Min-Domain retroactive ordering for Asynchronous Backtracking *

Roie Zivan, Moshe Zazone, and Amnon Meisels

Department of Computer Science,

Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel {zivanr,moshezaz,am} @cs.bgu.ac.il

Abstract Ordering heuristics are a powerful tool in CSP search algo-
rithms. Among the most successful ordering heuristics are heuristics which
enforce a fail first strategy by using the Min-domain property (Haralick and
Elliott, 1980; Bessiere and Regin, 1996; Smith and Grant, 1998; Dechter,
2003). Ordering heuristics have been introduced recently to Asynchronous
backtracking (ABT), for distributed constraints satisfaction (DisCSP) (Zivan
and Meisels, 2005). However, the pioneering study of dynamically ordered
ABT, ABT_DO, has shown that a straightforward implementation of the
Min-domain heuristic does not produce the expected improvement over a
static ordering.

The present paper proposes an asynchronous dynamic ordering which
does not follow the standard restrictions on the position of reordered agents
in ABT_DO. Agents can be moved to a position that is higher than that of
the target of the backtrack.

Combining the Nogood-triggered heuristic and the Min-domain property
in this new class of heuristics results in the best performing version of ABT_DO.
The new version of retroactively ordered ABT is faster by a large factor than
the best form of ABT.

1. Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents,
each holding its local constraints network, that are connected by constraints
among variables of different agents. Agents assign values to variables, at-
tempting to generate a locally consistent assignment that is also consistent
with all constraints between agents (cf. (Yokoo and Hirayama, 2000; Solo-
torevsky et al., 1996)). To achieve this goal, agents check the value assign-
ments to their variables for local consistency and exchange messages with
other agents, to check consistency of their proposed assignments against con-
straints with variables owned by different agents (Yokoo and Hirayama, 2000;
Bessiere et al., 2005).

* Supported by the Lynn and William Frankel center for Computer Sciences and the Paul
Ivanier Center for Robotics and Production Management.

(© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.1

A search procedure for a consistent assignment of all agents in a dis-
tributed CSP (DisCSP), is a distributed algorithm. All agents cooperate in
search for a globally consistent solution. The solution involves assignments of
all agents to all their variables and exchange of information among all agents,
to check the consistency of assignments with constraints among agents.

Asynchronous Backtracking (ABT) is one of the most efficient and robust
algorithms for solving distributed constraints satisfaction problems. Asyn-
chronous Backtracking was first presented by Yokoo (Yokoo et al., 1998;
Yokoo and Hirayama, 2000) and was developed further and studied in (Hamadi,
2001; Bessiere et al., 2001; Silaghi and Faltings, 2005; Bessiere et al., 2005).
Agents in the ABT algorithms perform assignments asynchronously accord-
ing to their current view of the system’s state. The method performed by
each agent is in general simple. Later versions of ABT use polynomial space
memory and perform dynamic backtracking (Bessiere et al., 2001; Bessiere
et al., 2005). The versions of asynchronous backtracking in all of the above
studies use a static priority order among all agents.

An asynchronous algorithm with dynamic ordering was proposed in (Yokoo,
1995), Asynchronous Weak Commitment (AW C'). According to (Yokoo and
Hirayama, 2000), AW C outperforms ABT on specific applications (N-queens,
Graph-coloring). The heuristic used by AW C is very specific. Move any
agent that sends back a Nogood to be first in the order of all agents (Yokoo
and Hirayama, 2000). However, in order to be complete, AW C' uses expo-
nential space for storing Nogoods (Yokoo and Hirayama, 2000). This can be
a problem when solving hard instances of DisC'SPs.

An attempt to combine ABT with AW C' was reported by (Silaghi ef al.,
2001). In order to perform asynchronous finite reordering operations (Silaghi
et al., 2001) propose that the reordering operation will be performed by ab-
stract agents. In a later study the exact heuristic of Dynamic Backtracking (Gins-
berg, 1993) was proposed for ABT with dynamic ordering (Silaghi, 2006).
The results presented in both studies (Silaghi et al., 2001; Silaghi, 2006) show
minor improvements to A BT with static ordering.

A general algorithm for dynamic ordering in asynchronous backtracking,
ABT_DO, was presented in (Zivan and Meisels, 2005). The ABT_DQO al-
gorithm uses polynomial space, similarly to standard ABT'. In the ABT _DO
algorithm the agents of the DisC'SP choose orders dynamically and asyn-
chronously. Agents in ABT'_DO perform computation according to the cur-
rent, most updated order they hold. There are three rules on the changes of
orderings of agents in ABT_DO. Each agent can change the order of agents
who have a lower priority than its own. An agent can propose an order change
each time it replaces its assignment. Each order is time-stamped according
to the assignments performed by agents (Zivan and Meisels, 2006a). The
method of time-stamping for defining the most updated order is the same
that was used in (Nguyen et al., 2004; Meisels and Zivan, 2007) for choosing

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.2

3

the most updated partial assignment. A simple array of counters represents
the priority of a proposed order, according to the global search tree.

The results presented in (Zivan and Meisels, 2006a) show that the perfor-
mance of ABT _DO is highly dependent on the selected heuristic. The classic
Min-domain heuristic was implemented by including the current domain size
of agents in the messages they send. Although this heuristic has privacy con-
sequences it was expected to improve the runtime by a large factor as in the
case of sequential algorithms. Surprisingly, this heuristic which in central-
ized algorithms and in distributed algorithms using a sequential assignment
protocol produces a large improvement over static order, was found not to
be efficient for Asynchronous Backtracking. A heuristic which achieved a
significant improvement was inspired by Dynamic Backtracking (Ginsberg,
1993; Baker, 1994) in which the agent which sends a Nogood is advanced
in the new order to be immediately after the agent to whom the Nogood was
sent. The explanation for the success of this heuristic is that it does not cause
the removal of relevant Nogoods as do other heuristics (Zivan and Meisels,
2006a).

The present paper investigates the relation between the success of this
heuristic and the Min-domain heuristic which was found to be successful for
sequential assignments algorithms on DisCSPs (Brito and Meseguer, 2004;
Meisels and Zivan, 2007). We demonstrate the effect of Nogood loss as a
result of reordering on the failure of the Min-domain heuristic. Removal of
Nogoods cause the return of values to the domains of agents. This harms
the accuracy of the information that agents hold on the domain size of other
agents. On the other hand, the Nogood-triggered heuristic of (Zivan and Meisels,
2006a) does not lose valid information and moves agents with a potential of
having a smaller domain to a higher position.

