Message delay and Asynchronous DisCSP search

Roie Zivan and Amnon Meisels
{zivanr,an} @cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) are composed
of agents, each holding its own variables, that are connected by constraints to vari-
ables of other agents. Due to the distributed nature of the problem, message delay
can have unexpected effects on the behavior of distributed search algorithms on
DisCSPs. This has been shown in experimental studies of asynchronous back-
tracking algorithms [1, 9].

To evaluate the impact of message delay on the run of DisCSP search algorithms,
a model for distributed performance measures is presented. The model counts the
number of non concurrent constraints checksarrive at a solution, as a non
concurrent measure of distributed computation. A simpler version measures dis-
tributed computation cost by the number of non-concurrent steps of computation.
An algorithm for computing these distributed measures of computational effort is
described. The realization of the model for measuring performance of distributed
search algorithms is a simulator which includes the cost of message delays.

The performance of two asynchronous search algorithms is measured on ran-
domly generated instances of DisSCSPs with delayed messages. The Asynchronous
Weak Commitment4 W C) algorithm and Asynchronous BacktrackingBT).

The intrinsic reordering process afl¥ C' dictates a need for a more complex
count of non-concurrent steps of computation. The improved counting algorithm
is also needed for Dynamic orderedBT'. The delay of messages is found to
have a strong negative effect ofi¥’ C and a smaller effect on dynamically or-
deredABT.

Key words: Distributed Constraint Satisfaction, Search, Distributed Al.

1 Introduction

Distributed constraints satisfaction problenigCSR) are composed of agents, each

holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf. [13,
11]). Agents check the value assignments to their variables for local consistency and

* Research supported by the Lynn and William Frankel center for Computer Sciences and the
Paul Ivanier Center for Robotics and Production Management.

exchange messages among them, to check consistency of their proposed assignments
against constraints with variables that belong to different agents [13, 2].

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - run time, which measures the com-
putational effort and network load [5]. The time performance of search algorithms on
DisCSPs has traditionally been measured by the number of computation cycles or steps
(cf. [13]). In order to take into account the effort an agent makes during its local assign-
ment the computational effort can be measured by the number of constraints checks that
agents perform. However, care must be taken to measunetheoncurrentonstraints
checks. In other words, count computational effort of concurrently running agelyts
onceduring each concurrent running instance ([6, 8]). Measuring the network load
poses a much simpler problem. Network load is generally measured by counting the
total number of messages sent during search [5].

The first attempts to compare run times of distributed search algorithms on DisC-
SPs used a synchronous simulator and instantaneous message arrival. During one step
of computation (cycle) of the simulator all messages of all agents are delivered and
all resulting computations by the receiving agents are completed [13]. The number of
these synchronous steps of computation in a standard simulator served to measure the
non-concurrent run-time of a DisCSP algorithm [13]. It is clear that the comparison
of asynchronous search algorithms by synchronizing them to run on a simulator is not
satisfactory. In fact, comparing concurrent run-times of distributed computations must
involve some type of asynchronous time considerations [4, 6].

The need to define a non-concurrent measure of time performance arises even for an
optimal communication network, in which messages arrive with no delay. It turns out
that for ideal communication networks one can use the number of non-concurrent con-
straints checks (NCCCs), for an implementation independent measure of non-concurrent
run time [6]. When messages are not instantaneous, the problem of measuring dis-
tributed performance becomes more complex. On realistic networks, in which there are
variant message delays, the time of run cannot be measured in steps of computation.
Take for example Synchronous Backtrackiny3I") [13]. Agents inSBT perform
their assignments one after the other, in a fixed order, simulating a simple backtrack
algorithm. Since all agents are completely synchronized and no two agents compute
concurrently, the number of computational steps is not affected by message delays.
However, the effect on the run time of the algorithm is completely cumulative (delaying
each and every step) and is thus large (see section 6 for details).

The present paper proposes a general method for measuring run time of distributed
search algorithms on DisCSPs. The method is based on standard methods of asyn-
chronous measures of clock rates in distributed computation [4] and uses constraints
checks as a logical time unit [6]. In order to evaluate the impact of message delays
on DisCSP search algorithms, we presenfagnchronous Message Delay Simulator
(AM DS) which measures the logical time of the algorithm run. &/ DS mea-
sures run time in non-concurrent steps of computation or in hon-concurrent constraints
checks and simulates message delays accordinglyATh@.S and its underlying asyn-
chronous measuring algorithm for comparing concurrent running times is described in

detail in section 3. The validity of thd M DS’ counting algorithm, to measure concur-

rent logical time, is proved in section 4. It can simulate systems with different types of
message delays. From fixed message delays, through random message delays, to sys-
tems in which the length of the delay of each message is dependent on the current load
of the network. The delay is measured in non-concurrent computation steps (or non-
concurrent constraints checks). The final logical time that is reported as the cost of the
algorithm run, includes steps of computation which were actually performed by some
agent, and computational steps which were added as message delay simulation while
no computation step was performed concurrently (see section 3).

The AM DS presented in section 3 enables a deeper exploration of the behavior
of different search algorithms for DisCSPs on systems with different message delays.
Message delays emphasize properties of algorithms which are not apparent when the
algorithms are run in a system with perfect communication. Experimental evidence for
such behavior was found recently for asynchronous backtracking algorithms [1, 9]. The
study of [1] measured run times on a multi-machine implementation of the compared
algorithms. While serving as a first attempt to study the impact of communication de-
lays on DisCSP algorithms, such an implementation does not enable simple duplication
of experiments, for diverse algorithms and measures, as does the present well-defined
simulation algorithm.

