
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:40
https://doi.org/10.1007/s10458-023-09621-w

1 3

Effect of asynchronous execution and imperfect
communication on max‑sum belief propagation

Roie Zivan1 · Ben Rachmut1 · Omer Perry1 · William Yeoh2

Accepted: 27 July 2023
© Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Max-sum is a version of belief propagation that was adapted for solving distributed con-
straint optimization problems. It has been studied theoretically and empirically, extended
to versions that improve solution quality and converge rapidly, and is applicable to multiple
distributed applications. The algorithm was presented both as synchronous and asynchro-
nous algorithms. However, neither the differences in the performance of the two execution
versions nor the implications of imperfect communication (i.e., massage delay and mes-
sage loss) on the two versions have been investigated to the best of our knowledge. We con-
tribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differ-
ences between the two execution versions of the algorithm, focusing on the construction of
beliefs; (2) Empirically evaluating the differences between the solutions generated by the
two versions of the algorithm, with and without message delay or loss; and (3) Establishing
both theoretically and empirically the positive effect of damping on reducing the differ-
ences between the two versions. Our results indicate that, in contrast to recent published
results indicating that message latency has a drastic (positive) effect on the performance
of distributed local search algorithms, the effect of imperfect communication on Damped
Max-sum (DMS) is minor. The version of Max-sum that includes both damping and split-
ting of function nodes converges to high quality solutions very fast, even when a large
percentage of the messages sent by agents do not arrive at their destinations. Moreover, the
quality of solutions in the different versions of DMS is dependent of the number of mes-
sages that were received by the agents, regardless of the amount of time they were delayed
or if these messages are only a portion of the total number of messages that was sent by the
agents.

Keywords  Belief propagation · Distributed constraints · Distributed problem solving

1  Introduction

Recent advances in computation and communication have resulted in realistic distributed
applications in which humans and technology interact and aim to optimize mutual goals
(e.g., IoT applications). A promising multi-agent approach to solve these types of problems
is to model them as distributed constraint optimization problems (DCOPs), where decision

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09621-w&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 2 of 28

makers are modeled as agents that assign values to their variables. The goal in a DCOP is
to optimize a global objective in a decentralized manner. Unfortunately, the communica-
tion assumptions of the DCOP model are overly simplistic and often unrealistic: (1) Mes-
sages are never lost; (2) Messages have very small and bounded delays; and (3) Messages
arrive in the order that they were sent. These assumptions do not reflect real-world charac-
teristics, where messages may be disproportionately delayed, or dropped, due to congestion
and bandwidth limitations.

Recently, a study that investigated the effect of message latency on common DCOP local
search algorithms (e.g., MGM and DSA) has shown that message delays have a dramatic
positive effect on the performance of the asynchronous versions of these algorithms [1].
Specifically, message latency generates an exploration effect, which significantly improves
the quality of the solutions found. Nevertheless, this study did not investigate the effect on
distributed incomplete inference algorithms (e.g., Max-sum), even though they have been
shown to be very successful [2, 3].

Max-sum is a version of the belief propagation algorithm [4, 5] that is used to solve
DCOPs. It has been used for solving multi-agent optimization problems in applications
such as sensor networks [6, 7], task allocation for rescue teams in disaster areas [8], and
smart homes [9]. As with most belief propagation algorithms, Max-sum is known to con-
verge to an optimal solution when solving problems represented by acyclic graphs. On
problems represented by cyclic graphs, the beliefs may fail to converge, and the resulting
assignments that are considered optimal under those beliefs may be of low quality [10, 11].
This occurs because the cyclic structure results in the propagation of duplicated informa-
tion, leading to computation of inaccurate and inconsistent information [4].

To decrease the effect of duplicated information propagation, damping can be used.
It balances the weight of the new calculation performed in each iteration and the weight
of calculations performed in previous iterations, resulting in an increased probability for
convergence [3]. Recently, splitting nodes in the factor graph on which belief propagation
operates has been shown to be an effective method for accelerating the convergence of the
algorithm when combined with damping [3, 12].

Max-sum has been presented both as an asynchronous algorithm and as a synchronous
algorithm [10, 11, 13]. In the synchronous version, agents perform in iterations. In each
iteration, agents send messages to all their neighbors and wait for the messages sent to
them from all their neighbors to arrive before moving to the next iteration. In the asynchro-
nous version, agents react to messages as and when they arrive.

To best of our knowledge, the implications of this difference in the execution of the
algorithm on its performance have not been studied to date. Moreover, when message loss
is considered, the synchronous version is not applicable since an agent may remain idle
while it waits for the arrival of a message that was lost. While message latency does not
affect the actions that agents perform (only delays them) in the synchronous version, intui-
tively, it is expected to have a major effect on the performance of the asynchronous version.
The reason is that the beliefs included in messages are used by agents in the construction
of beliefs that they propagate to others and in their assignment selection. In asynchronous
execution, belief construction and assignment selection might be performed while consid-
ering imbalanced and inconsistent information.

In this paper, we make the following contributions1:

1  This work is an extension of our published paper in the International Conference on Principles and Prac-
tice of Constraint Programming (CP) 2021 [14].

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 3 of 28  40

1.	 We investigate the differences in the properties of the two execution versions of Max-
sum, synchronous and asynchronous. More specifically, using backtrack cost trees
(BCTs) [15], we investigate the possible differences between the propagated beliefs in
the two versions of Max-sum. Since BCTs, as originally defined [15], are applicable
for the synchronous version only, in order to perform the analysis, we define a general
BCT (GBCT) structure that is applicable for both modes of execution.

2.	 We investigate the effect of damping on asynchronous Max-sum. While there are clear
indications (both empirical and theoretical) that damping improves the performance of
the synchronous version of Max-sum [3, 15], to best of our knowledge, the effect of
damping on the asynchronous version of Max-sum has not been studied prior to our
study. We analyze this effect both theoretically and empirically. Both indicate that damp-
ing reduces the differences between synchronous and asynchronous execution.

3.	 We investigate the performance of the different versions of the algorithm in the presence
of message latency and message loss. While the beliefs propagated and the computa-
tion that agents perform are not affected by message latency in the synchronous version
(only delayed), this is not true for the asynchronous version. Once again, our empirical
results reveal that damping reduces the differences. Moreover, the version of Max-sum
proposed by Cohen et al. [3] that includes both damping and splitting maintains its fast
convergence properties and high quality of solutions, even in asynchronous execution
with message delays and when many messages are lost.

Our results include experiments that reveal that the quality of solutions produced by the
different versions of DMS is mainly determined by the number of messages received by the
agents, regardless of the time they were delayed or the number of messages that were sent.
This finding is consistent with our theoretical results.

The paper is constructed as follows: We start by presenting related work in Sect. 2. Sec-
tion 3 details the relevant background. Our theoretical study on the effect of asynchronous
execution of the Max-sum algorithm is presented in Sect. 4 followed by our empirical
study in Sect. 5. Finally, our conclusions are presented in Sect. 6.

2 � Related work

Belief propagation was first introduced by Pearl [4] and was intensively studied before it
was adopted by the multi-agent optimization community [16–19]. The version of belief
propagation that was adapted to solve DCOPs, the Max-sum algorithm, was proposed by
Farinelli et al. [10]. In that paper, the algorithm was described in its asynchronous version.
Early on, researchers noticed that when the algorithm fails to converge, it performs poorly
and, thus, they suggested versions that guaranteed convergence [20, 21].

Rogers et al. [20] proposed a manipulation of the factor graph that the algorithm uses
that will guarantee its convergence. The algorithm starts by eliminating edges from the
factor graph until a spanning tree of the original factor graph remains. Then the Max-sum
algorithm is used in order to produce the optimal solution to the spanning tree factor graph.
By accumulating the maximal additional cost of every removed edge, it is possible to cal-
culate a bound on the difference between the cost of the optimal solution for the spanning
tree and the optimal solution for the original factor graph. Hence, this algorithm is known
as Bounded Max-sum. Later studies proposed methods for selecting the spanning tree that
improve the bound [22, 23]. Unfortunately, while the algorithm offered a bound from the

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 4 of 28

optimum, the cost of the solution it proposed was insignificantly better than the non-con-
verging standard version of Max-sum [11].

