of non-concurrent steps of the algorithm ns1 , such 
that in the steps following it, for every two beliefs included in the same message, if layerk 
in each of the corresponding GBCTs is effective, then the number of nodes in layerk of both 
GBCTs are equal.

Proof  A node in the GBCT represents a node in the factor-graph, and its children are the 
nodes from which it received messages. Assume that in two GBCTs of beliefs sent in the 
same message, there exists an effective layer k in which one GBCT has a smaller number 
of nodes than the other. That means that the factor-graph nodes represented by nodes in 
layerk−1 did not receive messages from all their neighbors yet. However, since the delays 
are bounded and so is the number of messages that are lost, their must exist a time when 
messages from all neighbors will arrive. Following that time the size of the layerk in both 
GBCTs will be equal until the end of the run of the algorithm. 	�  ◻

An immediate corollary from Lemma  1 is that in Asy_DMS (using a large enough 
damping factor), following ns1 , the effective GBCTs of all beliefs included in each message 
have the same number of nodes. This reduces the possible differences between beliefs that 
can be generated by each node. Moreover, for the case that the algorithm does converge, 
the effect of the asynchronous performance vanishes, as we prove below.

Proposition 2  When Asy_DMS is using a large enough damping factor, if after perform-
ing ns2 > ns1 ( ns1 as described in Lemma 1) non-concurrent steps, it reaches a minimal 
consistent route (i.e., all nodes perform k sequential asynchronous steps in which the value 

4  We consider a step to be an action that starts when a node in the graph received some messages (at least 
one), performed computation, and ends when it sent some messages (at least one).
5  For an analysis on the size of the damping factor required, with respect to the largest number of neighbors 
(degree) that a node in the factor graph has, see the work by Zivan et al. [15].



	 Autonomous Agents and Multi-Agent Systems           (2023) 37:40 

1 3

   40   Page 14 of 28

assignments corresponding to the minimal route are selected), then it will repeatedly fol-
low this route (i.e., it has converged).

Proof  As established above, following ns1 , the effective GBCTs for beliefs included in the 
same message have the same number of nodes (in each layer and altogether) regardless of 
message delays. When the algorithm reaches a minimal consistent route, the beliefs cor-
responding to this minimal route involve only one value in each domain, and the belief cor-
responding to it is minimal in each message. Additional nodes added to the GBCTs of the 
beliefs corresponding to the assignments in the minimal route represent costs in the entries 
of the cost tables of function-nodes that are part of the minimal route. Hence, they will 
not change its minimal property or the choice of the minimal route assignments (i.e., for 
every ns > ns2 , the effective GBCTns

i
 will be identical). Similarly, the addition of nodes to 

GBCTs of beliefs corresponding to assignments that are not included in the minimal route 
represent costs that belong to routes with larger overall costs. 	�  ◻

Proposition 2 has a major importance to our discussion. Both the asynchronous and the 
synchronous versions of DMS will converge when they reach a consistent minimal path. In 
other words, the differences between them can exist only when the minimal path is incon-
sistent. In such a case, the synchronous version will repeat the minimal inconsistent route 
while the asynchronous version may leave it and explore other routes.

5 � Experimental evaluation

In order to evaluate the implications of asynchronous execution (compared to synchronous 
execution) and imperfect communication on the different versions of Max-sum, we used 
an asynchronous simulator, in which agents are implemented by Java threads. It includes 
a mailing agent that simulates the delays of messages as suggested by Zivan and Meisels 
[33]. Using this type of simulator allows us to implement any type of message delay pat-
tern. Other simulators, such as ns-3 [36, 37], offer a number of communication patterns 
from which one can select. However, we prefer the use of the simpler simulator proposed 
by Zivan and Meisels [33], which allows complete flexibility in the design of the mes-
sage delay patterns and it allows us to measure runtimes in implementation-agnostic units. 
Thus, the results are presented as a function of the number of non-concurrent logic opera-
tions (NCLOs). The atomic logic operations in these algorithms are the evaluation of the 
cost of a combination of two assignments (i.e., an access to the cost table of a function-
node). Each agent performed the computation for the function-nodes that were assigned to 
it. We used a greedy heuristic to evenly assign function-nodes to agents and, thus, increase 
concurrency. In order to simulate message delays, for each message sent between nodes 
managed by different agents, a delay in terms of NCLOs was selected, and the message 
was delivered to the receiving agent after that agent had the opportunity to perform this 
number of logic operations.

