
Auton Agent Multi-Agent Syst (2017) 31:1165–1207
DOI 10.1007/s10458-017-9360-1

Balancing exploration and exploitation in incomplete
Min/Max-sum inference for distributed constraint
optimization

Roie Zivan1 · Tomer Parash1 · Liel Cohen1 ·
Hilla Peled1 · Steven Okamoto1

Published online: 10 March 2017
© The Author(s) 2017

Abstract Distributed Constraint Optimization Problems (DCOPs) are NP-hard and there-
fore the number of studies that consider incomplete algorithms for solving them is growing.
Specifically, theMax-sum algorithm has drawn attention in recent years and has been applied
to a number of realistic applications. Unfortunately, inmany casesMax-sumdoes not produce
high-quality solutions. More specifically, Max-sum does not converge and explores solutions
of low quality when run on problemswhose constraint graph representation containsmultiple
cycles of different sizes. In this paper we advance the state-of-the-art in incomplete algo-
rithms for DCOPs by: (1) proposing a version of the Max-sum algorithm that operates on an
alternating directed acyclic graph (Max-sum_AD), which guarantees convergence in linear
time; (2) solving a major weakness of Max-sum and Max-sum_AD that causes inconsistent
costs/utilities to be propagated and affect the assignment selection, by introducing value
propagation to Max-sum_AD (Max-sum_ADVP); and (3) proposing exploration heuristic
methods that evidently improve the algorithms performance further. We prove that Max-

This paper is an extension of our AAMAS paper [43]. Besides an extended description and examples, it
includes a proof of the monotonic improvement of Max-sum_ADVP and its cross-phase convergence,
proposes two new classes of exploration heuristics, one inspired by simulated annealing and the other
interleaving converging and non-converging versions of the algorithm. Furthermore, we present an extended
empirical study that reveals the advantages in using the proposed exploration heuristics.

B Roie Zivan
zivanr@bgu.ac.il

Tomer Parash
parasht@bgu.ac.il

Liel Cohen
lielc@bgu.ac.il

Hilla Peled
hillapel@bgu.ac.il

Steven Okamoto
okamotos@bgu.ac.il

1 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-017-9360-1&domain=pdf

1166 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

sum_ADVP converges to monotonically improving states after each change of direction, and
that it is guaranteed to converge in pseudo-polynomial time to a stable solution that does not
change with further changes of direction. Our empirical study reveals a large improvement
in the quality of the solutions produced by Max-sum_ADVP on various benchmarks, com-
pared to the solutions produced by the standard Max-sum algorithm, Bounded Max-sum and
Max-sum_AD with no value propagation. It is found to be the best guaranteed convergence
inference algorithm for DCOPs. The exploration methods we propose for Max-sum_ADVP
improve its performance further. However, anytime results demonstrate that their exploration
level is not as efficient as a version of Max-sum, which uses Damping.

Keywords DCOP · Incomplete inference algorithms

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for distributed
problem solving that has a wide range of applications inmulti-agent systems. Some examples
are: Meeting scheduling [8,21], Sensor nets [3,44] and Disaster response [28].

Many algorithms for solving DCOPs have been proposed. Complete algorithms [9,22,
26] are guaranteed to find the optimal solution, but because DCOPs are NP-hard, to solve
optimally, these algorithms require exponential time in the worst case. Thus, there is growing
interest in incomplete algorithms, which may find suboptimal solutions but run quickly
enough to be applied to large problems or real-time applications [14,20,35,41,42]. For the
Meeting scheduling application, a suboptimal solution may include less meetings scheduled
or meetings scheduled in less convenient time slots. However, a high quality solution will
schedule the most important meetings and make compromises on the least important ones.
A similar analogy is relevant in Disaster response scenarios where high quality solutions are
the ones in which lives are saved but expandable equipment is lost (and not the other way
around).