In order to maximize the Min-domain property, a more flexible heuristic is
proposed, which violates the restrictions on the ordering of agents in (Zivan
and Meisels, 2006a). We study changes of order that move agents to a higher
position, replacing agents that were ahead of them including the first agent.
This new type of heuristics is termed Retroactive ordering and is based on
a slightly modified version of ABT_DO. The studied scheme of dynamic
variable ordering is more flexible than that of any centralized algorithm. As in
ABT _DO, agents change order only when an assignment is replaced. How-
ever, agents can be moved to higher priority positions than the agent which
changes the assignment. The degree of flexibility of the heuristic is dependent
upon the size of Nogood storage which is predefined. Agents are limited to
store Nogoods equal or smaller than a predefined size k. When the Nogood
is smaller or equal to k the agent which found the Nogood can be moved to
a position in front of the agents included in the Nogood. These agents are
required to store the Nogood. A specific case of this general definition is the
AW C algorithm (Yokoo and Hirayama, 2000). In the case of AW C one has

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.3

4

k = n and all Nogoods are stored. The other extreme is to not allow the move
of agents in front of the last agent in the Nogood which is not the culprit.

The results presented in the present paper show that moving the Nogood
sender as high as possible in the priority order is successful only if the domain
size of agents is taken into consideration. Our experiments show that the
successful heuristics are those that support a Min-domain scheme in which
agents are moved to a higher position only if their current domain size is
smaller than the current domain of agents they are moved in front of. Moving
an agent before the agents which are included in the Nogood actually en-
larges its domain. The best heuristic in the present paper is that agents which
generate a Nogood are placed in the new order between the last and the sec-
ond last agents in the generated /Nogood. This heuristic is the asynchronous
form of the Min-Domain heuristic and does not require any additional stor-
age of Nogoods. Agents are moved to a higher position only if their domain is
smaller than the agents they pass on the way up. Our results on both random
DisCSPs and on structured DisC'SPs show that the proposed heuristic
improves the best results to date by a large factor.

Distributed C'SPs are presented in Section 2. A description of Asyn-
chronous backtracking with dynamic ordering (ABT_DOQ) and its best heuris-
tic is presented in Section 4. Section 5 presents an investigation of the existing
heuristics and offers reasons for their performance in previous papers. Sec-
tion 6 present the general scheme of retroactive heuristics for ABT_DO and
a correctness proof. An extensive experimental evaluation, which compares
standard and retroactive heuristics of ABT_DO is in Section 8. The exper-
iments were conducted on randomly generated DisCSPs and on Course
Scheduling problems. Section 9 presents a discussion of the relation between
the experimental results and the Min-domain heuristic.

2. Distributed Constraint Satisfaction

A distributed constraint satisfaction problem - DisCSP is composed of a
set of k agents A1, As, ..., Ag. Each agent A; contains a set of constrained
variables X;,, Xj,, ..., Xj, . Constraints or relations R are subsets of the
Cartesian product of the domains of the constrained variables. For a set of
constrained variables X, , Xj,, ..., X;,,,, with domains of values for each
variable D;, , Dj,, ..., Dp,,, the constraint is defined as R C D;, x Dj, x
... X Dy,,. A binary constraint R;; between any two variables X; and X;
is a subset of the Cartesian product of their domains; ;; € D; x D;. In
a distributed constraint satisfaction problem DisCSP, constrained variables
can belong to different agents (Yokoo et al., 1998). Each agent has a set of
constrained variables, i.e. a local constraint network.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.4

5

An assignment (or a label) is a pair < var,val >, where var is a variable
of some agent and val is a value from var’s domain that is assigned to it.
A compound label (or a partial solution) is a set of assignments of values
to a set of variables. A solution P to a DisCSP is a compound label that
includes all variables of all agents, that satisfies all the constraints. Agents
check assignments of values against non-local constraints by communicating
with other agents through sending and receiving messages. Agents exchange
messages with agents whose assignments may be in conflict (Bessiere ef al.,
2005). Agents connected by constraints are therefore called neighbors. The
ordering of agents is termed priority, so that agents that are later in the order
are termed “lower priority agents” (Yokoo and Hirayama, 2000; Bessiere et
al., 2005).

The following assumptions are routinely made in studies of DisC'SPs
and are assumed to hold in the present study (Yokoo and Hirayama, 2000;
Bessiere et al., 2005).

1. All agents hold exactly one variable.
2. Messages arrive at their destination in finite time.

3. Messages sent by agent A; to agent A; are received by A; in the order
they were sent.

3. Asynchronous Backtracking (ABT)

The Asynchronous Backtracking algorithm, was presented in several versions

over the last decade and is described here in the form of the more recent
papers (Yokoo and Hirayama, 2000; Bessiere et al., 2005). In the ABT al-
gorithm, agents hold an assignment for their variables at all times, which is
consistent with their view of the state of the system (i.e. their Agent_view).
When the agent cannot find an assignment which is consistent with its Agent_view,
it changes its view by eliminating a conflicting assignment from its Agent_view
data structure. It then sends back a Nogood which is based on its former
inconsistent Agent_view and makes another attempt to assign its variable
(Yokoo and Hirayama, 2000; Bessiere et al., 2005).

The code of the Asynchronous Backtracking algorithm (ABT) is pre-
sented in figure 1. ABT has a total order of priorities among agents. Agents
hold a data structure called Agent_view which contains the most recent as-
signments received from agents with higher priority. The algorithm starts by
each agent assigning its variable, and sending the assignment to neighboring
agents with lower priority. When an agent receives a message containing an
assignment (an ok? message (Yokoo and Hirayama, 2000)), it updates its

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.5

6

when received (ok?, (z;,d;)) do
1. add (zj,d;) to agent_view;
2. check_agent_view;end_do;

when received (nogood, z;, nogood) do

1. add nogood to nogood list;

2. when nogood contains an agent x;, that is not a neighbor do
3 request zj, to add x; as a neighbor,

4, and add (xg, di) to agent view; end_do;

5. old_value <+ current_value; check_agent_view;

6. when old_value = current_value do

7 send (0k?, (x;, current_value)) to x; ; end_ do; end_do;

procedure check_agent_view

1. when agent_view and current_value are not consistent do

2 if no value in D; is consistent with agent_view then backtrack;
3. else select d € D; where agent_view and d are consistent;

4 current_value «— d;

5 send (ok?,(z;,d)) to low_priority_neighbors; end_if;end_do;

procedure backtrack
nogood «— resolve_N ogoods;
if nogood is an empty set do
broadcast to other agents that there is no solution;
terminate this algorithm; end_do;
select (z;, d;) where z; has the lowest priority in nogood;
send (nogood, x;, nogood) to x;
remove (z;,d;) from agent_view; end_do;
check_agent_view