Measuring asynchronous backtracking search algorithms with dynamic agent order-
ing [12, 17] generates an additional problem which is not present for stahda€ds P
algorithms. For both the 1/ C algorithm of [12] and thé®ynamic Ordering ABH&lgo-
rithm of [17], assignment messages are sent by agents to all their neighbors including
higher priority neighbors. Such messages carry information which does not trigger and
is not evaluated in the following computation of the receiving agent. The method of the
AM DS simulator proposed in this study ensures that logical steps (constraints checks
or computation steps) are counted twice only if they could not have been performed
concurrently.

The plan of the paper is as follows. Distributed constraint satisfaction problems
(DisCSPs) are presented in section 2. A detailed introduction of the simulator that is
used in our experiments, and of the method of evaluating the run time«f S P al-
gorithms in the presence of message delays, is presented in section 3. Section 4 contains
a proof of the validity of the simulating algorithm. Section 5 presents theldi'S P
search algorithms Asynchronous Backtrackidg3(l") and Asynchronous Weak Com-
mitment searchAW C). Section 6 presents extensive experimental results, comparing
the two algorithms on randomly generatBdsC'S Ps with different types of message
delays. A discussion of the performance and advantages of the algorithms, on differ-
ent DisC'SP instances and communication networks, is presented in section 7. Our
conclusions are in section 8.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSB is composed of a set df agentsA;, A, ..., Ax. Each agent4; contains a
set of constrained variables;, , X;,, ..., X; . Constraints orelations R are subsets

n;

3

of the Cartesian product of the domains of the constrained variables [Bindxy
constraint R;; between any two variableX¥; and X; is defined asR;; C D; x D;.
In a distributed constraint satisfaction probl&@isCSRE the agents are connected by
constraints between variables that belong to different agents (cf. [13, 11]). In addition,
each agent has a set of constrained variables, iceahconstraint network

An assignment (or a label) is a pairvar, val >, wherevar is a variable of some
agent andal is a value fronwar’s domain that is assigned to it. partial assignment
(or a compound label) is a set of assignments of values to a set of variatdekition
to aDisCSPis an assignment that includes all variables of all agents, that is consistent
with all constraints. Following all former work dDisCSF, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents [13].

The delay in delivering a message is assumed to be finite [13]. One simple protocol
for checking constraints, that appears in many distributed search algorithms, is to send a
proposed assignmest var, val >, of one agent to another agent. The receiving agent
checks the compatibility of the proposed assignment with its own assignments and with
the domains of its variables and returns a message that either acknowledges or rejects
the proposed assignment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [13, 2].

1. All agents hold exactly one variable.

2. The amount of time that passes between the sending of a message to its reception
is finite.

3. Messages sent by agefi to agentA; are received byl in the order they were
sent.

4. Every agent can access the constraints in which it is involved and check consistency
against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents adava ThreadsThreads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Non-concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [4, 6]. Every agent holds a counter of computation steps
which it increments each time it performs a step. Every message carries the value of the
sending agent’s counter. When an agent receives a message it updates its counter to the
largest value between its own counter and the counter value carried by the message. By

— upon receiving messagensg:

. LTC « max(LTC, msg.LTC)

. delay« choose_delay

. msgdelivery_time « msg.LTC + delay

. outgoing_queue.add(msg)

. deliver_messages

— when there are no incoming messages and all agents are idle
1. LTC « outgoing_queue.firstmsg.LTC
2. deliver_messages

— deliver_messages
1. foreach (message m in outgoing queue)
2. if (m.delivery_time < LTC)
3. deliver(m)

A

ab~wN

Fig. 1. The Mailer algorithm

reporting the cost of the search as the largest counter held by some agent at the end of
the search, a non-concurrent measure of search effort is achieved (see [4]).

On systems with message delays, the situation is different. To introduce the prob-
lems of counting in the presence of message delays, let us start with the simplest pos-
sible algorithm. Synchronous backtrackinggT") performs assignments sequentially,
one by one and no two assignments are performed concurréhtiggnsequently, the
effect of message delay is very clear. The number of computation steps is not affected
by message delay and the delay in every step of computation is the delay on the mes-
sage that triggered it. Therefore, the total time of the algorithm run can be calculated
as the total computation time, plus the total delay time of messages. In the presence of
concurrent computation, the time of message delays must be added to the run-time of
the algorithmonly if no computation was performed concurrentlig achieve this goal,
the simulator counts message delays in terms of computation steps and adds them to the
accumulated run-time. Such additions are performed only for instances when no com-
putation is performed. In other words, when the delay of a message causes all agents to
wait, performing no computation.

In order to simulate message delays, all messages are passed by a dédicdted
thread. The mailer holds a counter of non-concurrent computation steps performed by
agents in the system. This counter represents the logical time of the system and we re-
fer to it as thelLogical Time Counte(LT'C). Every message delivered by the mailer
to an agent, carries thel'C value of its delivery to the receiving agent. An agent that
receives a message updates its counter to the maximum value between the received
LTC and its own value. Next, it performs the computation step, and sends its outgoing
messages with the value of its counter, incremented by 1. The same mechanism can
be used for computing computational effort, by counting non-concurrent constraints
checks. Agents add to the counter values in outgoing messages the number of con-
straints checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrent computation steps.
To do so it uses thé&T'C, according to the algorithm presented in figure 1. Let us go

over the details of thé/ailer algorithm, in order to understand the measurements
performed by the simulator during run time.