Whether complete or incomplete, DCOP algorithms generally follow one of two broad
approaches: distributed search [9,20,22,41] or inference [7,26,27,34]. In search algorithms,
agents directly traverse the solution space by choosing value assignments and communi-
cating these assignments to each other. Among the complete algorithms that implement this
approach are ADOPT [22] and BnB-ADOPT [40], which use a pseudo-tree structure in order
to increase concurrent actions, each traversing it according to a different scheme, AFB [9] in
which a sequential assignment process is enhanced by asynchronous forward bounding, and
ConcFB [23] in which concurrency is achieved by splitting the search space among sequen-
tial search processes. Incomplete search algorithms are commonly local search algorithms in
which the agents hold a complete assignment and iteratively aim to improve it by reassigning
their own (local) variables myopically [41,42].

By contrast, agents in inference algorithms traverse the solution space indirectly; each
agent maintains beliefs about the best costs (or utilities) that can be achieved for each value
assignment to its own variables, and selects value assignments that are optimal according to its
beliefs. Agents calculate and communicate costs/utilities for each possible value assignment
to neighboring agents’ variables, and update their beliefs based on messages received from
their neighbors. These updatemethods are specific realizations of theGeneralizedDistributive
Law (GDL) algorithm [1], and hence inference-based algorithms are often referred to asGDL-
based algorithms. Complete DCOP inference algorithms include DPOP [26], which is the

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1167

distributed implementation of the Bucket elimination algorithm [6] and Action GDL [37],
which is a distributed implementation of the GDL algorithm, using a distributed Junction-tree
structure.

The Max-sum algorithm [7] is an incomplete, inference, GDL-based algorithm that has
drawn considerable attention in recent years, including being proposed for multi-agent appli-
cations such as sensor systems [34,35] and task allocation for rescue teams in disaster
areas [28]. Max-sum is actually a version of the well known Belief propagation algo-
rithm [39], adjusted to solve DCOPs. Agents in Max-sum propagate cost/utility information
to all neighbors. This contrasts with other inference algorithms such as ADPOP [27], which
only propagate costs up a pseudo-tree structure overlaid on the agents. As is typical of infer-
ence algorithms, Max-sum is purely exploitive both in the computation of its beliefs and in
its selection of values based on those beliefs.

Although Max-sum is known to converge to the optimal solution for problems whose
constraint graph is acyclic, there is no such guarantee for problems with cycles [7]. Further-
more, when the agents’ beliefs fail to converge, the resulting assignments that are considered
optimal under those beliefs may be of low quality. This occurs because cyclic information
propagation leads to inaccurate and inconsistent information being computed by the agents.
Previous empirical study has found this pathology to occur when the constraint graph of the
problem contains cycles of various sizes [7]. Unfortunately, many DCOPs that were inves-
tigated in previous studies are dense and indeed include such cycles (e.g., [9,22]). Our own
experimental study revealed that on various standard benchmark problem classes—random
problems of different density parameters and problem sizes, scale-free networks, and prob-
lems with structured constraints (graph coloring and meeting scheduling)—Max-sum does
not converge and explores low-quality solutions.

Thus, following the common assumption in belief propagation literature, that belief
propagation algorithms perform best when they converge [7,39], researchers in the DCOP
community joined the attempt to design versions of Max-sum that guarantee convergence.
BoundedMax-sum [30] is an algorithm that was designed as part of this attempt. It guarantees
convergence by eliminating some of the problem’s constraints in order to reduce the DCOP
to a tree-structured problem that can be solved in polynomial time by Max-sum. By quanti-
fying the possible effects on solution quality of the removed constraints, it is even possible to
provide a theoretical worst-case bound on the resulting solution. However, because most of
the constraints may need to be removed, Bounded Max-sum may still find very low-quality
solutions for the original problem.

Damping is a method that can be used in order to increase the probability that Max-sum
will converge, though it does not offer guarantees for convergence [19]. In Max-sum with
damping, agents use a damping factor λ ∈ (0, 1]. After performing the calculation of the
costs that are intended to be sent to their neighbors, they multiply them by 1 − λ and add
lambda times the costs in the messages sent in the previous iteration. For some reason this
method was not mentioned in previous papers that presented Max-sum for DCOPs. Our
results indicate that the main effect of using damping in Max-sum was not in increasing the
probability of convergence, but rather in triggering efficient exploration of solutions of higher
quality than standard Max-sum.