PN B D=

Figure 1. Standard ABT algorithm

Agent_view with the received assignment and if needed replaces its own
assignment, to achieve consistency (first procedure in Figure 1). Agents that
reassign their variable, inform their lower priority neighbors by sending them
ok? messages (Procedure check_agent_view, lines 3-5). Agents that cannot
find a consistent assignment, send the inconsistent tuple in their Agent_view
in a backtrack message (a INogood message (Yokoo and Hirayama, 2000))
and remove from their Agent_view the assignment of the lowest priority
agent in the inconsistent tuple. In the simplest form of the ABT algorithm,
the complete Agent_view is sent as a Nogood (Yokoo and Hirayama, 2000).
The Nogood is sent to the lowest priority agent whose assignment is included

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.6

7

in the Nogood. After the culprit assignment is removed from the AgentView
the agent makes another attempt to assign its variable by calling procedure
check_agent_view (procedure backtrack in Figure 1).

Agents that receive a INogood, check its relevance against the content of
their Agent_view. If the Nogood is relevant the agent stores it, and tries
to find a consistent assignment. If the agent receiving the Nogood keeps its
assignment, it informs the Nogood sender by resending it an ok? message
with its assignment. An agent A; which receives a Nogood containing an
assignment of agent A; which is not included in its Agent_view, adds the
assignment of A; to its Agent_view and sends a message to A; asking it
to add a link between them, i.e. inform A; about all assignment changes it
performs in the future (second procedure in Figure 1).

The performance of ABT can be improved immensely by requiring agents
to read all messages they receive before performing computation (Yokoo and
Hirayama, 2000; Bessiere ef al., 2005). This technique was found to improve
the performance of Asynchronous Backtracking on the harder instances of
randomly generated Distributed CSPs by a large factor
(Zivan and Meisels, 2003; Brito and Meseguer, 2004).

Another improvement to the performance of ABT can be achieved by
using the method for resolving inconsistent subsets of the Agent_view, based
on methods of dynamic backtrack. A version of ABT that uses this method
was presented in
(Bessiere et al., 2005). In all the experiments in this paper, a version of ABT
which includes both of the above improvements is used. Agents read all
incoming messages that were received before performing computation and
Nogoods are resolved, using the dynamic backtracking method.

4. ABT with Dynamic Ordering

Each agent in ABT_DO holds a Current_order which is an ordered list of
pairs. Every pair includes the ID of one of the agents and a counter. Each
agent can propose a new order for agents that have lower priority (i.e. are in
a lower position in the current order), each time it replaces its assignment.
This way the sending of an ordering proposal message always coincides with
an assignment message (an ok? message (Yokoo, 2000)). An agent A; can
propose an order according to the following rules:

1. Agents with higher priority than A; and A; itself, do not change priorities
in the new order.

2. Agents with lower priority than A;, in the current order, can change their
priorities in the new order but not to a higher priority than A; itself (This
rule enables a more flexible order than in the centralized case).

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.7

The counters attached to each agent ID in the order list form a time-stamp.
Initially, all time-stamp counters are set to zero and all agents start with the
same Current_order. Each agent A; that proposes a new order, changes the
order of the pairs in its own ordered list and updates the counters as follows:

1. The counters of agents with higher priority than A;, according to the
Current_order, are not changed.

2. The counter of A; is incremented by one.

3. The counters of agents with lower priority than A; in the Current_order
are set to zero.

In ABT, agents send ok? messages to their neighbors whenever they
perform an assignment. In ABT _DO, an agent can choose to change its
Current_order after changing its assignment. If that is the case, besides
sending ok? messages an agent sends order messages to all lower priority
agents. The order message includes the agent’s new Current_order.

An agent which receives an order message must determine if the received
order is more updated than its own C'urrent_order. It decides by comparing
the time-stamps lexicographically. Since orders are changed according to the
above rules, every two orders must have a common prefix of agents’ IDs.
The agent that performs the change does not change its own position and the
positions of higher priority agents.

When an agent A; receives an order which is more up to date than its
Current_order, it replaces its Current_order by the received order. The
new order might change the location of the receiving agent with respect to
other agents (in the new Current_order). In other words, one of the agents
that had higher priority than A; according to the old order, now has a lower
priority than A; or vice versa. Therefore, A; rechecks the consistency of
its current assignment and the validity of its stored Nogoods (the explana-
tions for removing values from its domain (Yokoo, 2000; Zivan and Meisels,
2006a)) according to the new order. If the current assignment is inconsistent
according to the new order, the agent makes a new attempt to assign its vari-
able. In ABT_DO agents send ok? messages to all constraining agents (i.e.
their neighbors in the constraints graph). Although agents might hold in their
Agent_views assignments of agents with lower priorities, according to their
Current_order, they eliminate values from their domain only if they violate
constraints with higher priority agents.

A Nogood message (i.e. a message carrying a partial assignment which
was found to be inconsistent (Yokoo, 2000; Zivan and Meisels, 2006a)) is
always checked according to the Current_order of the receiving agent. If
the receiving agent is not the lowest priority agent in the Nogood according
to its Current_order, it sends the Nogood to the lowest priority agent and

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.8

when received (ok?, (z;,d;) do:
1. add (zj,d;) to agent_view;
2. remove inconsistent nogoods;
3. check_agent_view;

when received (order, received_order) do:

1. if (received_order is more updated than Current_order)
2. Current_order < received_order;

3. remove inconsistent nogoods;

4, check_agent_view;

when received (nogood, z;, nogood) do

1. if (nogood contains an agent x;, with lower priority than x;)
2. send (nogood, (x;, nogood)) to z;

3. send (ok?, (x;, current_value) to xj;

4. else

5. if (nogood consistent with { Agent_view U current_assignment})
6. store nogood,

7. if (nogood contains an agent x, that is not its neighbor)
8. request zj, to add z; as a neighbor;

9. add (zy, di) to agent_view;

10. check_agent_view;

11. else

12. send (ok?, (z;, current_value)) to x;;

Figure 2. The ABT_DO algorithm (first part)

sends an ok? message to the sender of the Nogood. This is a similar oper-
ation to that performed in standard ABT for any unaccepted (inconsistent)
Nogood (Bessiere et al., 2005).

Figures 2 and 3 present the code of asynchronous backtracking with
dynamic ordering (ABT_DO).