When the mailer receives a message, it first checks iLthi€' value that is carried
by the message is larger than its own value. If so, it increments the value bfftte
(line 1). Inline 2 a delay for the message (in number of steps) is selected. Here, different
types of selection mechanisms can be used, from fixed delays, through random delays,
to delays that depend on the actual load of the communication network. To achieve
delays that simulate dependency on network load, for example, one can assign message
delays that are proportional to the size of the outgoing message queue.

Each message is assignedd@ivery_time which is the sum of the value of the
message'd.T'C and the selected delay (in steps), and placed irvthgoing_queue
(lines 3,4). Theutgoing_queue is a priority queue in which the messages are sorted by
delivery_time, so that the first message is the message with the lalu&stery _time.

In order to preserve the third assumption from section 2, messages fromAgtnt
agentA; cannot be placed in the outgoing queue before messages which are already
in the outgoing queue which were also sent frdmto A;. This property is essential

to asynchronous backtracking which is not correct without it (cf. [2]). The last line of
the Mailer’s code calls methodeliver_messages, which delivers all messages with
delivery_time less or equal to the mailer’'s currehfl’C value, to their destination
agents.

When there are no incoming messages, and all agents are idleyifttheng_queue
is not empty (otherwise the system is idle and a solution has been found) the mailer in-
creases the value of tHel'C' to the value of thelelivery_time of the first message in
the outgoing queue and callsliver_messages. This is a crucial step of the simula-
tion algorithm. Consider the run of a synchronous search algorithmSyochronous
Backtracking(SBT) [13], every delay needs the mechanism of updating the Mailer’s
LTC (line 1 of the second function of the code in figure 1). This is because only one
agent is computing at any given instance, in synchronous backtrack search.

The non-concurrent run time reported by the algorithm, is the latg&st value
that is held by any agent at the end of the algorithm’s run. By incrementingTi@
only when messages carbyi’C's with values larger than the mailer§'C value, steps
that were performed concurrently are not counted twice. This is an extension of Lam-
port’s logical clocks algorithm [4], as proposed for DisCSPs by [6], and extended here
for message delays.

A similar description holds for evaluating the algorithm run in non-concurrent con-
straints checks. In this case the agents need to extend the value aiTres by the
number of constraints checks they actually performed in each step. This enables a con-
current performance measure that incorporates the computational cost of the local step,
which might be different in different algorithms. It also enables to evaluate algorithms
in which agents perform computation which is not triggered or followed by a message.

3.1 Adjusting the measuring method for dynamic order algorithms

In asynchronous backtracking with dynamic agent ordering [17] as in the Asynchronous
Weak Commitment search algorithm, agents hold in tAgent Viewsassignments of
both higher and lower priority agents. The agents check their current assignment only

against assignments of agents with higher priority according to the current order. How-
ever, since the priority order is dynamic, an assignment of a lower priority agent which
is currently irrelevant, may become relevant as a result of a change in the order of priori-
ties, thus such lower priority assignments are not discarded from the ag8gatis View

The agents performing asynchronous backtracking with dynamic ordetiBd'(DO)

or Asynchronous Weak Commitmemt ¥’ C), send their assignments to all their neigh-
bors (and not only to their current lower priority neighbors) for the same reason [13,
17].

Messages which carry the assignments of lower priority agents to higher priority
agents do not trigger immediate computation since the assignment in the received mes-
sage cannot rule out the local assignment even if they are in conflict.

A small change in the agents actions would adjust the measuring metiddd 615
presented above for counting non-concurrent logic steps to deal with messages which
do not trigger immediate computation, and their data is stored for later use. In order
to preserve the concept nbn-concurrentogic steps, for every message received, be-
fore updating the locdlogic Time Countef(L7T'C') the agent must make sure that the
computation performed in order to produce the data carried by the messalgenot
have been performezbncurrently with the steps of computation it is about to perform.
Another way to look at it is to ask whether the computation steps about to be performed
could have been performed if the message carrying the corresponding data was delayed.
This can be done by the agents by delaying the update of ki&ir in cases where the
receivedLT'C is larger. Instead the agents store the data in the received message to-
gether with the correspondingl’C'. When the stored data is first used for computation,
the correspondindT'C' is compared with the localT'C' and the last is updated with
the largest among the two.

4 Validity ofthe AM DS

The validity of the proposed simulation algorithm can be established in two steps. First,
its correspondence to runs ofSynchronous (cycle-counting) Simulatsrpresented.
Understanding the nature of this correspondence, enables to show that a corresponding
synchronous cycle simulator cannot measure concurrent delayed steps ddd ih&

iS hecessary.

In a Synchronous Cycle Simulat¢8CS) [13], each agent can read all messages
that were sent to it in the previous cycle and perform a single computation step. The
computation is followed by the sending of messages (which will be received in the next
cycle). Agents can be idle in some cycles, if they do not receive a message which trig-
gers a computation step. The cost of the algorithm run, is the number of synchronous
cycles performed until a solution is found or a non solution is declared (see [13]). Mes-
sage delay can be simulated in such a synchronous simulator by delivering messages to
agents several cycles after they were sent. Our first step is to show the correspondence
of AMDS and anSC'S.

Theorem 1. Any run of AM DS can be simulated by &ynchronous Cycle Simulator
(SCS). Each cycle:; of theSC'S corresponds to al.7'C' value of AM DS.