Zivan and Peled [21] proposed a different manipulation on the factor graph to trigger
convergence. They converted the factor graph to a directed acyclic graph by selecting an
order on all nodes of the graph and allowing messages to be sent only in this order. This
algorithm is guaranteed to converge in linear time. However, in order to consider all con-
straints, the order was reversed. The best outcome was achieved by performing a small
number of phases in alternating directions, and then performing a number of phases that
include value propagation. Chen et al. [2] later extended this algorithm to versions that bal-
ance between exploration and exploitation.

Later, Cohen et al. [3] introduced a version of the algorithm that included damping, a
method for encouraging convergence that was used in other versions of belief propaga-
tion [16], and splitting of function nodes, a method that was theoretically investigated by
Ruozzi and Tatikonda [12]. This version converged very fast to high quality solutions.

Recently, a number of papers addressed the main limitation of Max-sum, which is the
exponential calculation required by function-nodes in order to produce the messages they
send to neighboring variable nodes [13, 24]. While these proposed methods evidently
reduce the computation effort required for producing messages by function-nodes, the pro-
cess is still exponential in the arity of the constraints. Thus, as in prior work [3, 11], we
focus on binary DCOPs where Max-sum performs efficiently in this work as well.

Max-sum has been used to solve asymmetric DCOPs [25] by having each agent involved
in a constraint hold a function-node representing its personal costs for that constraint. Thus,
for each binary constraint, there were two representing function-nodes. The study showed
that, in contrast to other DCOP algorithms, Max-sum versions maintain the quality of the
solutions that they produce when applied to asymmetric problems. The main difference
with respect to the splitting method [3] is that, the use of more than one function-node for
a single constraint was intended to represent the given natural structure of an asymmetric
problem [25]. In contrast, in the work by Cohen et al. [3] (and in this study), it was used as
an algorithmic method to accelerate convergence.

3 � Background

In this section we provide background on graphical models, distributed constraint opti-
mization problems (DCOPs), the DCOP versions of belief propagation—Max-sum and
its variants—and backtrack cost tree (BCT)—the tool we use to analyze the algorithms’
behavior. While the Max-sum variants that we discuss are actually solving a min-sum
problem [12], we will still refer to them as “Max-sum” since this name is commonly used
in the DCOP literature [10, 11, 26].

3.1 � Graphical models

Graphical models such as Bayesian networks or constraint networks are a widely used rep-
resentation framework for reasoning and solving optimization problems. The graph struc-
ture is used to capture dependencies between variables [27]. Our work extends the theory
established by Weiss [17] that considered the Maximum a posteriori (MAP) assignment,
which is solved using the Max-product version of belief propagation.

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 5 of 28  40

The relation between MAP and constraint optimization is well established [10, 27, 28]
and, thus, results that consider Max-product for MAP apply to Max/Min-sum for solving
constraint optimization problems, as well as the other way around [12]. Therefore, without
loss of generality, we will focus on constraint optimization in this paper. Moreover, we will
consider the distributed version of the problem since it is a natural representation for mes-
sage passing algorithms. Nevertheless, our results apply to any version of problem repre-
sented by a graphical model and solved by distributed belief propagation.

3.2 � Distributed constraint optimization problems

A distributed constraint optimization problem (DCOP) is defined by a tuple ⟨A,X,D,R⟩ ,
where:

•	 A is a finite set of agents {A1,A2,… ,An}.
•	 X is a finite set of variables {X1,X2,… ,Xm} , where each variable is held by a single

agent and an agent may hold more than one variable.
•	 D is a set of domains {D1,D2,… ,Dm} , where each domain Di contains the finite set of

values that can be assigned to variable Xi . We denote an assignment of value x ∈ Di to
Xi by an ordered pair ⟨Xi, x⟩.

•	 R is a set of relations (constraints), where each constraint Rj ∈ R defines a non-nega-
tive cost for every possible value combination of a set of variables, and is of the form
Rj ∶ Dj1

× Dj2
×… × Djk

→ ℝ
+ ∪ {0}.

A binary constraint refers to exactly two variables and is of the form
Rij ∶ Di × Dj → ℝ

+ ∪ {0}.2 For each binary constraint Rij , there is a corresponding cost
table Tij with dimensions |Di| × |Dj| in which the cost in every entry exy is the cost incurred
when x is assigned to Xi and y is assigned to Xj . A binary DCOP is a DCOP in which all
constraints are binary. A partial assignment is a set of value assignments to variables, in
which each variable appears at most once. vars(PA) is the set of all variables that appear
in partial assignment PA (i.e., vars(PA) = {Xi ∣ ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA} ). A constraint
Rj ∈ R of the form Rj ∶ Dj1

× Dj2
×… × Djk

→ ℝ
+ ∪ {0} is applicable to PA if each of

the variables Xj1
,Xj2

,… ,Xjk
 is included in vars(PA). The cost of a partial assignment PA

is the sum of all applicable constraints to PA over the value assignments in PA. A complete
assignment (or a solution) is a partial assignment that includes all the DCOP’s variables
(i.e., vars(PA) = X  ). An optimal solution is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one vari-
able (i.e., n = m ) and we concentrate on binary DCOPs. These assumptions are common in
the DCOP literature [29, 30]. In addition to the standard motivation for focusing on binary
DCOPs, in the case of Max-sum, it is essential since the runtime complexity of each itera-
tion of Max-sum is exponential in the arity of the constraints.

2  We say that a variable is involved in a constraint if it is one of the variables the constraint refers to.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 6 of 28

3.3 � The max‑sum algorithm

Max-sum operates on a factor graph, which is a bipartite graph in which the nodes
represent variables and constraints [31]. Each variable-node representing a variable of
the original DCOP is connected to all function-nodes representing constraints that it is
involved in. Similarly, a function-node is connected to all variable-nodes representing
variables in the original DCOP that are involved in it. Variable-nodes and function-
nodes are considered “agents” in Max-sum (i.e., they can send and receive messages
and can perform computation).

A message sent to or from variable-node X (for simplicity, we use the same notation
for a variable and the variable-node representing it) is a vector of size |DX| , including a
cost for each value in DX . These costs are also called beliefs. Before the first iteration,
all nodes assume that all messages they previously received (in iteration 0) are vectors
of zeros. A message sent from a variable-node X to a function-node F in iteration k ≥ 1
is formalized as follows:

where Qk
X→F

 is the message that variable-node X intends to send to function-node F in iter-
ation k, FX is the set of function-node neighbors of variable-node X, and Rk−1

F�
→X

 is the mes-
sage sent to variable-node X by function-node F′ in iteration k − 1 . � is a constant that is
reduced from all beliefs included in the message (i.e., for each x ∈ DX ) in order to prevent
the costs carried by messages throughout the run of the algorithm from growing arbitrarily
large.

A message Rk
F→X

 sent from a function-node F to a variable-node X in iteration k
includes for each value x ∈ DX:

where PA−X is a possible combination of value assignments to variables involved in F
not including X. The term cost(⟨X, x⟩,PA−X) represents the cost of a partial assignment
a = {⟨X, x⟩,PA−X} , which is:

where f(a) is the original cost in the constraint represented by F for the partial assignment
a, XF is the set of variable-node neighbors of F, and (Qk−1

X�
→F

)x� is the cost that was received
in the message sent from variable-node X′ in iteration k − 1 , for the value x′ that is assigned
to X′ in a. X selects its value assignment x̂ ∈ DX following iteration k as follows:

In the synchronous version (Syn_Max-sum), in each iteration, an agent waits to receive all
messages sent to it in the previous iteration before performing computation and generating
the messages to be sent in the current iteration [11]. In the asynchronous version (Asy_
Max-sum), agents react to messages they receive. Whenever a node receives a message, it
performs computation and sends out messages to its neighbors, taking into consideration

(1)Qk
X→F

=
∑

F�∈FX ,F
�≠F

Rk−1
F�
→X

− �

(2)min
PA−X

cost(⟨X, x⟩,PA−X)

(3)f (a) +
�

X�∈XF ,X
�≠X,⟨X�,x�⟩∈a

(Qk−1
X�
→F

)x�

(4)x̂ = argmin
x∈DX

∑

F∈FX

(Rk
F→X

)x

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 7 of 28  40

the last message received from each of its neighbors [10]. In both versions, the logic for the
actions of the agents are identical, only the trigger for performing those actions is different.