When an ok? message is received (first procedure in Figure 2), the agent
updates the Agent_view and removes inconsistent Nogoods. Then it calls
check_agent_view to make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more
up to date than the Current_order (second procedure of Figure 2). If so,
the received order is stored and check_agent_view is called to make sure the
current assignment is consistent with the higher priority assignments in the
Agent_view.

When a Nogood is received (third procedure in Figure 2) the agent first
checks if it is the lowest priority agent in the received N ogood, according to

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.9

10

procedure check_agent_view
1. if(current_assignment is not consistent with all
higher priority assignments in agent_view)
2. if(no value in D; is consistent with all higher priority
assignments in agent_view)
backtrack;
else
select d € D; where agent_view and d are consistent;
current_value «— d;
Current_order < choose_new_order
send (0k?,(xz;, d)) to neighbors;
send (order,Current_order) to lower priority agents;

e Al

procedure backtrack

1. nogood < resolve_inconsistent_subset;

2. if (nogood is empty)

3 broadcast to other agents that there is no solution;

4 stop;

5. select (z;, d;) where x; has the lowest priority in nogood;
6. send (nogood, x;, nogood) to x;;

7. remove (x;,d;) from agent_view;

8. remove all Nogoods containing (z;, d;);

9. check_agent_view;

Figure 3. The ABT_DO algorithm(second part)

the C'urrent_order. If not, it sends the Nogood to the lowest priority agent
and an ok? message to the Nogood sender (lines 1-3). If the receiving agent
is the lowest priority agent it performs the same operations as in the standard
ABT algorithm (lines 4-12).

Procedure backtrack (Figure 3) is the same as in standard ABT. The
Nogood is resolved and the result is sent to the lower priority agent in the
Nogood, according to the Current_order.

Procedure check_agent_view (Figure 3) is very similar to standard ABT
but the difference is important (lines 5-9). If the current assignment is not
consistent and must be replaced and a new consistent assignment is found,
the agent chooses a new order as its Current_order (line 7) and updates
the corresponding time-stamp. Next, ok? messages are sent to all neighbor-
ing agents. The new order and its time-stamp counters are sent to all lower
priority agents.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.10

11

A, A, A, A, As

® XPAal [XiAE XA [A,b]
b ® ® IX-+A bl [A.a]
C c c @ S [A.a]

Figure 4. Heuristics example before backtrack.

A, A, Ag A, A,
® RO A al [AL
b X4aa | XA ®) W+ A, b]
C o . (A2l c @

Figure 5. After reordering using the NG-triggered heuristic.

5. Investigation of asynchronous heuristics

In this section we offer explanations for the failure of the Min-domain heuris-
tic and the success of the Nogood-triggered heuristic when used in asyn-
chronous backtracking (Zivan and Meisels, 2005; Zivan and Meisels, 2006a).
Consider the example in Figure 4. The agents are ordered by their indices.
Each agent has a single variable and three values, a, b and ¢, in its domain.
The eliminated values are crossed and each points to its eliminating expla-
nation (i.e. the assignment which caused its removal). The circled values
represent the current assignments. In this example, agent A5 has exhausted
its domain and must create a N ogood. The Nogood it generates includes the
assignments of A1 and As therefore the Nogood is sent to As. According
to the rules of the ABT_DQO algorithm agent As can reorder agents As, Ay
and As. Now, if it will reorder them according to their current domain sizes
then A3 and A4 will switch places. But, since both of the values eliminated
from the domain of A4 are in conflict with the assignment of As then after

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.11

12

they change places, these values will be returned to the domain of A4 and its
domain size will be larger than the domain of As.

In contrast, if Ao reorders according to the Nogood-triggered heuristic
then the only agent to change places is As which is moved to be after Ao
and before A3. Now, after As replaces its assignment we get the situation in
Figure 5. We can see that an agent with a small domain was moved forward
while the others kept their domain sizes and places.

The example demonstrates why the Min-domain heuristic fails when used
in asynchronous backtracking. In asynchronous backtracking, all agents hold
an assignment throughout the search. Conflicts with these assignments effect
the size of domains of other agents. For each value which is removed from an
agent’s domain an explanation Nogood is stored. When an agent is moved in
front of an agent whose assignment is included in one of its Nogoods, this
Nogood must be eliminated and the corresponding value is returned to the
domain. Thus, in contrast to sequential ordering algorithms, in asynchronous
backtracking the resulting domain sizes after reordering cannot be anticipated
by the ordering agent. The example demonstrates how this phenomena does
not affect the Nogood-triggered heuristic.

Following the example one can see that the Nogood-triggered heuristic
is successful because in many cases it moves an agent with a small domain
to a higher position. Only values whose Nogood explanation includes the
assignment of the culprit agent are returned to the moving agent’s domain. In
fact, the agent can be moved up passed the culprit, and as long as it does not
pass the second last assignment in the Nogood its domain size will stay the
same. In Figure 5, Agent A5 is moved right after agent As. Its domain size
is one, since the Nogoods of its other two values are valid. If A5 is moved
before Ao its domain size will stay the same as both eliminating Nogoods
include only the assignment of A;. However, if A5 will be moved in front of
Aj then all its values will return to its domain. This possibility of moving an
agent with a small domain beyond the culprit agent to a higher position is the
basic motivation for retroactive ordering.

6. Retroactive ordering heuristics for ABT

In contrast to the rules of ABT _DO of the previous section, the present paper
proposes a new type of ordering. The new type of ordering can change the
order of agents with higher priority than the agent which replaces its assign-
ment. The best heuristic which was presented in (Zivan and Meisels, 2006a)
moved an agent which has detected a dead end and created a Nogood, to be
right after the agent it has sent the Nogood to. A retroactive heuristic would
enable moving the Nogood sender to a higher position than the Nogood
receiver. In order to preserve the correctness of the algorithm, agents must

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.12

13

be allowed to store Nogoods. In order to generate a general scheme for
retroactive heuristics, one can define a global space limit for the storage of
Nogoods. The specific realization is to limit the storage of Nogoods that are
smaller or equal to some predefined size k. This makes the space complexity
of the agents exponential in k so keeping k£ small is important.

As in standard ABT _DOQ, the proposed ordering heuristic is triggered
by the sending of a Nogood. The reordering operation can be generated by
either the Nogood generator or by the Nogood receiver (but not by both). In
contrast to (Zivan and Meisels, 2005; Zivan and Meisels, 2006a) we choose
the Nogood sender to be the one to reorder. This is since the only agent which
can lose a relevant Nogood as a result of the reordering is the N ogood sender
(the only one moving to a higher position). Therefore, since it is aware of its
own state and the others do not lose information, the Nogood sender is the
best candidate for selecting the new order.