In this paper we make three major contributions to the development of incomplete infer-
ence algorithms for solving DCOPs.

1. We propose Max-sum_AD, a new version of the Max-sum algorithm that avoids cyclic
information propagation while still considering all constraints. Agents in Max-sum_AD
behave like those inMax-sum, except that they limit their communication to an alternating

123

1168 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

directed acyclic graph (DAG) that forms a spanning subgraph of the communication in
conventional Max-sum. Max-sum_AD uses a predefined ordering over the agents to
enforce the desired DAG communication pattern, with agents only sending messages
in a single direction according to the order. The order divides the set of neighbors of
each agent into two disjoint subsets: neighbors who come before it in the order and from
whom it receives messages; and neighbors who come after it in the order and to whom
it sends messages. Notice that this is an order on the direction of messages and not on
the agents’ actions. Agents earlier in the order do not receive information from those
later in the order, and hence do not consider all constraints in the DCOP. To remedy
this, Max-sum_AD reverses the order after the agents’ beliefs have converged, thereby
reversing the communication flow on the DAG. We term the sequence of iterations in a
specific order without change of direction a phase. We prove that the maximum number
of iterations in a single phase required for the algorithm to converge is equal to the length
l, the diameter of the DAG (the longest shortest path between two nodes in the DAG),
which is linear in the worst case. Thus, by performing l iterations in each direction (i.e.,
run Max-sum_AD for two phases), agents converge to a solution that reflects all the
constraints in the DCOP.

2. We solve amajor weaknesses ofMax-sum andMax-sum_AD: the possibility that the best
costs/utilities computed for the samevariable are basedondifferent value assignments and
thus, are not valid. We demonstrate that the propagation of such inconsistent information
may result in a distorted selection of assignments by the agents. We solve this weakness
with our second proposed algorithm, Max-sum_ADVP, which uses value propagation
(VP). After two phases of the algorithm, converging once in each direction and hence
considering all constraints in the problem, we require that agents modify their messages
to include the value assignment they have selected and consider only constraint costs that
are consistent with these selections. Thus, we prevent the possibility that different agents
consider costs/utilities that are based on conflicting value assignments. We note that VP
has been used in previous studies for complete GDL algorithms [26,37]) for breaking
ties. However, to best of our knowledge, our use of VP in [43] was the first time it was
applied to GDL algorithms operating on cyclic constraint graphs (e.g., Max-sum).
We prove that after the second VP phase, Max-sum_ADVP converges to (weak) mono-
tonically improving solutions and that this implies that it converges to a constant solution
(i.e. a solution that is not changed after direction changes) in pseudo-polynomial time.

3. We propose two classes of exploration methods that further improve the performance
of Max-sum_ADVP. In one class, inspired by simulated annealing [29], agents select
their value assignments in a stochastic manner. The second class of exploration methods
we propose interleaves the monotonic (exploitive) execution of Max-sum_ADVP with
non-monotonic (explorative) versions of the algorithm, e.g., standardMax-sum andMax-
sum_AD (without VP). Such balanced combinations allow the algorithm to converge to
locally optimal solutions, escape them and converge again.

Our empirical study demonstrates the success of Max-sum_ADVP in comparison with
the standardMax-sum algorithm and with BoundedMax-sumwhen solving randomDCOPs,
graph coloring problems, meeting scheduling problems and scale-free networks. It also
outperformed linear programming relaxation and ADPOP on most benchmarks, thus, Max-
sum_ADVP was found to be the best among the incomplete inference algorithms that
guarantee convergence.

Some of the exploration methods we proposed were found to improve the results of
the Max-sum_ADVP algorithm further, but only specific members of the second class of

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1169

exploration methods produced results with a statistically significant advantage over Max-
sum_ADVP. On the other hand, Max-sum with damping, although in most scenarios failed
to converge, has explored solutions with much higher quality than standard Max-sum, and
in some cases (surprisingly on dense random problems) it explored solutions with higher
quality than the onesMax-sum_ADVP converged to.When combinedwith an anytimemech-
anism [42] on random uniform problems, it produced results that outperformed significantly
the exploration methods we proposed. On realistic structure problems this advantage was
less conclusive.