3.3.1 � Damped max‑sum

Damped Max-sum (DMS) has an additional feature, which is the damping of the propa-
gated beliefs. In order to add damping to Max-sum, a parameter � ∈ [0, 1) is used. Before
sending a message in iteration k, a node in the factor graph (whether it is a variable-node or
a function-node) performs calculations as in standard Max-sum. We use m̂k

i→j
 to denote the

result of the calculation made by node Ni for the content of a message intended to be sent
from Ni to node Nj in iteration k and mk−1

i→j
 to denote the message sent by Ni to Nj at iteration

k − 1 . Notice that mk
i→j

 can be either a Q message or a R message. The message sent by Ni
to Nj at iteration k is calculated as follows:

Thus, � expresses the weight given to previously performed calculations with respect to
the most recent calculation performed. Moreover, when � = 0 the resulting algorithm is
standard Max-sum.

We use Syn_DMS and Asy_DMS to denote the synchronous and asynchronous versions
of DMS, respectively, in this paper.

3.3.2 � Asynchronous execution

All the definitions used for describing Max-sum (and DMS) above use the iteration number
k. It was used to describe how a message is generated, using the information received by
the factor graph node in the previous iteration ( k − 1 ). In asynchronous execution, their
are no iterations, and agents perform computation steps whenever they receive messages.
Thus, in asynchronous execution, the information that a node Ni uses to generate a message
at time t is the information included in the last message received from each of its neigh-
bors prior to t, regardless of when it was sent by the neighbors. If no message has been
received from a particular neighbor yet, Ni uses a vector of zeros in its computation for that
neighbor.

Notice, that in the presence of message delays, a node Ni may receive messages from
its neighbor not in the order they were sent. This is true for both the synchronous and the
asynchronous versions of the algorithm. Nevertheless, the agents use the messages in the
order in which they were received. In order to avoid this phenomenon, we implemented a
time-stamp method that allows the agents receiving messages to consider the information
they include in the order that they were sent. However, the results were not significantly
different from the results obtained when this method was not used. Thus, we do not report
these results in our empirical study.

3.3.3 � Max‑sum with split constraint factor graphs

When Max-sum is applied to an asymmetric problem, the representing factor graph has
each (binary) constraint represented by two function-nodes, one for each part of the

(5)mk
i→j

= �mk−1
i→j

+ (1 − �)m̂k
i→j

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 8 of 28

constraint held by one of the involved agents. Each function-node is connected to both
variable-nodes representing the variables involved in the constraint [32]. Figure 1 presents
two equivalent factor graphs that include two variable-nodes, each with two values in its
domain, and a single binary constraint. On the left, the factor graph represents a (symmet-
ric) DCOP including a single constraint between variables X1 and X2 ; hence, it includes a
single function node representing this constraint. On the right, the equivalent factor graph
representing the equivalent asymmetric DCOP is depicted. It includes two function-nodes
representing the parts of the constraint held by the two agents involved in the asymmetric
constraint. Thus, the cost table in each function-node includes the asymmetric costs that
the agent holding this function-node incurs. In this example, function-node F′

12
 is held by

agent A1 , while F′
21

 is held by A2 . The factor graphs are equivalent since the sum of the two
cost tables held by the function-nodes representing the constraints in the factor graph on
the right, is equal to the cost table of the single function-node representing this constraint
in the factor graph on the left (see [25] for details). Such split constraint factor graphs
(SCFGs) can be used as an enhancement method for Max-sum [3, 12]. This is achieved
by splitting each constraint that was represented by a single function-node in the original
factor graph into two function-nodes. The SCFG is equivalent to the original factor graph
if the sum of the cost tables of the two function-nodes representing each constraint in the
SCFG is equal to the cost table of the single function-node representing the same con-
straint in the original factor graph. By tuning the similarity between the two function-nodes
representing the same constraint one can determine the level of asymmetry in the SCFG.
The use of symmetric SCFGs was shown to trigger very fast convergence to high qual-
ity solutions. However, generating mild asymmetry, postpones convergence and generates
some exploration, which results in improved solution quality [3].

3.3.4 � Non‑concurrent logic operations

In order to evaluate the runtime performance of distributed algorithms performing in a
distributed environment, independent of the implementation details, there is a need to
establish which of the operations performed by agents could not have been performed
concurrently. Thus, the runtime performance of the algorithm is the longest non-con-
current sequence of operations that the algorithm performed. This method was first

Fig. 1   An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right)

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 9 of 28  40

proposed for the evaluation of asynchronous distributed algorithms for solving distrib-
uted constraint satisfaction problems (DisCSPs) [33]. As the basic logic operations of
DisCSP algorithms are constraint checks, researchers have measured their runtimes in
terms of non-concurrent constraint checks (NCCCs) [33]. To better compare different
logic operations in other classes of algorithms, researchers generalized NCCCs to non-
concurrent logic operations (NCLOs) [34]. We adopt NCLOs in this study.

3.4 � Backtrack cost trees

For analyzing the behavior of Max-sum on factor graphs with an arbitrary (finite) num-
ber of cycles, Zivan et al. [15] proposed the use of a backtrack cost tree (BCT). It
allows one to trace, for each belief, the entries in the cost tables held by function-nodes
that were used to compose this belief. In other words, the components of the assign-
ment’s cost. Their analysis included insights regarding the construction of beliefs from
costs incurred by constraints. Thus, for every pair of constrained variables Xi and Xj ,
for each x ∈ Di , x� ∈ Dj , the cost incurred by the constraint for assigning x to Xi and x′
to Xj was denoted as R(Xi = x,Xj = x�) . Formally, a BCT is defined as follows:

Definition 1  (Backtrack Cost Tree (BCT)) A BCT is defined for a belief that appears either
in a message sent from variable Xi at time t to a function node connecting it to a variable
Xj or in a message sent from that function node to variable Xi . The belief is on the cost of
assigning some value x ∈ Di to variable Xi . Without loss of generality, we will elaborate on
the first among these two and denote it as BCTt

i=x→j
.

The belief, as constructed by the Max-sum algorithm, is a sum of various components
and the tree is composed from them. At the root is the decision to assign some value to a
variable (e.g., assigning some x ∈ Di to Xi ) and the directed edges from its children in the
tree include the beliefs that were summed in order to generate the cost (the belief) for this
assignment. These edges lead to nodes representing the neighboring nodes from which Xi
received messages in time t − 1 . Each of those nodes is connected to the nodes from which
they received messages at time t − 2 , with the edges containing the beliefs that passed to it
and their sum ended up in its message. The tree leaves are all at time 0 (see Fig. 2b).

For a single-cycle factor graph, the BCT for every belief is a chain. Factor graphs
with multiple cycles include variable-nodes with more than two neighbors and, thus,
the BCTs of their beliefs include nodes with multiple children.

A BCT starts from an end point (e.g., the root of the BCT as presented in Fig. 2b),
which is the belief (cost) of assigning to Xi some value x from its domain Di , as sent
to a neighboring node (in our example it is the assignment of x ∈ D1 to X1 . The values
from which that belief was calculated can then be backtracked to the messages and
costs due to all the individual constraints that were summed up to create that belief. An
example of such a tree for a belief generated when Max-sum solves the factor-graph
depicted in Fig. 2a is depicted in Fig. 2b.

For each BCT, there is an implied assignment tree that consists of the value assign-
ments that the variables at each time-point of the tree would need to be assigned in
order to incur the costs included in the BCT. The value assignment selected by a vari-
able at time t is the one with the minimal sum of beliefs sent to the corresponding vari-
able-node at iteration t − 1 . The tree for this minimal sum of beliefs will be denoted by

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 10 of 28

BCTt
i
 , as it does not depend on any specific belief that appears in a message to another

variable.

3.5 � Convergence properties

Belief propagation converges in linear time to an optimal solution when the problem’s
corresponding factor graph is acyclic [4]. For a single-cycle factor graph, we know that
if belief propagation converges, then it is to an optimal solution [17, 18]. Moreover,
when the algorithm does not converge, it periodically changes its set of assignments. In
order to explain this behavior, Forney et al. [18] show the similarity in the performance
of the algorithm on a cycle to its performance on a chain, whose nodes are similar to the
nodes in the cycle, but whose length is equal to the number of iterations performed by
the algorithm. One can consider a sequence of messages starting at the first node of the
chain and heading towards its other end. Each message carries beliefs accumulated from
costs added by function-nodes. Each function-node adds a cost to each belief, which is
the constraint value of a pair of value assignments to its neighboring variable-nodes.
Each such sequence of cost accumulation (route) must at some point become periodic,
and the minimal belief would be generated by the minimal periodic route. If this peri-
odic route is consistent (i.e., the set of assignments implied by the costs contain a single
value assignment for each variable), then the algorithm converges. Otherwise, it does
not.