The new order is selected according to the following rules:

1. The Nogood generator can be moved to any position in the new order.

2. If the Nogood generator is moved to a position which is before the second
last in the Nogood (the one before the culprit) all the agents included in
the Nogood must hold the Nogood until the search is terminated.

3. Agents with lower priority than the Nogood receiver can change order
but not move in front of it (as in standard ABT_DO).

According to the above rules, agents which detect a dead end are moved
to a higher position in the priority order. If the length of the created Nogood
is larger than k, they can be moved up to the place that is right after the agent
which is the last to be included in the Nogood according to the current order
and is not the culprit (i.e. second last in the Nogood).

If the length of the created Nogood is smaller or equal to k, the sending
agent can be moved to a position before all the participants in the Nogood
and the Nogood is sent and saved by all of them. In the extreme case where
k is equal to the number of agents in the DisC'SP (i.e. K = N), the Nogood
sender can always move to be first in the priority order and the resulting
algorithm is a generalization of AW C' (Yokoo and Hirayama, 2000).

Figures 6 and 7 present the code of Retroactive ABT_DO. The difference
from standard ABT'_DO in the code performed when a Nogood is received
(Figures 6) derives from the different possible types of Nogoods. A Nogood
smaller or equal to k is actually a constraint that will be stored by the agent
until the search is terminated. In the case of Nogoods which are longer than
k, the algorithm treats them as in standard ABT_DO i.e. accepts them only
if the receiver is the lowest priority agent in the Nogood and the Nogood is
consistent with the Agent_view and current_assignment of the receiver. In

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.13

14

when received (ok?, (z;,d;) do:
1. add (zj,d;) to agent_view;
2. remove inconsistent nogoods;
3. check_agent_view;

when received (order, received_order) do:

1. if (received_order is more updated than Current_order)
2. Current_order < received_order;

3. remove inconsistent nogoods;

4, check_agent_view;

when received (nogood, z;, nogood)
1. old_value « current_value
2. if (nogood contains an agent xy,
with lower priority than z; and nogood.size > K)

3. send (nogood, (x;, nogood)) to z;

4. else

5. if (nogood consistent with { Agent_viewU
current_assignment} or nogood.size < K)

6. store nogood,

7. if (nogood contains an agent x, that is not its neighbor)

8. request zx, to add x; as a neighbor;

9. add (zy, di) to agent_view;

10 if(z; is with lowest priority in nogood)

11. check_agent_view;

12. if(old_value = current_value)
13. send (ok?, (z;, current_value)) to x;;

Figure 6. Retroactive ABT_DO algorithm (first part)

any case of acceptance of a Nogood, the agent searches for a new assignment
only if it happens to be the lowest priority agent in the Nogood. As stated
above, our choice is that only the Nogood generator is allowed to change
order.

Procedure backtrack (Figure 7) is largely changed in the retroactive heuris-
tic version of ABT_DQO. When an agent creates a Nogood it determines
whether it is larger than k or not. If it is larger then a single Nogood is sent
to the lowest priority agent in the Nogood in the same way as in ABT_DO.
Consequently, the agent selects a new order in which it puts itself not higher
than the second lowest priority agent in the Nogood. When the Nogood is
smaller or equal to k, if it is the first time this Nogood is generated, the
Nogood is sent to all the agents included in the Nogood and the agent moves
itself to an unlimited position in the new order (In this case the function

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.14

15

procedure backtrack
1. nogood < resolve_inconsistent_subset;
2. if (nogood is empty)
3 broadcast to other agents that there is no solution;
4. stop;
5. select (z;,d;) where x; has the lowest priority in nogood;
6. if(nogood.size > K)
7 Current_order < choose_new_order(z;)
where x; has the second lowest priority in nogood;
8. send (nogood, x;, nogood) to x;;
9. else if(is_new(nogood))
10. new_position «— unlimited
11. send (nogood, x;, nogood) to all agents in nogood,
12. store sent nogood;
13. Current_order < choose_new_order(null)
14. send (order,C'urrent_order) to lower priority agents;
15. remove (z;,d;) from agent_view;
16. remove all nogoods containing (x;,d;);
17. check_agent_view;

procedure check_agent_view
1. if(current_assignment is not consistent with all
higher priority assignments in Agent_view)

2. if(no value in D; is consistent with all higher priority
assignments in Agent_view)

3. backtrack;

4. else

5. select d € D; where Agent_view and d are consistent;

6. current_value < d;

7. send (ok?,(z;,d)) to neighbors;

Figure 7. The Retroactive ABT_DO algorithm (second part)

choose_new_order is called with no limitations). In both cases, order mes-
sages are sent to all the lower priority agents in the new order. The assignment
of the lowest priority agent in the Nogood is removed from the Agent_view,
the relevant Nogoods are removed and the agent attempts to re-assign its
variable by calling check_agent_view.

Procedure check_agent_view (Figure 6)is slightly changed from that of
standard ABT _DO since the change of order in the new scheme is performed
by the Nogood sender and not by its receiver.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.15

16

7. Correctness of Retroactive ABT _DO

In order to prove the correctness of Retroactive ABT_DO we assume the
correctness of the standard ABT_DO algorithm (see proof in (Zivan and
Meisels, 2006a)) and prove that the changes made for retroactive heuristics
do not damage its correctness. We first prove the case for no Nogood storage
(k=0):

THEOREM 1. Retroactive ABT_DO is correct when k = 0.

There are two differences between standard ABT _DO and Retroactive
ABT_DO with k = 0. First, order is changed whenever a Nogood is sent
and not when an assignment is replaced. This change does not make a differ-
ence in the correctness since when a Nogood is sent there are two possible
outcomes. Either the Nogood receiver replaces its assignment, which makes
it effectively the same as in standard ABT_DQO, or the Nogood is rejected.
A rejected Nogood can only be caused by a change of assignment either of
the receiving agent or of an agent with higher priority. In all of these cases,
the most relevant order is determined lexicographically. Ties which could
not have been generated in standard ABT DO, are broken using the agents
indexes.

The second change in the code for £ = 0 is that in Retroactive ABT_-DO
a Nogood sender can move to a position in front of the agent that receives
the Nogood. Since the Nogood sender is the only agent moving to a higher
position, it is the only one that can lose a Nogood as a result. However,
the Nogood sender removes all Nogoods containing the assignment of the
Nogood receiver and it does not pass any other agent contained in the N ogood.
Thus, no information is actually lost by this change. Moreover, the number of
times two agents can move in front of one another without a higher priority
agent changing its assignment is bounded by their domain sizes. [

THEOREM 2. Retroactive ABT _DO is correct whenn > k > Q.