The rest of this paper is organized as follows:Wepresent relatedwork inSect. 2. TheDCOP
formalism is presented in Sect. 3. Section 4 presents the standard Max-sum algorithm. The
Max-sum_AD algorithm is presented in Sect. 5. Section 6 identifies the need for value prop-
agation (VP) and describes how VP is combined with Max-sum_AD. It further includes the
presentation of the proposed classes of exploration methods for Max-sum_ADVP. Section 8
includes an evaluation of the proposed algorithm in comparison with Max-sum, Max-sum
with damping and Bounded Max-sum. It also presents experiments that compare the per-
formance of Max-sum_ADVP with the exploration methods proposed. Our conclusions are
presented in Sect. 9.

2 Related work

Many algorithms for solving DCOPs were proposed in the last decade.While some complete
algorithms such as ADOPT [22], BnB-ADOPT [40], andAFB [9] perform distributed search,
GDL-based complete algorithms implement a dynamic programming approach [1,26,37].
The first to apply this approach to DCOP were Petcu and Faltings by proposing the DPOP
algorithm [26]. DPOP performs dynamic programming on a pseudo-tree structure, with
agents starting with the leaves calculating tables of costs/utilities and propagating them up
the pseudo-tree. The table computed by an agent stores the best sum of costs/utilities of all
constraints involving agents in its subtree, with an entry for every joint value assignment
for agents not in its subtree, which are involved in these constraints. DPOP requires a linear
number of message-passing cycles, but the largest table size is exponential in the induced
width and hence, so is the running time to compute the tables. Since pseudo-trees may have
limited branching in dense problems, recent studies investigated alternative structures (e.g.,
junction trees) in order to increase the parallelism in GDL-based algorithms [4,37].

Incomplete DCOP search algorithms typically implement a synchronous local search. In
each step of the algorithm an agent sends its value assignment to all its neighbors in the
constraint graph and receives the assignments of all its neighbors. Local search algorithms
differ in the method agents use to decide whether to replace their current value assignments
to their variables. For example, the agent that can most improve in its neighborhood replaces
its assignment in the maximum gain messages algorithm (MGM) [20], while every agent
individually makes a stochastic decision to replace its assignment in the distributed stochastic
algorithm (DSA) [41].

Maheswaran et al. [20] and Pearce and Tambe [25] used completely exploitive algorithms
to converge to locally optimal solutions whose quality is guaranteed to be within a predefined
distance from the quality of the global optimal solution. The approximation level is dependent
on a parameter k, which defines the size of coalitions that agents can form. These k size
coalitions transfer the problem data to a single agent, which performs a complete search
procedure in order to find the best assignment for all agents within the k size coalition. As

123

1170 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

a result, the algorithm converges to a state that is k optimal (k-opt) [25], i.e., no better state
exists if k agents or fewer change their assignments.

The production of k-opt solutions may require solving an exponential number of problems
of size k. To overcome this shortcoming, recent studies have proposed alternatives for the
selection of small local environments that would be solved optimally in order to produce
quality guarantees on the overall solution.One alternative, t-distance, generated environments
dependent on the distance of nodes in the constraint graph [16].While this alternative reduced
the number of problems that need to be solved, it did not bound the size of the problems
that are solved. The most recent approach included the generation of environments that were
bounded both by distance and size [38]. Thus, the number of problems to solve is bounded
by the number of agents and the magnitude of the problems by the predefined size.