Recently, these insights were generalized such that similar statements can be made
when the algorithm is solving factor graphs with multiple cycles. Specifically (using

Fig. 2   a A lemniscate factor-graph. b An example of a BCT for a belief in the message sent from X
1
 to the

function-node F
13

 at time t = 6 in the lemniscate depicted on the left hand side

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 11 of 28  40

BCTs), Zivan et al. [15] proved that, as in the single cycle case, on every finite factor
graph, Max-sum at some point in time starts to repeatedly follow a path that minimizes
its beliefs.

4 � Effect of asynchronous execution

In order to analyze the differences in performance of the synchronous version of Max-sum
(Syn_Max-sum) and the asynchronous version of Max-sum (Asy_Max-sum), one must
investigate the differences in the structure of the BCTs of beliefs sent by the algorithms’
nodes. However, in Sect. 3.4, BCTs were defined with respect to synchronous execution,
referring to messages sent in a specific time. Thus, there is a need for a more general defi-
nition that will apply to both synchronous and asynchronous execution, as well as environ-
ments that include message latency and message loss.

Definition 2  (General BCT (GBCT)) A GBCT is defined for a belief that appears either
in a message sent from variable Xi to a function node connecting it to a variable Xj or in a
message sent from that function node to variable Xi . The belief is on the cost of assigning
some value x ∈ Di to variable Xi . Without loss of generality (as we did above), we will
elaborate on the first among these two and denote it as GBCTt

i=x→j
.

As in a standard BCT, at the root of a GBCT is the decision to assign some value to
a variable (e.g., assigning some x ∈ Di to Xi ) and the directed edges from its children in
the tree include the beliefs that were sent to Xi , which were summed in order to generate
the cost (the belief) for this assignment. Similar to a BCT, the definition is recursive and
applies to every cost sent by a node in the tree that was summed in order to generate the
belief at the root of the tree. For every node Xj , that sent a message with a belief x� ∈ Dj ,
the cost on an edge connecting it to a child is the belief carried by the last message received
by Xj from that child, before Xj sent the message with the belief for x′.

In contrast to the definition of the standard BCT, in GBCT, we do not know when the
messages were sent or received. All we know is the content of the messages that were
received. Specifically, the last message that was received by Xi from each of its neighbors
(except for the neighbor to whom b is sent), before generating the message with the belief
b for the assignment ⟨x,Xi⟩ , is the one that is considered in the GBCT. Each of the nodes
sending these messages is the parent in the tree of the nodes sending messages to it. For
example, assume that Fij sent a message m to Xi with a cost for value x and that this cost
corresponds to the assignment of x� ∈ Dj . Further assume that m was the last message that
Xi received from Fij before producing b. Thus, Fij is the child of the node Xi in the GBCT
and Xj is the child of Fij . The cost on the edge between Fij and Xi is the belief correspond-
ing to x in m. Fij is the parent of Xj and the cost on the edge between them is the cost
included in the last message received by Fij before it produced the belief that was sent in m.

In Syn_Max-sum, the height of a BCT for a belief included in a message sent at itera-
tion t is t and, for each node in the tree, the heights of the sub-trees rooted by each of its
children nodes are equal. On the other hand, in Asy_Max-sum, messages can have different
delays and, thus, each sub-tree in a GBCT can have a different height.

Our first theoretical property addresses the results proved by Zivan et al. [15] regarding
the convergence of Syn_Max-sum. More specifically, we prove that the property that was
proved in Lemma 1 in [15], and was used to prove the main theorem of that study (i.e., the

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 12 of 28

main theorem in [15]), is not guaranteed when Max-sum operates asynchronously in an
environment that includes message delays.

Proposition 1  In the presence of message delays, Asy_Max-sum is not guaranteed to con-
verge to a minimal repeated route.

Proof  The structure of the GBCTs of the beliefs that are exchanged by agents depends
on the arrival times of messages from which they are composed. Each GBCT (and, as a
result, its corresponding belief) is an outcome of a specific combination of message arriv-
als, depending on whether messages were lost or delayed and by how much. These con-
sequences result in different orders of message arrivals and the number of such combina-
tions is exponential in the maximal number of messages that the beliefs they carry can be
included in the GBCT. Moreover, due to message losses and delays, a specific minimal
route of beliefs is not guaranteed to repeat itself. Thus, even if the algorithm reaches a
minimal route, it may not repeat it. 	� ◻

In order to provide an intuitive explanation to Proposition 1, we present an
example in Fig. 3, which includes a leminiscate factor graph with three vari-
able nodes and two function nodes. When performing Max-sum where mes-
sages arrive instantaneously, the algorithm oscillates between solutions:
⟨X1 = a,X2 = a,X3 = a⟩, ⟨X1 = b,X2 = a,X3 = a⟩, ⟨X1 = b,X2 = a,X3 = b⟩, ⟨X1 = b,X2 = b,X3 = b⟩,
⟨X1 = a,X2 = b,X3 = b⟩, ⟨X1 = a,X2 = a,X3 = b⟩, ⟨X1 = a,X2 = a,X3 = a⟩..., If mes-
sages from function nodes F12 and F21 to variable node X2 are delayed while messages from
other nodes arrive instantaneously, then the algorithm performing on the cycle including
X2,F23,X3 and F32 will converge to the solution ⟨X2 = a,X3 = a⟩3 and X1 will maintain its
current assignment. When the messages from function nodes F12 and F21 will finally arrive
and the communication limitation is resolved, the algorithm will oscillate once again.

X1 X2 X3

5 2

0 3
X1

X2

a

a

b

b

F12

0 4

5 1
X1

X2

a

a

b

b

F21

0 1

4 2
X2

X3

a

a

b

b

F23

1 3

4 2
X2

X3

a

a

b

b

F32

Fig. 3   Example of how message delays affect convergence

3  This is because this assignment results in a normalized cost that is lower than any alternative oscillating
path. See [18, 35] for details.

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 13 of 28  40

Therefore, Proposition 1 seems to put an end to the natural wish that the convergence
properties of Syn_Max-sum can be established for Asy_Max-sum as well. However, the
differences between the executions of the two versions of the algorithm can be minimized.
More specifically, the effect caused by sub-trees of the GBCTs having different heights in
Asy_Max-sum can be significantly reduced through the use of damping.

Let layerk denote the set of nodes of a GBCT with depth k (distance from the root) and
GBCTk denote the layers of the GBCT with depth k or less. We say that a layerk is effective
if and only if there exists a number k̂ ≥ k , such that the belief calculated by GBCTk̂ is dif-
ferent than the belief calculated by GBCTk−1 . For each GBCT G, we say that its effective
GBCT G′ is GBCTk′ such that layerk′ is effective and, for any layerk that is effective in B,
k′ ≥ k.

In the proofs of the following properties, we assume that the messages have bounded
delays and a probability of message loss that is small enough to prevent starvation
(i.e., there is no agent Ai and number of non-concurrent steps ns′,4 such that following ns′ ,
Ai does not receive messages anymore), and there is a limit e for the number of consecutive
messages that can be lost on a communication link (i.e., that are sent from an agent Ai to
another agent Aj).

Lemma 1  When asynchronous DMS (Asy_DMS) is performed with a large enough damp-
ing factor,5 there exists a finite number of non-concurrent steps of the algorithm ns1 , such
that in the steps following it, for every two beliefs included in the same message, if layerk
in each of the corresponding GBCTs is effective, then the number of nodes in layerk of both
GBCTs are equal.

Proof  A node in the GBCT represents a node in the factor-graph, and its children are the
nodes from which it received messages. Assume that in two GBCTs of beliefs sent in the
same message, there exists an effective layer k in which one GBCT has a smaller number
of nodes than the other. That means that the factor-graph nodes represented by nodes in
layerk−1 did not receive messages from all their neighbors yet. However, since the delays
are bounded and so is the number of messages that are lost, their must exist a time when
messages from all neighbors will arrive. Following that time the size of the layerk in both
GBCTs will be equal until the end of the run of the algorithm. 	� ◻

An immediate corollary from Lemma 1 is that in Asy_DMS (using a large enough
damping factor), following ns1 , the effective GBCTs of all beliefs included in each message
have the same number of nodes. This reduces the possible differences between beliefs that
can be generated by each node. Moreover, for the case that the algorithm does converge,
the effect of the asynchronous performance vanishes, as we prove below.