We evaluated the algorithms on problems with 50 agents, which are often too large for 
complete DCOP algorithms to solve, and across four different types of DCOPs, described 
below. Each type of problem exhibits a different level of structure in the constraint graph 
topology and in the constraint functions. All problems were formulated as minimization 
problems.
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•	 Random graph problems These problems are random constraint graph topologies with 
density p1 = {0.1, 0.6} . They include variables with 10 values in each domain. The 
cost tables held by function-nodes include costs that were selected uniformly between 
100 and 200. This range was chosen because when the range is closer to zero, beliefs 
may be very small and the effect of damping is less effective. Both the constraint graph 
and the constraint functions in these problems are unstructured.

•	 Graph coloring problems These problems are random constraint graph topologies in 
which each variable has a number of values (i.e., colors) that it can take, and all constraints 
are “not-equal” cost functions, where an equal assignment of neighbors in the graph 
incurs a random cost between 100 and 200 and non-equal value assignments incur zero 
cost. Such random graph coloring problems are commonly used in DCOP formulations of 
resource allocation problems. We set the density to p1 = 0.05 and set the number of values 
in each domain to 3 [3, 10, 38].

•	 Scale-free network problems These problems are generated using the model by Barabási 
and Albert [39]. An initial set of 10 agents was randomly selected and connected. Addi-
tional agents were added sequentially and connected to 3 other agents with a probability 
proportional to the number of links that the existing agents already had. The cost of each 
joint assignment between constrained variables was selected uniformly between 100 and 
200. Each variable had 10 values in its domain. The constraint graph is somewhat struc-
tured but the constraint functions are unstructured. Similar problems were previously used 
to evaluate DCOP algorithms by Kiekintveld et al. [40].

•	 Overlapped solar system problems The overlapped solar system is a realistic problem, 
inspired by the Constant Speed Propagation Delay Model implemented in the ns-3 sim-
ulator [36, 37]. The graph topology is inspired by scale-free networks. An initial set of 
5 agents are randomly selected to be the centers of the solar systems, and they are con-
nected. Each of these agents Ac

i
 is assigned two coordinates that are drawn from a continu-

ous uniform distribution: xc
i
∼ U(0, 1) and yc

i
∼ U(0, 1) . All other agents (i.e., stars in the 

solar systems) are randomly assigned to one of the solar systems. The index c represents 
the solar system to which the agent is assigned, and it is equal to the index of the center 
agent of the solar system (i.e., if Ac

i
 is the center of a solar system, then i = c ). The coor-

dinates for an assigned agent ( Ac
j
 where j ≠ c ) are drawn from a Normal distribution as 

follows: xc
j
∼ N(� = xc

i
, � = 0.05) and yc

j
∼ N(� = yc

i
, � = 0.05) based on the location 

of the center of the solar system that it was added to. The probability that two arbitrary 
agents Ai and Aj will be neighbors is defined by pij = (1 −

distanceij

maxDistance
)� where distanceij 

is the Euclidean distance between agents Ai and Aj , maxDistance is the Euclidean distance 
between agent Ai and the location of the farthest agent, and � expresses the dependency of 
the probability that both agents will be neighbors on their distance one from the other (in 
our experiments we used � = 3 ). For each pair of agents, a random probability pr ∈ [0, 1] 
was generated, and two agents were considered as neighbors if pr < pij . Costs between 
connected agents were selected uniformly between 100 and 200. While the structure of 
these problems is similar to scale-free networks, the addition of the geographic locations 
of nodes allows one to set the size of message delays and the probability of a message loss 
with respect to physical distance as specified below in Sect. 5.1.

In each experiment, we randomly generated 50 different problem instances. The results pre-
sented in the graphs are an average of those 50 runs. In order to demonstrate the convergence 
of the algorithms, we present the sum of costs of the constraints involved in the assignment 
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that would have been selected by each algorithm every 100k NCLOs. We also performed 
t-tests to evaluate the significance of differences between all presented results.

5.1 � Communication scenarios

For random graph problems, graph coloring problems, and scale-free network problems, 
we used four types of communication scenarios: (1)  Perfect communication; (2)  Mes-
sage latency selected from a uniform distribution tde ∼ U(0, 10k) NCLOs; (3)  Message 
loss determined by p ∼ U(0, 1) such that a message is not delivered if p < ple , where 
ple = [0.3, 0.5, 0.7, 0.9] is a parameter denoting the probability for message loss; and, 
(4) Scenarios including both message latency and message loss.