Aggregation of agents’ constraints was also used in an attempt to cope with Max-sum’s
failure to convergewhen solving cyclic problems [7]. It included the union of groups of agents
to clusters of adjacent agents represented by a single agent in the cluster. The constraints
between the agents in the cluster were aggregated and held by the agent representing the
cluster. Thus, it required that some constraints would be revealed in a preprocessing phase
to agents that are not included in the constraints. Furthermore, the amount of aggregated
information was not limited and in dense problems could result in a single agent holding
a large part of the problem’s constraints (partial centralization). Another approach is to
aggregate constraints and unite nodes in the constraint graph so that the resulting graph
would be a tree [37]. However, the result of this rearrangement of the constraint graph is
the need to perform exponential computation and transfer exponential communication that
will result in a complete solution. In this paper we focus on incomplete GDL algorithms
that avoid partial centralization and clustering of agents, and attempt to solve the original
DCOPs as do standard complete algorithms (e.g., ADOPT and DPOP), one-opt distributed
local search algorithms (e.g., DSA and MGM) and as the standard Max-sum algorithm
does [30].

Bounded Max-sum [30] is a version of Max-sum that both guarantees convergence and
provides a theoretical bound on the quality of the solution found compared to the optimal.
BoundedMax-sum eliminates some of the problem’s constraints in order to reduce the DCOP
to a tree-structured problem that can be solved in polynomial time. Then, the sum of the worst
costs for all eliminated constraints serves as the bound on the approximation of the optimal
solution. A later study proposed a version that produces an improved bound [31].

A different approach to cope with the non-convergence of Max-sum (or its equivalent
belief propagation version Max-product) proposes algorithms that efficiently solve a linear
program (LP) relaxation of the combinatorial problem, then select value assignments based
on the solution to the LP. This approach has been intensively studied by the graphical models
community in recent years and multiple methods have been developed, including Max-
ProductLinear Programming (MPLP) [10], TreeReweightedBelief Propagation (TRBP) [39]
and Norm-Product (NP) [12]. These all try to converge to the LP solution, but differ in their
convergence rates and their guarantees on the ability to converge with respect to the size of
the problem and the problem structure. This line of research draws much attention in the
graphical model community because many of these methods, while incomplete, produce the
optimal solution formany relevant applications. Optimal solutions are foundmore oftenwhen
applying tightening, i.e., clustering of factors/constraints to higher-order (i.e., higher-arity)
constraints [33]. LP relaxations were also applied to DCOPs and were found to improve on
standard incompleteDCOPalgorithms in some settings [11,36]. Our empirical study includes
comparisons of the algorithms we propose with an algorithm solving the LP relaxations of
the problems [39].

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1171

Approximate DPOP (ADPOP) [27] is an incomplete version of DPOP parameterized by
an upper limit maxDims on the number of dimensions of cost/utility tables communicated
by agents. When an agent would compute a table with more than maxDims dimensions
under DPOP, it instead computes upper and lower bound projections to tables withmaxDims
dimensions. This can be done by selecting the set of dimensions to be included in the
lower-dimensional table, then independently projecting tables received from children and
constraints involving this constraint (but not its children) to tables that only involve the
retained constraints. These are then combined as in DPOP to compute the bound projections
to be sent to the agent’s parent. In the worst case, computing the projection for each table
received from a child requires finding the maximum and minimum over joint assignments
to maxDims − 1 dimensions. Since this must be done for each of the joint assignments in
the maxDims dimensions of the generated table and each child table, computing a table in
ADPOP has complexity �

(
N · D2·maxDims) where N is the number of neighbors and D is

the size of the domains.
Okimoto et al. [24] proposed an incomplete algorithm similar to both Bounded Max-sum

and ADPOP. Like ADPOP, it uses a pseudo-tree, although one based on a variable ordering
rather than depth-first search. It adds constraints to make the dependencies in the pseudo-tree
explicit (i.e., the variable dimensions thatwould have to be included in tables sent inADPOP).
Similar to Bounded Max-sum, constraints are then eliminated to achieve the desired induced
width while providing bounds on solution quality based on the eliminated constraints. The
reduced problem is then solved using a complete algorithm.

The alternating direction approach we implement in this paper is inspired by algorithms
for solving asymmetric distributed constraints problems [5]. However, unlike in the case of
asymmetric problems where the motivation for this approach was preserving privacy, in this
paper the motivation is strictly algorithmic. The alternating order approach was also used for
directional arc consistency in complete search algorithms for solving weighted CSPs in [13].
The use of an alternating order was found to increase the effect of directional arc consistency
and produce better results on some benchmarks. The usefulness of this approach for different
types of algorithms and problems encourages future work investigating its usefulness in other
scenarios.