Proposition 2  When Asy_DMS is using a large enough damping factor, if after perform-
ing ns2 > ns1 ( ns1 as described in Lemma 1) non-concurrent steps, it reaches a minimal
consistent route (i.e., all nodes perform k sequential asynchronous steps in which the value

4  We consider a step to be an action that starts when a node in the graph received some messages (at least
one), performed computation, and ends when it sent some messages (at least one).
5  For an analysis on the size of the damping factor required, with respect to the largest number of neighbors
(degree) that a node in the factor graph has, see the work by Zivan et al. [15].

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 14 of 28

assignments corresponding to the minimal route are selected), then it will repeatedly fol-
low this route (i.e., it has converged).

Proof  As established above, following ns1 , the effective GBCTs for beliefs included in the
same message have the same number of nodes (in each layer and altogether) regardless of
message delays. When the algorithm reaches a minimal consistent route, the beliefs cor-
responding to this minimal route involve only one value in each domain, and the belief cor-
responding to it is minimal in each message. Additional nodes added to the GBCTs of the
beliefs corresponding to the assignments in the minimal route represent costs in the entries
of the cost tables of function-nodes that are part of the minimal route. Hence, they will
not change its minimal property or the choice of the minimal route assignments (i.e., for
every ns > ns2 , the effective GBCTns

i
 will be identical). Similarly, the addition of nodes to

GBCTs of beliefs corresponding to assignments that are not included in the minimal route
represent costs that belong to routes with larger overall costs. 	� ◻

Proposition 2 has a major importance to our discussion. Both the asynchronous and the
synchronous versions of DMS will converge when they reach a consistent minimal path. In
other words, the differences between them can exist only when the minimal path is incon-
sistent. In such a case, the synchronous version will repeat the minimal inconsistent route
while the asynchronous version may leave it and explore other routes.

5 � Experimental evaluation

In order to evaluate the implications of asynchronous execution (compared to synchronous
execution) and imperfect communication on the different versions of Max-sum, we used
an asynchronous simulator, in which agents are implemented by Java threads. It includes
a mailing agent that simulates the delays of messages as suggested by Zivan and Meisels
[33]. Using this type of simulator allows us to implement any type of message delay pat-
tern. Other simulators, such as ns-3 [36, 37], offer a number of communication patterns
from which one can select. However, we prefer the use of the simpler simulator proposed
by Zivan and Meisels [33], which allows complete flexibility in the design of the mes-
sage delay patterns and it allows us to measure runtimes in implementation-agnostic units.
Thus, the results are presented as a function of the number of non-concurrent logic opera-
tions (NCLOs). The atomic logic operations in these algorithms are the evaluation of the
cost of a combination of two assignments (i.e., an access to the cost table of a function-
node). Each agent performed the computation for the function-nodes that were assigned to
it. We used a greedy heuristic to evenly assign function-nodes to agents and, thus, increase
concurrency. In order to simulate message delays, for each message sent between nodes
managed by different agents, a delay in terms of NCLOs was selected, and the message
was delivered to the receiving agent after that agent had the opportunity to perform this
number of logic operations.

We evaluated the algorithms on problems with 50 agents, which are often too large for
complete DCOP algorithms to solve, and across four different types of DCOPs, described
below. Each type of problem exhibits a different level of structure in the constraint graph
topology and in the constraint functions. All problems were formulated as minimization
problems.

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 15 of 28  40

•	 Random graph problems These problems are random constraint graph topologies with
density p1 = {0.1, 0.6} . They include variables with 10 values in each domain. The
cost tables held by function-nodes include costs that were selected uniformly between
100 and 200. This range was chosen because when the range is closer to zero, beliefs
may be very small and the effect of damping is less effective. Both the constraint graph
and the constraint functions in these problems are unstructured.

•	 Graph coloring problems These problems are random constraint graph topologies in
which each variable has a number of values (i.e., colors) that it can take, and all constraints
are “not-equal” cost functions, where an equal assignment of neighbors in the graph
incurs a random cost between 100 and 200 and non-equal value assignments incur zero
cost. Such random graph coloring problems are commonly used in DCOP formulations of
resource allocation problems. We set the density to p1 = 0.05 and set the number of values
in each domain to 3 [3, 10, 38].

•	 Scale-free network problems These problems are generated using the model by Barabási
and Albert [39]. An initial set of 10 agents was randomly selected and connected. Addi-
tional agents were added sequentially and connected to 3 other agents with a probability
proportional to the number of links that the existing agents already had. The cost of each
joint assignment between constrained variables was selected uniformly between 100 and
200. Each variable had 10 values in its domain. The constraint graph is somewhat struc-
tured but the constraint functions are unstructured. Similar problems were previously used
to evaluate DCOP algorithms by Kiekintveld et al. [40].

•	 Overlapped solar system problems The overlapped solar system is a realistic problem,
inspired by the Constant Speed Propagation Delay Model implemented in the ns-3 sim-
ulator [36, 37]. The graph topology is inspired by scale-free networks. An initial set of
5 agents are randomly selected to be the centers of the solar systems, and they are con-
nected. Each of these agents Ac

i
 is assigned two coordinates that are drawn from a continu-

ous uniform distribution: xc
i
∼ U(0, 1) and yc

i
∼ U(0, 1) . All other agents (i.e., stars in the

solar systems) are randomly assigned to one of the solar systems. The index c represents
the solar system to which the agent is assigned, and it is equal to the index of the center
agent of the solar system (i.e., if Ac

i
 is the center of a solar system, then i = c ). The coor-

dinates for an assigned agent ( Ac
j
 where j ≠ c ) are drawn from a Normal distribution as

follows: xc
j
∼ N(� = xc

i
, � = 0.05) and yc

j
∼ N(� = yc

i
, � = 0.05) based on the location

of the center of the solar system that it was added to. The probability that two arbitrary
agents Ai and Aj will be neighbors is defined by pij = (1 −

distanceij

maxDistance
)� where distanceij

is the Euclidean distance between agents Ai and Aj , maxDistance is the Euclidean distance
between agent Ai and the location of the farthest agent, and � expresses the dependency of
the probability that both agents will be neighbors on their distance one from the other (in
our experiments we used � = 3 ). For each pair of agents, a random probability pr ∈ [0, 1]
was generated, and two agents were considered as neighbors if pr < pij . Costs between
connected agents were selected uniformly between 100 and 200. While the structure of
these problems is similar to scale-free networks, the addition of the geographic locations
of nodes allows one to set the size of message delays and the probability of a message loss
with respect to physical distance as specified below in Sect. 5.1.

In each experiment, we randomly generated 50 different problem instances. The results pre-
sented in the graphs are an average of those 50 runs. In order to demonstrate the convergence
of the algorithms, we present the sum of costs of the constraints involved in the assignment

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 16 of 28

that would have been selected by each algorithm every 100k NCLOs. We also performed
t-tests to evaluate the significance of differences between all presented results.

5.1 � Communication scenarios

For random graph problems, graph coloring problems, and scale-free network problems,
we used four types of communication scenarios: (1) Perfect communication; (2) Mes-
sage latency selected from a uniform distribution tde ∼ U(0, 10k) NCLOs; (3) Message
loss determined by p ∼ U(0, 1) such that a message is not delivered if p < ple , where
ple = [0.3, 0.5, 0.7, 0.9] is a parameter denoting the probability for message loss; and,
(4) Scenarios including both message latency and message loss.

For overlapped solar system problems, we set tde and ple as follows: tde was drawn from
a Poisson distribution d ∼ Pois(Γ ⋅ distanceij) , where Γ is a constant and distanceij is the
distance between the locations of the agents Ai and Aj . This is also in contrast to the con-
stant speed propagation delay model implemented in ns-3, where the delays that were cal-
culated as a function of the distance between the geographic locations of the nodes were
fixed and never changed [36, 37]. Regarding message loss, we define the probability ple
that a message sent on edge e between agents Ai and Aj is delivered as follows:
ple =

distanceij

maxDistanceij
 , where maxDistanceij is the distance of the furthest agent from Ai or Aj.

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

14000

15000

16000

17000

18000

0 1 2 3 4 5

NCLO x 105

Cost

Setting

Asynchronous + Delay
Asynchronous + No Delay
Synchronous + Delay
Synchronous + No Delay

)b()a(

Fig. 4   a Solution quality as a function of NCLOs of Max-sum versions, with and without message delays,
solving sparse random graph problems with p

1
= 0.1 . b A closer look at the solution quality of DMS_

SCFG versions on these problems

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 17 of 28  40

5.2 � Impact of message delays

Figure 4a presents the quality of solutions produced by the different versions of Max-
sum when solving sparse random graph problems with density p1 = 0.1 . Similar to most
of the figures presented in this section, Fig. 4a includes four graphs presenting results of
the algorithms when performing synchronously, asynchronously, with message delays, and
without. The versions of the algorithm presented are Max-sum, DMS with � = 0.9 , and
DMS_SCFG. DMS_SCFG is the damped Max-sum (DMS) algorithm with split constraint
factor graphs (SCFGs). We used the 0.4−0.6 version of DMS_SCFG, which was found to
perform best by Cohen et al. [3].