In order to prove that Retroactive ABT_DO is correct for the case that
n > k > 0 we need to show that infinite loops cannot occur. In the case of
Nogoods which are smaller or equal to k the case is very simple. All agents
involved in the N ogood continue to hold it, therefore the same assignment can
never be produced again. The number of these Nogoods with a limited length
is finite. In finite time the algorithm reaches a state in which no permanent
Nogoods are added. In this state, agents do not move in front of the second
last in the Nogoods generated and the previous proof holds. [

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.16

17

8. Experimental Evaluation

The common approach in evaluating the performance of distributed algo-
rithms is to compare two independent measures of performance - time, in the
form of steps of computation (Lynch, 1997; Yokoo and Hirayama, 2000), and
communication load, in the form of the total number of messages sent (Lynch,
1997).

Non concurrent steps of computation, are counted by a method similar to
the clock synchronization algorithm of (Lamport, 1978). Every agent holds a
counter of computation steps. Every message carries the value of the sending
agent’s counter. When an agent receives a message it stores the data received
together with the corresponding counter. When the agent first uses the re-
ceived counter it updates its counter to the largest value between its own
counter and the stored counter value which was carried by the message (Zivan
and Meisels, 2006b). By reporting the cost of the search as the largest counter
held by some agent at the end of the search, a measure of non-concurrent
search effort that is close to Lamports logical time is achieved (Lamport,
1978). If instead of steps of computation, the number of non concurrent con-
straint checks is counted (NC'CC's), then the local computational effort of
agents in each step is measured (Meisels et al., 2002; Zivan and Meisels,
2006b).

The first set of experiments was conducted on random networks of con-
straints of n variables, k values in each domain, a constraints density of p;
and tightness ps (which are commonly used in experimental evaluations of
CSP algorithms (Smith, 1996; Prosser, 1996)). The constraint networks were
generated with 20 agents (n = 20) each holding exactly one variable, 10
values for each variable (k = 10) with two different constraints densities
p1 = 0.4 and p; = 0.7. The tightness value ps, is varied between 0.1 and
0.9, to cover all ranges of problem difficulty. For each pair of fixed density
and tightness (p1, p2) 50 different random problems were solved by each
algorithm and the results presented are an average of these 50 runs.

In order to confirm the dependency of the performance on the size of the
current domain of the moved agents, we compared ABT_DO with ABT_DO
with a retroactive heuristic in which agents are not allocated any additional
Nogood storage. Agents include in their messages the size of their current
domains. This information is stored in the agent’s Agent views. A Nogood
generator moves itself to be in a higher position than the culprit agent but
it moves in front of an agent only if its current domain is smaller than the
domain of that agent. Otherwise, it places itself right after the culprit agent as
in standard ABT _DO.

Figure 8 presents the results in NCCC's for ABT_DO and Retroactive
ABT_DO with the above heuristic. The retroactive version of ABT_DO
(depicted in the figures as Min-domain) improves the run-time performance

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.17

18

70000

F0000 - N ——ABT DO N

50000 A N Y, —e—Min_Domain
¢4 40000 A - - - -After_Second_Last
u
= 30000 A

20000 +

10000 -

D i T ‘ 1 T T T T T T 1
o1 02 03 04 05 06 07 08 048
p2

Figure 8. Non concurrent constraints checks performed by Retroactive ABT_DO and
ABT _DO on low density DisCSPs (p1 = 0.4).

300000 - —+—ABT_DO_Ng
250000 - ——Min_Domain
200000 - - = = -Last_After_Dormain
L2z]
[1=]
150000
2
100000
50000 4
D i T il T T T T T T T 1
o1 02 03 04 05 06 07 058 0¥
p2

Figure 9. Number of messages sent by Retroactive ABT_DO and ABT_DO on low density
DisCSPs (p1 = 0.4).

of ABT_DO (depicted as ABT_DO_NG). In order to emphasize the rela-
tion to the Min-domain property, a third line in Figures 8, 9,10, 11, 16 and 17
represents retroactive A BT _DO without checking the domain sizes (depicted
in the figures as After Second Last). This version of retroactive ABT_DO
was the slowest among the three. Similar results for the number of messages
sent are presented in Figure 9. In the case of network load, both versions of
Retroactive ABT _DO send less messages than standard ABT'_DO. For high

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.18

19

800000 ~
700000 ~
600000 +
500000 +
400000
300000 1
200000 ~
100000 -

0 +—a— T T T . A

01 02 03 04 ?125 08 07 08 09

Figure 10. Non concurrent constraints checks performed by Retroactive ABT_DO and
ABT_DO on high density DisCSPs (p1 = 0.7).

—— ABT DO Mg
—a—in_Domain

- - - -After_Second_Last

NCCCs

2500000 + —— ABT_DO_Ng

2000000 - —e—Win_Domain
, 1500000 - - - -After Second_Last
[de]
% 1000000 -
500000 |
D a o y i — |

01 02 03 04 058 06 07 08 08
n2
Figure 11. Number of messages sent by Retroactive ABT_DO and ABT_DO on high
density DisCSPs (p1 = 0.7).

density problems the difference between the algorithms is similar but smaller
(Figures 10 and 11).

In order to further demonstrate the dependency of the domain size of
agents on the success of the selected heuristic we performed an additional
experiment on random problems in which the size limit for keeping N ogoods

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.19

20

1800000 -
1600000 1
1400000
1200000 -
1000000 1
800000 1
600000 A
400000 A
200000

U _ r

01 02 03 04 05 06 07 08 09
p2
Figure 12. Non concurrent constraints checks performed by Retroactive ABT_DO with
different limits on Nogood size (p1 = 0.4).

NCCCs

1800000

1600000

1400000

1200000

1000000

Msgs

800000
§00000
400000

200000

0 8 -
0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 09

Figure 13. Number of messages sent by Retroactive ABT_DO with different limits on
Nogood size (p1 = 0.4).

(k) is varied'. A Nogood generator which created a Nogood of length larger
than & places itself right after the Nogood receiver as in standard ABT_DO.
When the Nogood generator creates a N ogood smaller or equal to &, it places

' In this experiment the problems were smaller (n = 15) since the algorithms run slower.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.20

21

itself first in the priority order and sends the generated Nogood to all the
participating agents. In the case of k& = n the resulting algorithm is exactly
AWC (in AWC an agent which generates a Nogood actualy places it self
in front of all its neighboring agents). In the case of £k = 0 the resulting
algorithm is standard ABT_DQO. Figure 12 presents the number of NCCC's
performed by the algorithm with &k equal to 0, 1, 3 and n (n = 15). The results
show similar performance when £ is small. The performance of the algorithm
deteriorates when k& = 3 and the slowest performance is when k£ = n. Similar
results in the number of messages are presented in Figure 13.