Proof. Every message: sent by an agend; to agent4;, using theAM DS, can be
assigned a valué which is the largest value between th&'C' carried bym in the

AMDS run and the value of théT'C' held by A; when it receivesn. Running a
Synchronous Cycle Simulat¢sC'S) and assigning each messagewith the value

d calculated as described above, the message can be delivesgdriacycle d. The
outcome of this speciagdCS is that every agent in every cycle receives the exact
messages as the agents in the correspondlinig) S and the histories of all these mes-
sages are equivalent. In this context the meaning of equivalent histories of messages is
that at each step, the message has the same list of senders/receivers, each recording its
step number which is the same. This means that agents have the same knowledge about
the other agents as the agents performing the corresponding stepsdAnfhss' run.
Assuming the algorithm is deterministic, each agent will perform the same computation
and send the same messages. If the algorithm includes random choices the run can be
simulated by recording M DS choices and forcing the same choice in the synchronous
simulator rund

The theorem demonstrates that for measuring the number of steps of computation,
the asynchronous simulator is equivalent to a stand&rd’ that does not wait for
all agentsto complete their computation in a given cycle, in order to move to the next
cycle. Message delays are simulated simply bys6kS delivering messages in delayed
cycles.

The validity and importance of the asynchronous simulator can now be understood.
Consider the important case where computational effort needs to be measured, in terms
of constraints checks for example. At each cycle agents perform different amounts of
computation, depending on the algorithm, on the arrival of messages, et§(The
has no way to “guess” the amount of computation performed by each agent in any
given step or cycle. It therefore cannot deliver the resulting message in the correct cycle
(one that matches the correct amount of computation and waiting). The natural way
to incorporate the computational cost into the performance measure is to "clock” the
simulator by CCs (for example). But this is equivalent to usingafié D.S as proposed
in section 3.

5 Asynchronous Backtracking search algorithms

This study focuses on asynchronous backtracking algorithms. The algorithms com-
pared are standard asynchronous backtrackdrg(l() [13], asynchronous backtracking
with dynamic agent orderingABT_DQO) [17] and asynchronous weak commitment
(AW) [13]. These algorithms are described in the following subsections.

5.1 Asynchronous Backtracking

The Asynchronous Backtrack algorithm (ABT) was presented in several versions

over the last decade and is described here in accordance with the more recent papers[13,
2]. In the ABT algorithm, agents hold an assignment for their variables at all times,
which is consistent with their view of the state of the system (i.e. tAgimt_view).

When the agent cannot find an assignment consistent withyi¢at_vicw, it changes

— when received(ok?, (z;,d;)) do
1. add(z;, d;) to agent_view;
2. checkagentview;end.do;

— when received(nogood z ;, nogood) do

add nogood to nogood list;

. whennogood contains an agent; that is not its neighbodo
requestry, to addx; as a neighbor,
and addx, di) to agent_view; end_do;

old_value «— current_value; check agentview;

. whenold_value = current_value do

send ¢k?, (x;, current_value)) to z; ; end- do; end-do;

— procedureheck agentview
1. whenagent_view andcurrent_value are not consistertdo
2. if novalue inD; is consistent witltugent_view then backtrack;
3. elseselectd € D; whereagent_view andd are consistent;
4, current_value «— d,
5. send(ok?,(x;, d)) to low_priority_neighbors; end.if;end.do;

— procedurébacktrack

. nogood «— resolve_Nogoods;

. whennogood is an empty setlo

broadcast to other agents that there is no solution;

terminate this algorithmend_do;

. select(z;, d;) wherez; has the lowest priority in nogood;

. send(nogood z;, nogood) to x;;

. remove(z;, d;) from agent_view; end_do;

. checkagentview

NoghrowdhRE

ONOUAWNE

Fig. 2. The ABT algorithm with full Nogood recording

its view by eliminating a conflicting assignment from ilg/ent view data structure
and sends back & ogood.

The ABT algorithm [13], has a total order of priorities among agents. Agents hold a
data structure called gent_view which contains the most recent assignments received
from agents with higher priority. The algorithm starts by each agent assigning its vari-
able, and sending the assignment to neighboring agents with lower priority. When an
agent receives a message containing an assignment:{amessage [13]), it updates
its Agent_view with the received assignment and if needed, replaces its own assign-
ment, to achieve consistency. Agents that reassign their variable, inform their lower
priority neighbors by sending thenk? messages. Agents that cannot find a consistent
assignment, send the inconsistent tuple in thijent_view in a backtrack message
(a Nogood message [13]). Th&ogood is sent to the lowest priority agent in the in-
consistent tuple, and its assignment is removed from thegimt_view. Every agent
that sends aogood message, makes another attempt to assign its variable with an
assignment consistent with its updatégent_view.

Agents that receive & ogood, check its relevance against the content of their
Agent_view. If the Nogood is relevant, the agent stores it and tries to find a consis-

tent assignment. In any case, if the agent receivingbheood keeps its assignment,
it informs the Nogood sender by re-sending it art? message with its assignment. An
agentA; which receives avogood containing an assignment of agefif which is not
included in itsAgent_view, adds the assignment df; to it's Agent_view and sends a
message tol; asking it to add a link between them. In other words,is requested to
inform A; about all assignment changes it performs in the future [2, 13].