Asy_Max-sum (with and without message delays) traversed solutions with higher
costs on average compared to Syn_Max-sum. The results of the different runs of the
algorithms were scattered and, thus, the differences from the synchronous versions were
not found to be statistically significant. Asy_DMS, on the other hand, performed simi-
larly to Syn_DMS, with and without message delays (as expected following Lemma 1,
its corollary, and Proposition 2).

Another observation is that all versions of DMS_SCFG converged very fast com-
pared to the other versions of the algorithm. Figure 4b provides a closer look that allows
one to better compare their convergence rates. Both the synchronous and asynchronous
versions converge at the same rate in environments that do not include message delays.
Clearly, message delays affect the synchronous version more than the asynchronous ver-
sion of the algorithm. Nevertheless, in all execution modes, the algorithm converges
very fast to solutions with the same quality. The algorithm’s fast convergence has been
reported for the synchronous version [3]. The fact that the asynchronous version main-
tains the properties of the algorithm can be explained by Lemma 1, its corollary, and
Proposition 2, that is, the damping of messages results in an effective GBCT of the
asynchronous version that is similar to the effective BCT of the synchronous version.

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

1000

2000

3000

0

1000

2000

3000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

)b()a(

Fig. 5   Solution quality as a function of NCLOs of Max-sum versions, with and without message delays,
solving a dense random graph problems with p

1
= 0.6 and b graph coloring problems

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 18 of 28

Figure 5a presents results for the same algorithms solving dense random graph prob-
lems with density p1 = 0.6 . While the results seem similar to the results presented in
Fig. 4a, there were smaller differences between the Max-sum versions. On these prob-
lems, the DMS versions in scenarios that did not include message delays found high
quality (lower cost) solutions faster and converged.

Figure 5b presents the results of the algorithms solving graph coloring problems. It
is apparent that the exploration performed by Max-sum and DMS is less effective on

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

20000

21000

22000

23000

24000

20000

21000

22000

23000

24000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

56000

58000

60000

62000

56000

58000

60000

62000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

)b()a(

Fig. 6   Solution quality as a function of NCLOs of Max-sum versions, with and without message delays,
solving a scale-free network problems and b overlapped solar system problems

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

14500

15000

15500

16000

14000

14500

15000

15500

16000

NCLO x 107

Cost

λ

0.5
0.7
0.9

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

λ

0.5
0.7
0.9

)b()a(

Fig. 7   Solution quality as a function of NCLOs of DMS with different � values, with and without message
delays, solving random graph problems with a p

1
= 0.1 and b p

1
= 0.6

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 19 of 28  40

these problems and, thus, the advantage of DMS_SCFG is prominent. Moreover, in the
presence of message delays, standard Max-sum improves its performance. We assume
that delays break the very structured execution on this type of problems and has a posi-
tive exploration effect. This effect is diminished when damping is used, for reasons and
properties similar to the ones established in Sect. 4.

The results of the algorithms when solving scale-free network problems and overlap-
ping solar system problems are presented in Fig. 6. They are similar to the results presented
in Fig. 5a. The differences between the performance of Asy_Max-sum and Syn_Max-
sum were found to be significant when solving scale-free network problems, regardless
of whether the scenarios solved included message delays. No significant differences were
found between the synchronous and asynchronous versions when solving overlapped solar
system problems. It seems that, for these problems, the structure of the problem affects the
algorithms behavior more than the pattern of the message latency.

In our second set of experiments, we evaluated the importance of the selection of the
damping factor in DMS, with respect to the differences in the performance of the different
modes of execution (synchronous and asynchronous) in scenarios with different latency
patterns. Figure 7 presents the results of the algorithm with three different values of the

No Delay Delay

G
raph C

olor
S

cale−Free
S

olar S
ystem

U
niform

 01
U

niform
 06

Max−sum DMS DMS−SCFG Max−sum DMS DMS−SCFG

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Algorithm

Id
le

 N
C

LO
 R

at
io

Version

Synchronous
Asynchronous

Fig. 8   Ratio between the number of NCLOs in which agents were idle and the total number of NCLOs for
all algorithms and all execution modes

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 20 of 28

damping parameter (i.e., � = 0.5 , � = 0.7 and � = 0.9 ) solving random uniform problems
that are (a) sparse and (b) dense. As expected, following the properties established in
Lemma 1 and its corollary, asynchronous execution affects the performance of all versions
of DMS when it does not converge. However, it is apparent that the version with � = 0.9
is less affected by message delays in the asynchronous execution (as expected). Similar
results were obtained for all types of problems and were omitted to avoid redundancy.

In order to compare the effect that message delays have on the agents performing syn-
chronously and asynchronously, we measured the average number of NCLOs in which
agents were idle in each mode of execution of the algorithm. The results are presented in
Fig. 8. It includes, for each algorithm, in each mode of execution, the average ratio of the
number of NCLOs in which the agents were idle (i.e., waiting for messages to arrive) and
the total number of NCLOs the algorithm executed. For all problem types, it is apparent
that the agents spent less time idle when operating asynchronously compared to when they
operate synchronously. This difference between the performance of the two versions was
most apparent in DMS_SCFG. Nevertheless, for this version of the algorithm, while there
is a difference in the time the agents spent idle, the quality of solutions was the most simi-
lar between the asynchronous and the synchronous versions among all algorithms, as well
as their convergence times.

It is interesting to note that when the synchronous version of the algorithm is perform-
ing and messages are not delayed, there is still a significant portion of time that the agents
spend idle. This seems to be the effect of having nodes of the factor graph with different
number of neighbors. The amount of computation that agents perform in each iteration
corresponds to this number, which also affects the number of function-nodes assigned to
them. It is most apparent in problems where there is a large difference between the number
of neighbors of different nodes in the graph (e.g., in scale-free network problems). In such
problems, more idle time is reported. Specifically in the case of SCFGs, the number of
neighbors is increased by the algorithm (following the initial split) and, thus, the difference

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

15000

16000

15000

16000

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)

Fig. 9   Solution quality as a function of NCLOs of Max-sum versions, with and without message loss, solv-
ing a sparse random graph problems with p

1
= 0.1 and b dense problems p

1
= 0.6

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 21 of 28  40

between the computation performed by different agents grows and with it the time they
spend idle.

5.3 � Impact of message loss

In this subsection, we present results that demonstrate the resilience of the versions of
Max-sum to message loss. Each experiment included the three versions of the algorithm
(i.e., Max-sum, DMS, and DMS_SCFG (parameters set as in the previous section)) solving
the same problems in synchronous execution, asynchronous execution, and asynchronous
execution with different probability for message loss.

Figure 9a and b present the results for sparse random graph problems with density
p1 = 0.1 and dense random graph problems with density p1 = 0.6 , respectively. The
results demonstrate that the largest differences between the performance of Max-sum
and DMS are for the asynchronous version with no message loss. When the probability
for message loss increases, the performance of Max-sum improves, while the perfor-
mance of DMS deteriorates. For standard Max-sum, message loss slows the effect of
the exponential explosion of the information sent in the bottom layers of the GBCT.
DMS, on the other hand, suffers from message loss since as long as new messages from
neighbors are not received, agents use in their calculation the last messages that were
not received, while new messages that were received arrive instantly. Thus, there is a
large chance for GBCTs with different heights (i.e., agents process information with dif-
ferent levels of damping). Finally, the performance of DMS_SCFG is consistent for all
levels of message loss. This algorithm does not only produce the best results but it also
shows high robustness to imperfect communication. On the dense problems, it is clear
that the DMS version converges to better results than DMS_SCFG when the probability
for message loss is low. For larger probabilities, as in the case of the sparse problems,
DMS deteriorates.