For overlapped solar system problems, we set tde and ple as follows: tde was drawn from 
a Poisson distribution d ∼ Pois(Γ ⋅ distanceij) , where Γ is a constant and distanceij is the 
distance between the locations of the agents Ai and Aj . This is also in contrast to the con-
stant speed propagation delay model implemented in ns-3, where the delays that were cal-
culated as a function of the distance between the geographic locations of the nodes were 
fixed and never changed [36, 37]. Regarding message loss, we define the probability ple 
that a message sent on edge e between agents Ai and Aj is delivered as follows: 
ple =

distanceij

maxDistanceij
 , where maxDistanceij is the distance of the furthest agent from Ai or Aj.
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5.2 � Impact of message delays

Figure  4a presents the quality of solutions produced by the different versions of Max-
sum when solving sparse random graph problems with density p1 = 0.1 . Similar to most 
of the figures presented in this section, Fig. 4a includes four graphs presenting results of 
the algorithms when performing synchronously, asynchronously, with message delays, and 
without. The versions of the algorithm presented are Max-sum, DMS with � = 0.9 , and 
DMS_SCFG. DMS_SCFG is the damped Max-sum (DMS) algorithm with split constraint 
factor graphs (SCFGs). We used the 0.4−0.6 version of DMS_SCFG, which was found to 
perform best by Cohen et al. [3].

Asy_Max-sum (with and without message delays) traversed solutions with higher 
costs on average compared to Syn_Max-sum. The results of the different runs of the 
algorithms were scattered and, thus, the differences from the synchronous versions were 
not found to be statistically significant. Asy_DMS, on the other hand, performed simi-
larly to Syn_DMS, with and without message delays (as expected following Lemma 1, 
its corollary, and Proposition 2).

Another observation is that all versions of DMS_SCFG converged very fast com-
pared to the other versions of the algorithm. Figure 4b provides a closer look that allows 
one to better compare their convergence rates. Both the synchronous and asynchronous 
versions converge at the same rate in environments that do not include message delays. 
Clearly, message delays affect the synchronous version more than the asynchronous ver-
sion of the algorithm. Nevertheless, in all execution modes, the algorithm converges 
very fast to solutions with the same quality. The algorithm’s fast convergence has been 
reported for the synchronous version [3]. The fact that the asynchronous version main-
tains the properties of the algorithm can be explained by Lemma 1, its corollary, and 
Proposition  2, that is, the damping of messages results in an effective GBCT of the 
asynchronous version that is similar to the effective BCT of the synchronous version.
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Figure 5a presents results for the same algorithms solving dense random graph prob-
lems with density p1 = 0.6 . While the results seem similar to the results presented in 
Fig. 4a, there were smaller differences between the Max-sum versions. On these prob-
lems, the DMS versions in scenarios that did not include message delays found high 
quality (lower cost) solutions faster and converged.

Figure 5b presents the results of the algorithms solving graph coloring problems. It 
is apparent that the exploration performed by Max-sum and DMS is less effective on 
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these problems and, thus, the advantage of DMS_SCFG is prominent. Moreover, in the 
presence of message delays, standard Max-sum improves its performance. We assume 
that delays break the very structured execution on this type of problems and has a posi-
tive exploration effect. This effect is diminished when damping is used, for reasons and 
properties similar to the ones established in Sect. 4.

The results of the algorithms when solving scale-free network problems and overlap-
ping solar system problems are presented in Fig. 6. They are similar to the results presented 
in Fig.  5a. The differences between the performance of Asy_Max-sum and Syn_Max-
sum were found to be significant when solving scale-free network problems, regardless 
of whether the scenarios solved included message delays. No significant differences were 
found between the synchronous and asynchronous versions when solving overlapped solar 
system problems. It seems that, for these problems, the structure of the problem affects the 
algorithms behavior more than the pattern of the message latency.

In our second set of experiments, we evaluated the importance of the selection of the 
damping factor in DMS, with respect to the differences in the performance of the different 
modes of execution (synchronous and asynchronous) in scenarios with different latency 
patterns. Figure 7 presents the results of the algorithm with three different values of the 
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damping parameter (i.e., � = 0.5 , � = 0.7 and � = 0.9 ) solving random uniform problems 
that are (a) sparse and (b) dense. As expected, following the properties established in 
Lemma 1 and its corollary, asynchronous execution affects the performance of all versions 
of DMS when it does not converge. However, it is apparent that the version with � = 0.9 
is less affected by message delays in the asynchronous execution (as expected). Similar 
results were obtained for all types of problems and were omitted to avoid redundancy.