3 Distributed constraint optimization

To avoid confusion, and without loss of generality, in the rest of this paper we will assume
all problems are minimization problems as presented in the early DCOP papers (e.g., [22]).
Thus, we assume that all constraints define costs and not utilities. The GDL algorithm for
minimization problems is actually aMin-sum GDL algorithm. However, we will continue to
refer to it as Max-sum since this name is widely accepted. Our description of a DCOP is also
consistent with the definitions in many DCOP studies, e.g., [9,22,26].

A DCOP is a tuple 〈A,X ,D,R〉.A is a finite set of agents A1, A2, . . . , An . X is a finite
set of variables X1,X2,…,Xm . Each variable is held by a single agent (an agent may hold
more than one variable). D is a set of domains D1, D2,…,Dm . Each domain Di contains the
finite set of values that can be assigned to variable Xi . We denote an assignment of value
d ∈ Di to Xi by an ordered pair 〈Xi , d〉.R is a set of relations (constraints). Each constraint
C ∈ R defines a non-negative cost for every possible value combination of a set of variables,
and is of the form C : Di1 × Di2 × . . . × Dik → R

+ ∪ {0}. A binary constraint refers to

123

1172 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

exactly two variables and is of the form Ci j : Di × Dj → R
+ ∪ {0}. A binary DCOP is a

DCOP in which all constraints are binary.
A partial assignment (PA) is a set of value assignments to variables, in which each vari-

able appears at most once. The set of all variables that appear in PA is vars(PA) = {Xi :
∃d ∈ Di ∧ 〈Xi , d〉 ∈ PA}. A constraint C ∈ R of the form C : Di1 × Di2 × . . . × Dik →
R

+ ∪ {0} is applicable to PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). If C is applicable to PA
with {〈Xi1 , di1〉, 〈Xi2 , di2〉, . . . , 〈Xik , dik 〉} ⊆ PA, we may also write C(PA) in place of
C(di1 , di2 , . . . , dik). We denote the partial assignment PA with the value assignment for
a specific variable X omitted as PA−X = {〈X ′, dX ′ 〉 ∈ PA : X ′ �= X}.

The cost of a partial assignment PA is the sum of all applicable constraints to PA over the
assignments in PA. A complete assignment or a solution is a partial assignment that includes
all the variables (vars(PA) = X). An optimal solution is a complete assignment/solution
with minimum cost.

For simplicity we make the standard assumptions made in DCOP studies: All DCOPs
considered in this paper are binary DCOPs, each agent holds exactly one variable and all the
constraints this variable is involved in. Thus, the number of agents is equal to the number of
variables and we use n for both.

4 Standard Max-sum

The Max-Sum algorithm [7] is a GDL algorithm [1] that operates on a factor graph [17] that
is a bipartite graph whose nodes represent both variables and constraints.1 We overload the
notation and use X to denote the variable-node representing variable X . The set of function-
nodes is denoted byF , and for a function-node F ∈ F , we denote the constraint it represents
as CF . Each variable-node X is connected to all function-nodes F where X is involved in
CF . Similarly, F is connected to all X that represent variables in the original DCOP that are
involved in CF . The set of neighbors in the factor graph of a variable-node X or a function-
node F is denoted by NX and NF , respectively; note that NX contains only function-nodes
and NF contains only variable-nodes. Variable-nodes and function-nodes are considered
“agents” in Max-sum, i.e., they can perform computation and send and receive messages.
The DCOP agents perform the roles of different nodes in the factor graph. We assume that
the role of each variable-node is performed by the DCOP agent that holds the variable, and
the role for each function-node is performed by one of the agents whose variable is involved
in the constraint it represents.

Figure 1 demonstrates the transformation of a DCOP to a factor graph. On the left we
have a DCOP with three agents, each holding a single variable. All variables are connected
by binary constraints. On the right we have a factor graph. Each agent takes the role of the
node representing its own variable and the role of one of the function-nodes representing a
constraint it is involved in, e.g., in this factor graph agent A1 takes the role of function-node
F1, which represents the constraint between its own variable X1 and variable X3 held by
agent A3.