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 2 4 6 0 2 4 6 0 2 4 6

0

500

1000

1500

0

500

1000

1500

NCLO x 10^6

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

20000

21000

22000

23000

24000

20000

21000

22000

23000

24000

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)

Fig. 10   Solution quality as a function of NCLOs of Max-sum versions, with and without message loss,
solving a graph coloring problems and b scale-free network problems

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 22 of 28

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 10^5

Cost

Algorithm

MaxSum_SY
MaxSum_ASY

Message Loss Probability

0
0.5
0.7
0.9

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 10^5

Cost

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SY
DMS_ASY

(a) (b)

Fig. 11   Solution quality as a function of NCLOs of a Max-sum and b DMS, solving random sparse prob-
lems in environments with different communication patterns

Fig. 12   Solution quality as a
function of NCLOs of DMS_
SCFG, for different solving
sparse random graph problems
with p

1
= 0.1 in environments

with different communication
patterns

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14250

14500

14750

15000

14250

14500

14750

15000

NCLO x 10^5

Cost

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SCFG_SY
DMS_SCFG_ASY

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 23 of 28  40

Figure 10a and b present the results of the three versions of the algorithms when solving
graph coloring problems and scale-free network problems, respectively, in environments in
which there are different probabilities for message loss. It is clear that, in the case of graph
coloring problems, the effect of message loss on both Max-sum and DMS is positive (in
general). Except for the highest probability of message loss, on which DMS suffers some
deterioration, both algorithms perform similarly when messages are lost. It is also apparent
that they reach their best performance very fast and unlike the results on the other bench-
marks, do not show further improvement or deterioration throughout the algorithm’s run.
On scale-free network problems on the other hand, the algorithms perform more similar to
their performance on random uniform problems. However, the effect of message loss on
DMS when solving these problems is less apparent.

The results of the algorithms on the solar system problems were similar to the results on
scale-free network problems, and we omit them in order to avoid redundancy.

5.4 � Impact of both message delay and loss

This section includes results of the three versions of the algorithm, solving problems in
environments that include both message delay and possible message loss. Figure 11a and b
present results for sparse uniform random problems solved by Max-sum and DMS, respec-
tively. The different colored lines represent different probabilities for message loss, while
each sub-graph represents a different upper bound for delays. Clearly, the magnitude of
delays did not affect both algorithms, while the loss of messages had a reverse effect (as
observed in the Fig. 9), improving the performance of Max-sum and deteriorating DMS’s
performance.

Figure 12 presents the results of DMS_SCFG solving sparse random problems in these
mixed communication scenarios. Again, the robustness of this algorithm to imperfect

Fig. 13   Solution quality as func-
tion of the number of messages
received by agents (logarithmic
scale), of Max-sum solving
sparse random graph problems
with p

1
= 0.1 , in environments

with different communication
patterns

7500 10000

0 5000

8 12 16 20 8 12 16 20

16000

17000

18000

16000

17000

18000

Log_2(Message counter)

C
os

t

Algorithm

MaxSum_SY
MaxSum_ASY

Message Loss Probability

0
0.5
0.7
0.9

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 24 of 28

communication is apparent. The results for the algorithms solving the other problem types
in mixed communication scenarios were similar, and we omit them to avoid redundancy.

In our last set of experiments, we evaluated the solution quality, as a function of the
number of messages received by agents, regardless of the time the messages were delayed
or the portion of messages that were lost. Figure 13 presents the results of Max-sum when
solving sparse random uniform problems in scenarios with different communication pat-
terns. It is clear from the presented graphs in the figure that message delays have a very
minor effect on the performance of Max-sum. On the other hand, message loss has a major
effect, and as we observed in the results presented above, a smaller probability for a mes-
sage to arrive triggers higher quality.

Figure 14a presents the results of DMS in the same scenarios. In contrast to Max-sum,
all versions of DMS produce solutions with similar quality when enough messages arrive.
This is consistent with Lemma 1 and its corollary, in which we established the relationship
between the quality of the solution of Asy_DMS and the structure of its effective GBCT.
Figure 14b presents another indication for this property for DMS_SCFG. Once again we
omit the similar results for the other benchmarks to avoid redundancy.

5.5 � Discussion

The advantage of DMS over standard Max-sum when solving graphs with multiple cycles
has been reported empirically [3] and explained theoretically [15]. In Max-sum, costs that
are aggregated in the beginning of the run are duplicated in every node of the graph that
has more than two neighbors and, thus, they are taken into consideration an exponential
number of times in the calculation of beliefs and in the assignment selection. Damping
reduces the weight of these costs in the belief calculation until it becomes negligible. A

7500 10000

0 5000

8 12 16 20 8 12 16 20

15000

16000

17000

18000

15000

16000

17000

18000

Log_2(Message counter)

C
os

t

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SY
DMS_ASY

7500 10000

0 5000

8 12 16 20 8 12 16 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

Log_2(Message counter)

C
os

t

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SCFG_SY
DMS_SCFG_ASY

(a) (b)

Fig. 14   Solution quality as function of the number of messages received by agents (logarithmic scale), of a
DMS and b DMS_SCFG solving sparse random graph problems with p

1
= 0.1 , in environments with differ-

ent communication patterns

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 25 of 28  40

similar phenomenon reduces the differences between the performance of Syn_DMS and
Asy_DMS. As we established in the corollary of Lemma 1, when using a large enough
damping factor, the effect of GBCTs with different heights is eliminated in DMS and, thus,
after enough NCLOs are performed, the effective GBCTs of the beliefs in each message
have the same number of nodes. The results comparing DMS with different damping fac-
tors demonstrate the need to use a large damping factor in order to achieve robustness to
message delays. This empirical evidence strengthens the property established by Lemma 1
and its corollary, that if the damping factor used is not large enough, then the effect of
the lower layers of the GBCTs, which may have different structure and a different num-
ber of nodes, on the generation of beliefs by the nodes is not eliminated. Thus, message
delays have a greater effect on the algorithm’s performance when the damping factor used
is small.

When examining the algorithms in scenarios where there is a positive probability for
message loss, there is an opposite effect on Asy_Max-sum and Asy_DMS. Message loss
improves the performance of the former algorithm, but delays the convergence to a high
quality solution of the latter algorithm, as we described above. Finally, Asy_DMS_SCFG
maintains its fast convergence properties and high quality of solutions from its synchro-
nous version. It is also robust to message latency and to message loss.

6 � Conclusions

In this paper, we filled the gap in the Max-sum literature on the differences between the
synchronous and asynchronous executions of the algorithm in distributed environments
and their impact. Our theoretical analyses revealed that, unlike its synchronous counter-
part, the asynchronous version of Max-sum in the presence of message latency can cause
the propagation of inconsistent beliefs, resulting in the loss of guaranteed properties (Prop-
osition 1). However, not all is lost as one can use damping to minimize this effect and,
subsequently, ensure that when asynchronous DMS finds a consistent minimal route, it will
converge, as does the synchronous version (Proposition 2). Our experimental results show
that when the algorithm is further optimized through split constraint factor graphs, it con-
verges very fast to high-quality solutions even in the presence of message delays and when
most of the messages are lost. Moreover, our experimental results indicate that the quality
of the solutions produced by the different versions of DMS depend on the amount of infor-
mation (number of messages) received by the agents. These results are consistent with our
theoretical results that indicate that enough information needs to be received in order for
the effective GBCTs of the beliefs to be complete and, thus, similar.

Taken together, these results extend significantly our understanding of Max-sum in dis-
tributed environments with more realistic communication assumptions and enable a more
effective use of Max-sum by real-world practitioners.

Author Contributions  This paper is a result of a number of years of investigation of both the Max-sum algo-
rithm and the performance of distributed algorithms in scenarios with imperfect communication. The idea
to investigate the performance of distributed algorithms in such environments was suggested by William
Yeoh and Roie Zivan, and this research is part of a BSF granted project that they are the two PIs of. Most
of the writing of the paper was done by Roie Zivan. The experimental work was done by Ben Rachmut and
Omer Perri. Ben Rachmut wrote most of the experimental section. William Yeoh reviewed the results and
the writing, and suggested improvements.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 26 of 28

Funding  This research is partially supported by US-Israel Binational Science Foundation (BSF) grant
#2018081 and US National Science Foundation (NSF) grant #1838364.

Availability of data and materials:  The simulation’s code is available at https://​github.​com/​benra​chmut/​
CADCOP_​2022_​new.

Declarations 

Conflict of interest  The authors declare no competing interests.

Ethical approval  Not applicable.

References

	 1.	 Rachmut, B., Zivan, R., & Yeoh, W. (2021). Latency-aware local search for distributed constraint
optimization. In: Proceedings of the 20th international conference on autonomous agents and
multiagent Systems, pp. 1019–1027.