In order to compare the effect that message delays have on the agents performing syn-
chronously and asynchronously, we measured the average number of NCLOs in which 
agents were idle in each mode of execution of the algorithm. The results are presented in 
Fig. 8. It includes, for each algorithm, in each mode of execution, the average ratio of the 
number of NCLOs in which the agents were idle (i.e., waiting for messages to arrive) and 
the total number of NCLOs the algorithm executed. For all problem types, it is apparent 
that the agents spent less time idle when operating asynchronously compared to when they 
operate synchronously. This difference between the performance of the two versions was 
most apparent in DMS_SCFG. Nevertheless, for this version of the algorithm, while there 
is a difference in the time the agents spent idle, the quality of solutions was the most simi-
lar between the asynchronous and the synchronous versions among all algorithms, as well 
as their convergence times.

It is interesting to note that when the synchronous version of the algorithm is perform-
ing and messages are not delayed, there is still a significant portion of time that the agents 
spend idle. This seems to be the effect of having nodes of the factor graph with different 
number of neighbors. The amount of computation that agents perform in each iteration 
corresponds to this number, which also affects the number of function-nodes assigned to 
them. It is most apparent in problems where there is a large difference between the number 
of neighbors of different nodes in the graph (e.g., in scale-free network problems). In such 
problems, more idle time is reported. Specifically in the case of SCFGs, the number of 
neighbors is increased by the algorithm (following the initial split) and, thus, the difference 
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between the computation performed by different agents grows and with it the time they 
spend idle.

5.3 � Impact of message loss

In this subsection, we present results that demonstrate the resilience of the versions of 
Max-sum to message loss. Each experiment included the three versions of the algorithm 
(i.e., Max-sum, DMS, and DMS_SCFG (parameters set as in the previous section)) solving 
the same problems in synchronous execution, asynchronous execution, and asynchronous 
execution with different probability for message loss.

Figure 9a and b present the results for sparse random graph problems with density 
p1 = 0.1 and dense random graph problems with density p1 = 0.6 , respectively. The 
results demonstrate that the largest differences between the performance of Max-sum 
and DMS are for the asynchronous version with no message loss. When the probability 
for message loss increases, the performance of Max-sum improves, while the perfor-
mance of DMS deteriorates. For standard Max-sum, message loss slows the effect of 
the exponential explosion of the information sent in the bottom layers of the GBCT. 
DMS, on the other hand, suffers from message loss since as long as new messages from 
neighbors are not received, agents use in their calculation the last messages that were 
not received, while new messages that were received arrive instantly. Thus, there is a 
large chance for GBCTs with different heights (i.e., agents process information with dif-
ferent levels of damping). Finally, the performance of DMS_SCFG is consistent for all 
levels of message loss. This algorithm does not only produce the best results but it also 
shows high robustness to imperfect communication. On the dense problems, it is clear 
that the DMS version converges to better results than DMS_SCFG when the probability 
for message loss is low. For larger probabilities, as in the case of the sparse problems, 
DMS deteriorates.
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Fig. 10   Solution quality as a function of NCLOs of Max-sum versions, with and without message loss, 
solving a graph coloring problems and b scale-free network problems
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Figure 10a and b present the results of the three versions of the algorithms when solving 
graph coloring problems and scale-free network problems, respectively, in environments in 
which there are different probabilities for message loss. It is clear that, in the case of graph 
coloring problems, the effect of message loss on both Max-sum and DMS is positive (in 
general). Except for the highest probability of message loss, on which DMS suffers some 
deterioration, both algorithms perform similarly when messages are lost. It is also apparent 
that they reach their best performance very fast and unlike the results on the other bench-
marks, do not show further improvement or deterioration throughout the algorithm’s run. 
On scale-free network problems on the other hand, the algorithms perform more similar to 
their performance on random uniform problems. However, the effect of message loss on 
DMS when solving these problems is less apparent.

The results of the algorithms on the solar system problems were similar to the results on 
scale-free network problems, and we omit them in order to avoid redundancy.

5.4 � Impact of both message delay and loss

This section includes results of the three versions of the algorithm, solving problems in 
environments that include both message delay and possible message loss. Figure 11a and b 
present results for sparse uniform random problems solved by Max-sum and DMS, respec-
tively. The different colored lines represent different probabilities for message loss, while 
each sub-graph represents a different upper bound for delays. Clearly, the magnitude of 
delays did not affect both algorithms, while the loss of messages had a reverse effect (as 
observed in the Fig. 9), improving the performance of Max-sum and deteriorating DMS’s 
performance.