The performance ofABT can be strongly improved by requiring agents to read
all messages they receive before performing computation [13]. A formal protocol for
such an algorithm was not published. The idea is not to reassign the variable until all
the messages in the agent’s 'mailbox’ are read anddifient view is updated. This
technique was found to improve the performanced@T on the harder instances of
randomly generated DisCSPs by a factor of 4 [15]. However, this property makes the
efficiency of ABT dependent on the contents of the agent’s mailbox in each step, i.e.
on message delays (see section 6). The consistency dijthe _view held by an agent
with the actual state of the system before it begins the assignment attempt is affected
directly by the number and relevance of the messages it received up to this step.

Another improvement to the performance ABT can be achieved by using the
method for resolving inconsistent subsets of theent_view, based on methods of
dynamic backtracking. A version of BT that uses this method was presented in [2].
In[15] the improvement oft BT using this method oved BT sending its fullAgent_view
as aNogood was found to be minor. In all the experiments in this paper a version of
ABT which includes both of the above improvements is used. Agents read all incoming
messages that were received before performing computatioN agabds are resolved,
using the dynamic backtracking method [2].

The ABT algorithm is presented in figure 2 [13]. The first procedure is performed
when arvk? message is received. The agent adds the received assignmentigeritsview
and calls procedureheck_agent_view. The second procedure is performed when a
Nogood is received. TheVogood is stored (line 1), and a check is made whether it
contains an assignment of a non neighboring agent. If so, the agent sends a message to
the unlinked agent in order to establish a link between them and adds its assignment
to its Agent_view (lines 2-4). Before calling proceducéeck_agent_view, the current
value is stored (line 5). If for any reason the current value remains the same after calling
check_agent_view, anok? message carrying this assignment is sent to the agent from
whom theNogood was received (lines 6,7).

In procedureheckagentviewif the current value is not consistent with tHgent _view
the agent searches its domain for a consistent value. If it does not find one, it calls pro-
cedurebacktrack (line 2). If there is a consistent value in its domain, it is placed as the
current_value andok? messages are sent through all outgoing links (lines 3-5).

In procedurebacktrack the agent resolves its storéddogoods and chooses the
Nogood to be sent (line 1). If theVogood selected is empty, the algorithm is termi-
nated unsuccessfully (lines 2-4). In other cases the agent senie{faed to the agent
with the lowest priority whose assignment is included in ffiegood, removes that
assignment from thd gent _view and callscheck_agent_view.

10

5.2 ABT with Dynamic Ordering (ABT_DO)

For simplicity of presentation we assume that agents sethel messages to all lower
priority agents. In the more realistic form of the algorithm, agents sethelr messages
only to their lower priorityneighbors

Each agent il BT _DO holds aCurrent_order which is an ordered list of pairs.
Every pair includes the ID of one of the agents and a counter. Each agent can propose
a new order for agents that have lower priority, each time it replaces its assignment. An
agentA; can propose an order according to the following rules:

1. Agents with higher priority thaml; and A; itself, do not change priorities in the
new order.

2. Agents with lower priority tham;, in the current order, can change their priorities
in the new order but not to a higher priority than itself.

The counters attached to each agent ID incthéer list form a time-stamp. Initially,
all time-stamp counters are zero and all agents start with the ameent_Order.
Each agent that proposes a new order changes the order of the pairs in its ordered list
and updates the counters as follows:

1. The counters of agents with higher priority th&yy according to th€' urrent_order,
are not changed.
2. The counter of4; is incremented by one.
3. The counters of agents with lower priority thdpin the Current_order are setto
zero.

Consider an example in which agety holds the followingCurrent_order:
(1,4)(2,3)(3,1)(4,0)(5,1). There are 5 agents$; ... A5 and they are ordered according
to their IDs from left to right. After replacing its assignment it changes the order to:
(1,4)(2,4)(4,0)(5,0)(3,0). In the new order, agent; which had higher priority than
A, inthe previous order keeps its place and the value of its counter does not cAange.
also keeps its place and the value of its counter is incremented by one. The rest of the
agents, which have lower priority thahy, in the previous order, change places as long
as they are still located lower thafy,. The new order for these agentsAs, As, A3
and their counters are set to zero.

In ABT, agents sendk? messages to their neighbors whenever they perform an
assignment. IdBT _DO, an agent can choose to changeGtgrrent_order after
changing its assignment. If that is the case, beside sep#iihmessages an agent sends
order messages to all lower priority agents. Tireler message includes the agent’s
newCurrent_order. An agent which receives arder message must determine if the
received order is more updated than its a@urrent_order. It decides by comparing
the time-stamps lexicographically. Since orders are changed according to the above
rules, every two orders must have a common prefix of the agents IDs since the agent
that performs the change does not change its own position and the positions of higher
priority agents. In the above example the common prefix includes agerasnd A,.

Since the agent proposing the new order increases its own counter, when two different
orders are compared, at lease one of the time-stamp counters in the common prefix is
different between the two orders. The more up-to-date order is the one for which the

11

first different counter in the common prefix is larger. In the example above, any agent
which will receive the new order will know it is more updated than the previous order
since the first pair is identical, but the counter of the second pair is larger.

When an agend; receives an order which is more up to date that@itsrent_order,
it replaces it"'urrent_order by the received order. The new order might change the lo-
cation of the receiving agent with respect to other agents (in thethewent_order).
In other words, one of the agents that had higher priority thaaccording to the old
order, now has a lower priority tha#; or vise versa. Thereforel; rechecks the con-
sistency of its current assignment and the validity of its sta¥egoods according to
the new order. If the current assignment is inconsistent according to the new order, the
agent makes a new attempt to assign its variablel B¥"_DO agents sendk? mes-
sages to all constraining agents (i.e. their neighbors in the constraints graph). Although
agents might hold in theidgent_views assignments of agents with lower priorities,
according to theiCurrent_order, they eliminate values from their domasnly if they
violate constraints with higher priority agents

A Nogood message is always checked according toGherent_order of the re-
ceiving agent. If the receiving agent is not the lowest priority agent inNlagood
according to itSCurrent_order, it sends theVogood to the lowest priority agent and
sends ark? message to the sender of thgood. This is a similar operation to that
performed in standard BT for any unaccepted/ogood.