	 2.	 Chen, Z., Deng, Y., Wu, T., & He, Z. (2018). A class of iterative refined max-sum algorithms via
non-consecutive value propagation strategies. Autonomous Agents and Multi-Agent Systems, 32(6),
822–860.

	 3.	 Cohen, L., Galiki, R., & Zivan, R. (2020). Governing convergence of max-sum on dcops through
damping and splitting. Artificial Intelligence Journal (AIJ), 279.

	 4.	 Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, California: Morgan Kaufmann.

	 5.	 Yanover, C., Meltzer, T., & Weiss, Y. (2006). Linear programming relaxations and belief propaga-
tion—An empirical study. Journal of Machine Learning Research, 7, 1887–1907.

	 6.	 Teacy, W.T.L., Farinelli, A., Grabham, N.J., Padhy, P., Rogers, A., & Jennings, N.R. (2008). Max-
sum decentralized coordination for sensor systems. In: Proceeding of the 7th international confer-
ence on autonomous agents and multi-agent systems (AAMAS), pp. 1697–1698.

	 7.	 Stranders, R., Farinelli, A., Rogers, A., Jennings, N. R. (2009). Decentralised coordination of
mobile sensors using the max-sum algorithm. In: Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, (IJCAI), pp. 299–304.

	 8.	 Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized coordi-
nation in robocup rescue. Computer Journal, 53(9), 1447–1461.

	 9.	 Rust, P., Picard, G., & Ramparany, F. (2016). Using message-passing DCOP algorithms to solve
energy-efficient smart environment configuration problems. In: Proceedings of the 25th interna-
tional joint conference on artificial intelligence, (IJCAI), pp. 468–474.

	10.	 Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R. (2008). Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In: Proceeding of the 7th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 639–646.

	11.	 Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration and
exploitation in incomplete min/max-sum inference for distributed constraint optimization. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), 31(5), 1165–1207.

	12.	 Ruozzi, N., & Tatikonda, S. (2013). Message-passing algorithms: Reparameterizations and split-
tings. IEEE Transactions on Information Theory, 59(9), 5860–5881.

	13.	 Deng, Y., & An, B. (2020). Speeding up incomplete gdl-based algorithms for multi-agent optimiza-
tion with dense local utilities. In: Proceedings of the 29th international joint conference on artifi-
cial intelligence, (IJCAI), pp. 31–38.

	14.	 Zivan, R., Perry, O., Rachmut, B., & Yeoh, W. (2021). The effect of asynchronous execution and
message latency on max-sum. In: 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

	15.	 Zivan, R., Lev, O., & Galiki, R. (2020). Beyond trees: Analysis and convergence of belief propa-
gation in graphs with multiple cycles. In: Proceedings of the 34th international conference of the
association for the advancement of artificial intelligence (AAAI), pp. 7333–7340.

	16.	 Murphy, K.P., Weiss, Y., & Jordan, M.I. (1999). Loopy belief propagation for approximate infer-
ence: An empirical study. In: UAI ’99: proceedings of the fifteenth conference on uncertainty in
artificial intelligence, Stockholm, Sweden, July 30–August 1, 1999, pp. 467–475.

https://github.com/benrachmut/CADCOP_2022_new
https://github.com/benrachmut/CADCOP_2022_new

Autonomous Agents and Multi-Agent Systems (2023) 37:40 	

1 3

Page 27 of 28  40

	17.	 Weiss, Y. (2000). Correctness of local probability propagation in graphical models with loops. Neu-
ral Computation, 12(1), 1–41.

	18.	 Forney, G.D., Kschischang, F.R., Marcus, B., & Tuncel, S. (2001). Iterative decoding of tail-biting
trellises and connections with symbolic dynamics. In: Marcus, B., Rosenthal, J. (eds.) Codes, sys-
tems, and graphical models, pp. 239–264.

	19.	 Pretti, M. (2005). A message-passing algorithm with damping. Journal of Statistical Mechanics:
Theory and Experiment, 11, 11008.

	20.	 Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentral-
ized coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

	21.	 Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value
propagation on an alternating DAG. In: AAMAS, pp. 265–272.

	22.	 Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint optimiza-
tion. In: CP, pp. 624–632.

	23.	 Rollon, E., & Larrosa, J (2014) Decomposing utility functions in bounded max-sum for distributed
constraint optimization. In: Principles and practice of constraint programming—20th international
conference, CP 2014, Lyon, France, September 8–12, 2014. Proceedings, pp. 646–654.

	24.	 Khan, M. M., Tran-Thanh, L., Ramchurn, S. D., & Jennings, N. R. (2018). Speeding up gdl-based
message passing algorithms for large-scale dcops. The Computer Journal, 61(11), 1639–1666.

	25.	 Zivan, R., Parash, T., & Naveh, Y. (2015). Applying max-sum to asymmetric distributed constraint
optimization. In: Proceedings of the twenty-fourth international joint conference on artificial intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 432–439.

	26.	 Farinelli, A., Rogers, A., & Jennings, N. R. (2014). Agent-based decentralised coordination for sen-
sor networks using the max-sum algorithm. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS), 28(3), 337–380.

	27.	 Marinescu, R., & Dechter, R. (2009). AND/OR branch-and-bound search for combinatorial optimi-
zation in graphical models. Artificial Intelligence, 173(16–17), 1457–1491.

	28.	 Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: A linear-space sampling-
based DCOP algorithm. Journal of Artificial Intelligence Research, 64, 705–748.

	29.	 Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In: Pro-
ceedings of the 21st international joint conference on artificial intelligence, (IJCAI), pp. 266–271.

	30.	 Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

	31.	 Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 181–208.

	32.	 Zivan, R., Parash, T., Cohen-Lavi, L., & Naveh, Y. (2020). Applying max-sum to asymmetric dis-
tributed constraint optimization problems. Journal of Autonomous Agents and Multi Agent Systems
(JAAMAS), 34(1), 13.

	33.	 Zivan, R., & Meisels, A. (2006). Message delay and discsp search algorithms. Annals of Mathematics
and Artificial Intelligence (AMAI), 46, 415–439.

	34.	 Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed con-
straint optimization problems. Artificial Intelligence Journal (AIJ), 193, 186–216.

	35.	 Cohen, E., Zivan, R., & Lev, O. (2023). Separate but equal: Equality in belief propagation for single
cycle graphs. In: Proceedings of the 36th international conference of the association for the advance-
ment of artificial intelligence (AAAI).

	36.	 Mayuga-Marcillo, L., Urquiza-Aguiar, L., & Paredes-Paredes, M. (2018). Wireless Channel 802.11 in
NS-3

	37.	 Amewuda, A.B., Katsriku, F.A., & Abdulai, J.-D. (2018). Implementation and evaluation of wlan
802.11ac for residential networks in ns-3. Journal of Computer Networks and Communications,
2018.

	38.	 Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search and distrib-
uted breakout: properties, comparishon and applications to constraints optimization problems in
sensor networks. Artificial Intelligence, 161(1–2), 55–88.

	39.	 Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),
509–512.

	40.	 Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for approximate
distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:40

1 3

 40   Page 28 of 28

Authors and Affiliations

Roie Zivan1 · Ben Rachmut1 · Omer Perry1 · William Yeoh2

 *	 Roie Zivan
	 zivanr@bgu.ac.il

	 Ben Rachmut
	 rachmut@post.bgu.ac.il

	 Omer Perry
	 omerpe@post.bgu.ac.il

	 William Yeoh
	 wyeoh@wustl.edu

1	 Industrial Engineering and Management, Ben-Gurion University of the Negev, David Ben Gurion
Blvd, 8410501 Beer‑Sheva, Israel

2	 Computer Science and Engineering Department, Washington University in St. Louis, Brookings
Drive, Saint Louis, MO 63130, USA

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Effect of asynchronous execution and imperfect communication on max-sum belief propagation
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Graphical models
	3.2 Distributed constraint optimization problems
	3.3 The max-sum algorithm
	3.3.1 Damped max-sum
	3.3.2 Asynchronous execution
	3.3.3 Max-sum with split constraint factor graphs
	3.3.4 Non-concurrent logic operations

	3.4 Backtrack cost trees
	3.5 Convergence properties

	4 Effect of asynchronous execution
	5 Experimental evaluation
	5.1 Communication scenarios
	5.2 Impact of message delays
	5.3 Impact of message loss
	5.4 Impact of both message delay and loss
	5.5 Discussion

	6 Conclusions
	References