The fact that a larger storage, which enables more flexibility of the heuris-
tic, actually causes a deterioration of the performance might come as a sur-
prise. However, one must examine the effect of the specific heuristic used
on the size of the domains of the agents which are moved up in the order
of priorities. An agent creates a Nogood when its domain empties. After
sending the Nogood, it removes the assignment of the culprit agent from
its Agent_view and returns to the domain only values whose eliminating
Nogood included the removed assignment. When the agent is moved in front
of other agents whose assignments were included in the generated N ogood it
must return more values to its domain (the values whose explanation Nogood
included the assignment of the agent which was passed). This of course does
not happen for the case of a Nogood of size one and that is why for k = 1 we
get better results. Thus, moving an agent as high as possible in the priority
order actually results in moving upwards an agent with a larger domain.

The effect of uncertainty on the size of agents’ domains after reordering
can be reduced. In the next set of experiments the best version of the retroac-
tive ABT_DQO algorithm was compared with an additional version of the
ABT_DO algorithm which uses a new type of the Min-domain heuristic.
In the new heuristic, beside their domain sizes, agents included in their ok?
messages the union of all assignments that caused removal of assignments
from its domain (i.e. the union of all its eliminating explanations or its tem-
poral Nogood). Now the ordering agent knows what is the highest position
it can move an agent in order to preserve its reported domain size. We have
performed experiments in which the agents used this additional information
in a number of ways:

— The reordering agent moves the agent which the sum of its reported do-
main size and its new expected position (the highest place it can get ac-
cording to the Nogood it sent with the same domain size) is the smallest,
to the expected position (termed in the figure Dom + Pos_single).

— The reordering agent moves all lower priority agents according to the

sum of their new expected position and their reported domain size (termed
in the figure Dom + Pos_all).

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.21

22

BO000 - —a— ABT_DO_Ng
—a— Min_Darnain
50000 A - - - -Dom+Pos_single
—a—Dom+Paos_all
40000 —+—ABT_DO_highest
S
S 30000 A
=
20000 A
10000
0 = T T T

T T
o1 02 03 04 05 06 07 08 08
p2
Figure 14. Non concurrent constraints checks performed by ABT_DO with a Min-domain
heuristic using temporal Nogoods (p1 = 0.4).

300000 - —&—ART DO_MNg
250000 A ! ‘b'-. —a— hlin_Dornain
200000 A

150000 4

MSGs

100000

50000 -

0 -

01 02 03 04 05 086 07 08 08
p2
Figure 15. Number of messages sent by ABT_DO with a Min-domain heuristic using
temporal Nogoods (p1 = 0.4).

— The reordering agent moves the agent which can move to the highest
position according to the nogood it sent without moving higher than an-
other agent with a smaller domain (termed in the figure ABT DO _highest).

Figures 14 and 15 present the results for the three heuristics using temporal
Nogoods and domain sizes with standard ABT_DQO and the combined ver-
sion of Retroactive ABT _DO with the Min-domain heuristic. The three pro-
posed heuristics run faster than standard ABT_DO with a Nogood_triggered
heuristic (which was an order of magnitude faster than ABT_DO using stan-
dard Min-domain heuristic). This result confirms our analytic explanation for
the failure of the standard Min-domain heuristic when used in ABT_DQO in

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.22

23

800000 -
700000 +
500000
500000 +
400000 +
300000
200000
100000 4

a e

2 3 4 5 B 7
number of meetings per agent

—a— ABT_DO_NG

- - - -After_Second_Last

NCCCs

—+—Min_Domain

Figure 16. Non concurrent constraint checks performed by Retroactive ABT_DO and
ABT_DO on Random Course Scheduling Problems

3500000 4
—a— ABT_DO_NG
3000000 4

2500000 4 - - - -After_Second_Last

e 2000000 4

]

g

—— Mlin_Darnain
1500000 - .

1000000

300000 4

I

2

3numher éf meetingss per agenst
Figure 17. Number of messages sent by Retroactive ABT_DO and ABT_DO on Random
Course Scheduling Problems

Section 5. When agents can be moved to a higher position but not higher
than an agent with assignments that caused removal of assignments from its
domain, the heuristic is more successful by orders of magnitude. However,
none of these heuristics run faster than the combined version of Retroac-
tive ABT_DO with the Min-domain heuristic. This can be explained by the
amount of information which this heuristic is using which is much larger than
in the retroactive version and thus has more chance to be invalid as a result of
the asynchronicity of the algorithm.

When comparing between the three versions of this new type of heuristics,
the fastest one is the one taking a single agent as high as possible according
to the information it sent without passing agents with a smaller domain. The
success of this heuristic is not surprising since it actually moves agents with
a potential of a small domain as high as possible just like the Retroactive
Min-domain heuristic. In fact, our statistics show that in one third of the
cases, these two heuristics actually move the same agent (the Nogood sending
agent).

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.23

24

In the next set of experiments, the successful versions of ABT with retroac-
tive dynamic ordering were compared on realistic structured problems. The
generated problems were course scheduling in which each variable assigned
to an agent represents a single course which is taken by a number of students.
Two variables are constrained if there is a student attending both courses. The
constraints are arrival constraints, i.e. if the length of a course is ¢; and the
time to get from one course to the other is ¢9, then the beginnings of each
two constrained courses must satisfy: ct; — cta > t1 + to. This problem is
equivalent to the published Meeting Scheduling Problems in which each agent
holds exactly one variable (Gent and Walsh, 1999). For a detailed description
of how a large random benchmark of problems with these realistic properties
can be produced the reader is referred to (Gent and Walsh, 1999). The results
presented in Figures 16 and 17 show clearly that the advantage of the retroac-
tive heuristic which takes into account the domain sizes is more pronounced
for structured DisCSPs. Furthermore, on tight problems, the performance of
the version of retroactive ABT DO which does not take into account domain
sizes deteriorates.