Figures 3 and 4 present the code of asynchronous backtracking with dynamic or-
dering ABT_DO).

When anok? message is received (first procedure in Figure 3), the agent updates
the Agent_view and removes inconsisteMogoods. Then it callscheck agentview
to make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more up to date
than theCurrent_order (second procedure of Figure 3). If so, the received order is
stored anatheck agentview is called to make sure the current assignment is consistent
with the higher priority assignments in thilgent _view.

When aNogood is received (third procedure in Figure 3) the agent first checks if it
is the lowest priority agent in the receiv@tbgood, according to th€'urrent_order. If
not, it sends théVogood to the lowest priority agent and ak? message to th& ogood
sender (lines 1-3). If the receiving agent is the lowest priority agent it performs the same
operations as in the standadd3T algorithm (lines 4-12).

Procedurébacktrack (Figure 4) is the same as in standat@®7". The Nogood is
resolved and the result is sent to the lower priority agent inNlagood, according to
the Current_order.

Procedurecheck agentview (Figure 4) is very similar to standard BT but the
difference is important (lines 5-9). If the current assignment is not consistent and must
be replaced and a new consistent assignment is found, the agent chooses a new order
as itsCurrent_order (line 7) and updates the corresponding time-stamp. Nk,
messages are sent to all neighboring agents. The new order and its time-stamp counters
are sent to all lower priority agents.

12

when received (0k?(z;, d;) do:
1. add(z;,d;) to agent_view;
2. remove inconsistemtogoods;
3. checkagentview;

when received (order,received_order) do:
1. if (received_order is more updated tha@urrent_order)

2 Current_order < received_order;
3. remove inconsistent nogoods;
4 checkagentview;,

when received(nogood z;, nogood) do

1. if (nogood contains an agent; with lower priority thanx;)
2. send fogood (z;, nogood)) to zx;

3. send §k?, (z;, current_value) to x;;

4. else

5. if (nogood consistent with{ Agent_view U current_assignment})
6. storenogood;

7. if (nogood contains an agent; that is not its neighbor)
8. requestry, to addx; as a neighbor;

9. add(xg, di) to agent_view;

10. check agentview;

11. else

12. send@k?, (z;, current_value)) to x;;

Fig. 3. The ABT_DO algorithm (first part)

5.3 Asynchronous Weak Commitment search

The Asynchronous Weak Commitment (AWC) search algorithm presented in [12] was
constructed to increase the efficiency of th87T algorithm. The major difference be-
tween AW C and standardi BT is that the priority order among agents is dynamic in
AW C'. An agent that cannot find a consistent assignment wittligsnt_view, beside
sending aVogood, changes it's priority to be higher than all other agents [12].

In AWC, as inABT_DO, ok? messages must be sent by agents to all their neigh-
bors in the constraints network, not just the agents with lower priayky. messages
must carry the agent’s current priority, since the priorities change, and the other agents
relate to the message received by comparing the received priority, with their own.

Unlike ABT _DO, in case of a backtrack operatiaNpgoods are sent to all agents
whose assignment is included in thevgood. Agents store allVogoods they receive.
Agents also hold a list of th& ogoods they have already sent to avoid sending the same
Nogood again. An exponential siz& ogood list is needed. This of course means that
traversing theVogood list requires exponential computational cost.

The expected advantage of tHél’C algorithm overA BT stems from its dynamic
ordering of variablesAW C is more flexible thamd BT_DO since its completeness is

13

procedurecheck agentview
1. if(current_assignment is not consistent with all
higher priority assignments igent _view)
if (no value inD; is consistent with all higher priority
assignments ingent_view)
backtrack;
else
selectd € D; whereagent_view andd are consistent;
current_value «— d,
Current_order «— choosenew_order
send(ok?,(x;, d)) to neighbors;
send(order,Current_order) to lower priority agents

n

©o~NOO kW

procedurebacktrack

nogood +— resolveinconsistentsubset

if (nogood is empty)
broadcast to other agents that there is no solution;
stop;

select£;, d;) wherez; has the lowest priority in nogood;

send fogood z;, nogood) 10 x;;

remove(z;, d;) from agent_view;

remove allNogoods containing(x;, d;);

check agentview;

©CoOoNoGOr~WNE

Fig. 4. The ABT_DO algorithm(second part)

achieved by storing a complete list 8fogoods. Thus, its reordering is not restricted

by the structure of the search tree. The main heuristic ideflB_" s reordering is to
move an agentl;, which cannot assign its variable due to conflicting assignments of
agents with higher priority, to the head of the priority order. This is expected to force the
agents with the conflicting assignments to check for a value assignment in their domain,
consistent with the assignment 4f [12].