Figure 12 presents the results of DMS_SCFG solving sparse random problems in these 
mixed communication scenarios. Again, the robustness of this algorithm to imperfect 

Fig. 13   Solution quality as func-
tion of the number of messages 
received by agents (logarithmic 
scale), of Max-sum solving 
sparse random graph problems 
with p

1
= 0.1 , in environments 

with different communication 
patterns
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communication is apparent. The results for the algorithms solving the other problem types 
in mixed communication scenarios were similar, and we omit them to avoid redundancy.

In our last set of experiments, we evaluated the solution quality, as a function of the 
number of messages received by agents, regardless of the time the messages were delayed 
or the portion of messages that were lost. Figure 13 presents the results of Max-sum when 
solving sparse random uniform problems in scenarios with different communication pat-
terns. It is clear from the presented graphs in the figure that message delays have a very 
minor effect on the performance of Max-sum. On the other hand, message loss has a major 
effect, and as we observed in the results presented above, a smaller probability for a mes-
sage to arrive triggers higher quality.

Figure 14a presents the results of DMS in the same scenarios. In contrast to Max-sum, 
all versions of DMS produce solutions with similar quality when enough messages arrive. 
This is consistent with Lemma 1 and its corollary, in which we established the relationship 
between the quality of the solution of Asy_DMS and the structure of its effective GBCT. 
Figure 14b presents another indication for this property for DMS_SCFG. Once again we 
omit the similar results for the other benchmarks to avoid redundancy.

5.5 � Discussion

The advantage of DMS over standard Max-sum when solving graphs with multiple cycles 
has been reported empirically [3] and explained theoretically [15]. In Max-sum, costs that 
are aggregated in the beginning of the run are duplicated in every node of the graph that 
has more than two neighbors and, thus, they are taken into consideration an exponential 
number of times in the calculation of beliefs and in the assignment selection. Damping 
reduces the weight of these costs in the belief calculation until it becomes negligible. A 
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similar phenomenon reduces the differences between the performance of Syn_DMS and 
Asy_DMS. As we established in the corollary of Lemma 1, when using a large enough 
damping factor, the effect of GBCTs with different heights is eliminated in DMS and, thus, 
after enough NCLOs are performed, the effective GBCTs of the beliefs in each message 
have the same number of nodes. The results comparing DMS with different damping fac-
tors demonstrate the need to use a large damping factor in order to achieve robustness to 
message delays. This empirical evidence strengthens the property established by Lemma 1 
and its corollary, that if the damping factor used is not large enough, then the effect of 
the lower layers of the GBCTs, which may have different structure and a different num-
ber of nodes, on the generation of beliefs by the nodes is not eliminated. Thus, message 
delays have a greater effect on the algorithm’s performance when the damping factor used 
is small.

When examining the algorithms in scenarios where there is a positive probability for 
message loss, there is an opposite effect on Asy_Max-sum and Asy_DMS. Message loss 
improves the performance of the former algorithm, but delays the convergence to a high 
quality solution of the latter algorithm, as we described above. Finally, Asy_DMS_SCFG 
maintains its fast convergence properties and high quality of solutions from its synchro-
nous version. It is also robust to message latency and to message loss.

6 � Conclusions

In this paper, we filled the gap in the Max-sum literature on the differences between the 
synchronous and asynchronous executions of the algorithm in distributed environments 
and their impact. Our theoretical analyses revealed that, unlike its synchronous counter-
part, the asynchronous version of Max-sum in the presence of message latency can cause 
the propagation of inconsistent beliefs, resulting in the loss of guaranteed properties (Prop-
osition 1). However, not all is lost as one can use damping to minimize this effect and, 
subsequently, ensure that when asynchronous DMS finds a consistent minimal route, it will 
converge, as does the synchronous version (Proposition 2). Our experimental results show 
that when the algorithm is further optimized through split constraint factor graphs, it con-
verges very fast to high-quality solutions even in the presence of message delays and when 
most of the messages are lost. Moreover, our experimental results indicate that the quality 
of the solutions produced by the different versions of DMS depend on the amount of infor-
mation (number of messages) received by the agents. These results are consistent with our 
theoretical results that indicate that enough information needs to be received in order for 
the effective GBCTs of the beliefs to be complete and, thus, similar.

Taken together, these results extend significantly our understanding of Max-sum in dis-
tributed environments with more realistic communication assumptions and enable a more 
effective use of Max-sum by real-world practitioners.
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