9. Discussion

The results in the previous section show clearly the relation between the ex-
amined heuristics and the Min-domain property of the generated search tree.
A well known fact from centralized C'S P algorithms (Haralick and Elliott,
1980; Dechter, 2003) and from DsC'S P algorithms with a sequential assign-
ment protocol (Brito and Meseguer, 2004) is that the Min-domain heuristic is
very powerful and improves the run of the same algorithms using a static
order. If we investigate the Nogood-triggered heuristic of (Zivan and Meisels,
2006a) we can see that in most cases this heuristic moves to higher priority,
agents with smaller domains. This is because an agent whose domain was
exhausted returns to its domain, after sending the Nogood, only the values in
conflict with the assignment of the culprit agent. Thus, only a small number
of values are returned to its domain. It is not surprising that this heuristic was
found to be very successful in (Zivan and Meisels, 2006a). On the other hand,
when an agent is moved to a higher position than the agents in the Nogood
it discovered, it must return additional values to its domain. This contradicts
the properties of the Min-domain heuristic and was found to perform poorly
in practice. The case of k = 1 did show an improvement since the last
assignment in a detected Nogood is removed from the Agent_view of the
agent which found the Nogood anyway.

In our best performing heuristic, agents are moved higher in the priority
order as long as their domain size is smaller than the domains of the agents
before them and as long as they do not pass the second last in the Nogood

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.24

25

they have generated, which would result in returning more values to their
domain. Since the agent moving to a higher position is not in conflict with
the assignments of agents it has moved in front of, its move will not cause
the loss of Nogoods and therefore the information it holds on the size of
the current domains of these agents remains valid. The retroactive ordering
version has improved the results of (Zivan and Meisels, 2006a) by a factor of
2. In the case of structured problems, this heuristic was found to improve the
run of the standard ABT _DO by an even larger factor.

10. Conclusion

A general scheme for ordering heuristics for Asynchronous Backtracking
with dynamic agent ordering was presented. Within the general scheme an
additional flexibility has been introduced. Moving of agents forward, which
involves the use of larger storage for Nogoods. The flexibility of the heuristic
is dependent upon the amount of memory that agents are allowed to use.
However, moving agents to the highest position possible was found to dete-
riorate the performance of the algorithm. Larger storage for Nogoods (even
exponential in the extreme case) was found to produce worse efficiency for
search on random problems.

Our experimental study brings multiple evidence for the connection be-
tween the success of ordering heuristics in Asynchronous Backtracking, the
validity of the information used by the heuristic and the Min-domain property.
The validity of the information lies at the heart of the difference between
heuristics for standard CSP search and for distributed constraints. It empha-
sizes the asynchronous nature of DisCSP search by the ABT algorithm. The
best heuristic, moves to a higher priority only agents whose variable’s do-
mains are smaller than the agents whose priority they replace, but avoids the
return of values to domains as a result of reordering. This brings to an extreme
the exploitation of the Min-domain property and improves the run of the best
heuristic reported so far (Zivan and Meisels, 2006a) by a large factor.

References

Andrew B. Baker. The hazards of fancy backtracking. In Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI *94), Volume 1, pages 288-293, Seattle, WA,
USA, July 31 - August 4 1994. AAAI Press.

C. Bessiere and J.C. Regin. Mac and combined heuristics: two reasons to forsake fc (and cbj?)
on hard problems. In Proc. CP 96, pages 61-75, Cambridge MA, 1996.

C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking. In Proc.
Workshop on Distributed Constraint of IJCAIO1, 2001.

C. Bessiere, A. Maestre, 1. Brito, and P. Meseguer. Asynchronous backtracking without adding
links: a new member in the abt family. Artificial Intelligence, 161:1-2:7-24, January 2005.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.25

26

I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September
2004.

Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.

LP. Gent and T. Walsh. Csplib: a benchmark library for constraints. Technical report, Tech-
nical report APES-09-1999, 1999. Available from http://csplib.cs.strath.ac.uk/. A shorter
version appears in the Proceedings of the 5th International Conference on Principles and
Practices of Constraint Programming (CP-99).

M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:25-46, 1993.

Y. Hamadi. Distributed interleaved parallel and cooperative search in constraint satisfaction
networks. In Proc. Intelligent Agent Technology, 2001 (IAT-01), Singappore, 2001.

R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

L. Lamport. Time, clocks, and the ordering of events in distributed system. Communication
of the ACM, 2:95-114, April 1978.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.

A. Meisels and R. Zivan. Asynchronous forward-checking for distributed csps. Constraints,
12(1), 2007.

A. Meisels, 1. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed
constraints processing algorithms. In Proc. AAMAS-2002 Workshop on Distributed
Constraint Reasoning DCR, pages 86-93, Bologna, July 2002.

T. Nguyen, D. Sam-Hroud, and B. Faltings. Dynamic distributed backjumping. In Proc. 5th
workshop on distributed constraints reasoning DCR-04, Toronto, September 2004.

P. Prosser. An empirical study of phase transitions in binary constraint satisfaction problems.
Artificial Intelligence, 81:81-109, 1996.

M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction. Artificial Intelligence, 161:1-2:25-54, January 2005.

M. C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing abt and awc into a polynomial
space, complete protocol with reordering. Technical Report 01/#364, EPFL, May 2001.

M. C. Silaghi. Generalized dynamic ordering for asynchronous backtracking on discsps. In
AAMAS 2006, DCR workshop, Hakodate, Japan, 2006.

Barbara M. Smith and Stuart A. Grant. Trying harder to fail first. In European Conference on
Artificial Intelligence, pages 249-253, 1998.

B. M. Smith. Locating the phase transition in binary constraint satisfaction problems. Artificial
Intelligence, 81:155 — 181, 1996.

G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps). In Constraint Processing-96, (short paper), pages 561-2,
Cambridge, Massachusetts, USA, October 1996.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction problems: A
review. Autonomous Agents & Multi-Agent Sys., 3:198-212, 2000.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Trans. on Data and Kn. Eng., 10:673-685,
1998.

M. Yokoo. Asynchronous weak-commitment search for solving distributed constraint satis-
faction problems. In Proc. Ist Intrnat. Conf. on Const. Progr., pages 88 — 102, Cassis,
France, 1995.

M. Yokoo. Distributed Constraint Satisfaction: Foundation and Cooperation in Multi Agent
Systems. Springer Verlag, 2000.

R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. In Proc. Ist
European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.26

27

R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps. In
CP-2005, pages 32-46, Sigtes (Barcelona), Spain, 2005.

R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps.
Constraints, 11(2,3):179-197, 2006.

R. Zivan and A. Meisels. Message delay and asynchronous discsp search. Archives of Control
Sciences, 16(2):221-242, 2006

MinDom_ABT_Constraints_rev.tex; 27/02/2008; 10:16; p.27