Figure 5 presents theheck agentview andbacktrack procedures oMW C (the
other procedures are similar to standat87"). Procedurecheck agentview is very
similar to that of the dynamic ordered ABRBT_DO). The consistent asignment is
checked to be consistent only against the assigtnments iAdbiet_view which have
higher priority. However, a check must be made that it does not violate any of the stored
Nogoods. Once a consistent assignment is found, it is sent to all the agent’s neighbors.
In procedurebacktrack there are two major difference fromBT'. First the produced
Nogood is sent to all the agents whose assignment is included ilVhwod (and not
just to the last one). Second, the agent changes its priority to the highest one, before
attemting to find a consistent assignment.

14

procedurecheck agentview
1. whenagent_view andcurrent_value are not consistent
if (no value inD; is consistent wittugent_view)
backtrack;
else
selectd € D; whereagent_view andd are consistent;
current_value «— d;
send(ok?,(x;, d)) to neighbors;

NoorwdN

procedurebacktrack
nogood «+ resolveinconsistentsubset
if (nogood is empty)
broadcast to other agents that there is no solution;
stop;
send fogood z;, nogood) to all agents imogood;
priority <— maxpriorityinagent _view + 1
selecd € D; whereagent view andd are consistent;
current_value < d;
send(ok?,(x;, d)) to neighbors;

©oNoO~®WDNE

Fig. 5. The AWC algorithm

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by se-
lecting the probability; of a constraint among any pair of variables and the probability
p2, for the occurrence of a violation among two assignments of values to a constrained
pair of variables. Such uniform random constraints networks weériables k values

in each domain, a constraints densityzefand tightnes®., are commonly used in
experimental evaluations of CSP algorithms (cf. [7, 10]). The experiments were con-
ducted on networks with 15 Agents (= 15) and 10 valuesk = 10). Two density
parameters were used, = 0.4 andp; = 0.7. The value ofp, was varied betwee.1

to 0.9. This creates problems that cover a wide range of difficulty, from easy problem
instances to instances that take several CPU minutes to solve. For eveny, paly in

the experiments we present the average over 50 randomly generated instances.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of non-concurrent constraint chedk§('C's) [6, 16], to measure
computational cost. This measures the combined path of computation, from beginning
to end, in terms of constraint checks. The other measure used is the communication
load, in the form of the total number of messages sent [5]. In order to evaluate the
number of non-concurrent CCs including message delays, the simulator described in
section 3 is used.

In the first set of experiments the impact of message delay was tested ai3fhie
algorithm with and without dynamic agent ordering. Figure 6 presents the number of
non-concurrent constraints checks performedd#yT" and dynamic ordered BT on

15

120000 A

100000 - A —+—ABT_DO
/ I‘\
80000 !_«’ \. — - —ABT_DO_delay
L ;. 4
1 b --me-c ART
5 60000) .
40000 1 ,f_,-"-s b - ABT_delay

20000 4

0 f f

Fig. 6. Non-concurrent constraint checks performed by ABT and ABJ with and without
message delayg{ = 0.4)

80000 -
80000 4 A —+—ABT_DO
70000 A
BO00D -

& 50000

w

= 40000 A
30000 -
20000 -

10000
D - - T

Fig. 7. Number of messages sent by ABT and ABD with and without message delays (=
0.4)

systems with optimal communication (i.e. with no message delays) and on systems
with random message delays between 50 and10@. It is apparent that the impact of
meaasge delays on standarB7 is larger than on dynamically orderetd3T'. Figure 7
presents the total number of messages sent by the agents performing the algorithms.
The effect of message delays is similar on both algorithms. The number of messages
increases by abo0%.

Figures 8 and 9 present similar results for more danse”'SPs (p; = 0.7). The
factor of deterioration in the presence of message delays is similar to the factor in sparce
DisCSPs.

In the second set of experiments, the well knad#/ C' algorithm was evaluated
on systems with optimal communication and on systems with random message delays.

16

300000 -

250000 A l}?\ —e— ABT DO
P
S
200000 ;’ i — 4 —ABT_DO_delay
/
» : v
© 150000 | ! y . m---ABT
o Foa
Do mn
100000 4 PN — - —ABT_delay

50000

a &

Fig. 8. Non-concurrent constraint checks performed by ABT and ABJ with and without
message delayg{ = 0.7)

350000 -
300000 R —+—ABTDO
I
250000 - ! \\ - - —ABT_DO_delay
r
o 200000 DA
® i X -ow- ABT
= 150000
100000 4 —-x-—ABT delay
50000
0 = T T— T T T I - = 1

Fig. 9. Number of messages sent by ABT and ABD with and without message delays (=
0.7)

Experiments were performed on smaller systems with 10 agents 4in@€ does not
complete its runs in a reasonable time for larger problems in the presence of message
delays.

Figure 10 presents the number of non-concurrent constraints checks performed by
AWC on sparse system®(= 0.4). The factor of deterioration iNCCC'S for
AW is smaller than the factor fod BT and closer to the factor of deterioration for
ABT_DO. However, in the case of network load, as presented in Figure 11, the factor
of deterioration in the presense of message delays is much larger than for both versions
of ABT.

Figures 12 and 13 present similar results for debiseC'S Ps (p1 = 0.7).

17

40000 q —=— delay
35000 |
30000 A
25000 |
§ 20000 |
15000 1
10000 A
5000 -

0 b T b T & T T T T T T 1

- —& —no delay

Fig. 10.Non-concurrent constraint checks performed by AWC with and without message delays

(p1=10.4)

30000 —a— delay
25000 4 - =& —na delay
20000 +
15000 A

10000

Msgs

5000 +

Fig. 11.Number of messages sent by AWC with and without message delays (.4)

7 Discussion

Two sets of experiments to investigate the effect of message delays on the performance
of Asynchronous Backtracking algorithms t¥sC'S Ps were performed.

In order to simulate message delays and include their impact in the experimental
results, an asynchronous simulator which delivers messages to agents according to a
logical time counter L7'C) of non-concurrent steps of computation (or non-concurrent
constraints checks) was introduced. When computing logical time, the addition of mes-
sage delay to the total cost occurs only when no concurrent computation is performed.

While in systems with perfect communication, where there are no message delays,
the number of synchronous steps of computation (on a synchronous simulator) is a good
measure of the time of the algorithm run, the case is different on realistic systems with
message delays. The number of non-concurrent constraints checks has to take delays

18

00000
200000
700000 A
600000 A
500000 A
400000 A
300000 A
200000 A
100000

0 e e T . T

o1 02 03 04 O.éi o 07 08 09
p

—a— delay

— =& —no delay

CCs

Fig. 12.Non-concurrent constraint checks performed by AWC with and without message delays

(p1 =0.7)

600000 A

500000 - —e—delay

400000 - - —no delay

300000

Msgs

200000

100000

Fig. 13.Number of messages sent by AWC with and without message delays (.7)

into account. When the number of non-concurrent CCs is calculated, it reveals a large
impact of message delay on the performance of asynchronous backtracking algorithms..

In order to adjust the non-concurrent computational effort counting method of [6],
for algorithms with dynamic ordering in which not every message triggers computation,
the agents of the simulator store the information they receive and relate to the counters
which represent their corresponding sending time, only when the data carried by the
message is first used for computation.

19

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of random message delays, some of their computation can be irrelevant due to
inconsistentdgent_views while the updating message is delayed. This can explain the
large impact of message delays on the computation performed by ABT in our experi-
ments and in a former study [1].

In terms of network load, the results of section 6 show that asynchronous backtrack-
ing puts a heavy load on the network, which grows in the case of message delays. The
number of messages sent by the asychronous weak commitment algofithif) is
larger than inABT'. This can be explained due to the fact that the number of messages
sent in every step b AW C is larger than inABT'. Therefore, increase in the number
of steps has a lager impact on the network load.

8 Conclusions

A study of the impact of message delay on the performance of DisCSP search algo-
rithms was presented. A method for simulating logical time, in logical units such as
non-concurrent steps of computation or non-concurrent constraint checks, has been in-
troduced. The number of non-concurrent constraints checks takes into account the im-
pact of message delays on the actual runtime of DisCSP algorithms. The impact of
mesage delays on asynchronous backtrackiag/X), is large. Both the computational
effort and the load on the network grow by a large factor, This strengthens the results
of [9, 1].

The effect of message delay ohBT with dynamic ordering is smaller but still
significant. The runtime performance of tHé’C algorithm reacts similarlly toA BT
with dynamic ordering in the presence of message delays. However, it imposes a larger
load on the network.

Acknowledgment: The authors wish to thank Moshe Zazone for programming and
performing the experiments with th&ll/C algorithm.

References

[1] R. Bejar, C. Domshlak, C. Fernandez, , K. Gomes, B. Krishnamachari, B.Selman, and
M.Valls. Sensor networks and distributed csp: communication, computation and complex-
ity. Artificial Intelligence 161:1-2:117-148, January 2005.

[2] C. Bessiere, A. Maestre, |. Brito, and P. Meseguer. Asynchronous backtracking without
adding links: a new member in the abt famibftificial Intelligence 161:1-2:7—-24, January
2005.

[3] Rina DechterConstraints Processinglorgan Kaufman, 2003.

[4] L. Lamport. Time, clocks, and the ordering of events in distributed sys@Bsmmunication
of the ACM 2:95-114, April 1978.

[5] N.A. Lynch. Distributed Algorithms Morgan Kaufmann Series, 1997.

[6] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed
constraints processing algorithms. Pmoc. AAMAS-2002 Workshop on Distributed Con-
straint Reasoning DCPpages 86—-93, Bologna, July 2002.

20

(7]
(8]
9]
(10]

(11]

(12]

(13]
(14]
(15]
(16]

(17]

P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-
lems. Artificial Intelligence 81:81-109, 1996.

M. C. Silaghi. Asynchronously Solving Problems with Privacy RequiremePkd thesis,
Swiss Federal Institute of Technology (EPFL), 2002.

M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfactionrtificial Intelligence 161:1-2:25-54, January 2005.

B. M. Smith. Locating the phase transition in binary constraint satisfaction probkertis.

ficial Intelligence 81:155 — 181, 1996.

G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps).@onstraint Processing-9@ages 561-2, New Hamphshire,
October 1996.

M. Yokoo. Asynchronous weak-commitment search for solving distributed constraint sat-
isfaction problems. IProc. 1st Intrnat. Conf. on Const. Progpages 88 — 102, Cassis,
France, 1995.

M. Yokoo. Algorithms for distributed constraint satisfaction problems: A revietu-
tonomous Agents & Multi-Agent Sy8:198-212, 2000.

M. Yokoo, K. Hirayama, and K. Sycara. The phase transition in distributed constraint
satisfaction problems: First results. Pmoc. CP-2000pages 515-519, Singapore, 2000.

R. Zivan and A. Meisels. Synchronous vs asynchronous search on discspsoclnist
European Workshop on Multi Agent System, EUMB&ord, December 2003.

R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csp€Pin
2004 pages 782-7, Toronto, 2004.

R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps. In
CP-2005 pages 32-46, Sigtes (Barcelona), Spain, 2005.

21