Figure 2 presents a sketch of the Max-sum algorithm.2 The pseudo-code for variable-
nodes and function-nodes is similar apart from the computation of the content of messages

1 Following [7] we use the terms “variable-node” and “function-node” to refer to nodes in the factor graph
corresponding to variables and constraints, respectively.
2 In contrast to previous papers on Max-sum, we present it using pseudo-code. This is following standard
DCOP literature, e.g., [22,26,41]. Nevertheless, only the presentation is different; the algorithm itself is
identical to the algorithm presented in [7,30].

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1173

Fig. 1 Transformation of a DCOP to a factor graph

Fig. 2 Standard Max-sum

to be sent. Messages are only sent from variable-nodes to neighboring function-nodes and
from function-nodes to neighboring variable-nodes. The message sent by each variable-node
X to a neighboring function-nodes F at iteration i is denoted by Qi

X→F and is based solely
on data received from neighboring function nodes. The message sent by each function-node
F to a neighboring variable-node X at iteration i is denoted by Ri

F→X and is based on data
received from neighbors as well as the original constraint represented by the function-node.

The message sent from a variable-node X to a function-node F at iteration i contains,
for each of the values d ∈ DX , the sum of costs for d that was received from all function
neighbors apart from F in iteration i −1. Formally, it is the function Qi

X→F : DX → Rwith

Qi
X→F (d) =

⎧
⎪⎨

⎪⎩

∑

F ′∈NX \{F}
Ri−1
F ′→X (d) − αi

X F if i > 1

0 otherwise
(1)

for all d ∈ DX . The αi
X F term is a constant that is deducted in order to prevent themagnitudes

of transmitted messages from growing arbitrarily. Selecting

αi
X F = 1

|DX |
∑

d∈DX

∑

F ′∈NX \{F}
Ri
F ′→X (d)

so that
∑

d∈DX
Qi

X→F (d) = 0 is a reasonable choice for this purpose [7,30]. Note that as
long as a constant amount is subtracted for all d ∈ DX , the algorithm is not affected because
only the differences between the costs for different values matter.

123

1174 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

A message sent from a function-node F to a variable-node X in iteration i includes for
each possible value d ∈ DX the minimal cost of any combination of assignments to the
variables involved in F apart from X and the assignment of value d to variable X . Formally,
the message from F (representing constraint CF) to X is the function Ri

F→X : DX → R

with

Ri
F→X (d) =

⎧
⎪⎨

⎪⎩

min
d∈Dom(CF):dX=d

CF (d) +
∑

Y∈NF\{X}
Qi−1

Y→F (vY) if i > 1

min
d∈Dom(CF):dX=d

CF (d) otherwise
(2)

for all d ∈ DX , where Dom(CF) denotes the domain of the constraint function CF .
Agents compute their beliefs over their variables according to the messages received by

the corresponding variable-nodes. Formally, the beliefs for a variable-node X at iteration i
is a function bi : DX → R with

biX (d) =
∑

F∈NX

Ri−1
F→X (d) ∀d ∈ DX . (3)

The agent performing the role of X chooses the optimal value assignment d̂ iX ∈ DX based
on its beliefs, selecting

d̂ iX = argmin
d∈DX

biX (d). (4)

Note that updating Q, R, and b for iteration i in Eqs. (1)–(3) requires only the messages
generated by neighbors in the previous iteration. This facilitates a dynamic programming
approach that is typical of GDL-family algorithms: in Max-sum the received messages are
all initialized as 0, and in subsequent iterations only the most recently received messages are
retained, overwriting those received in previous iterations. Thus, most descriptions of Max-
sum do not index themessages or belief by iteration; we included them only to emphasize that
newmessages are synchronously generated based on messages generated by neighbors in the
previous iteration. In following sections we will drop the iteration index from our notation for
clarity because in Max-sum_AD and Max-sum_ADVP the most recently received message
from a neighbor may not have been generated in the previous iteration.

5 Max-sum on an alternating DAG (Max-sum_AD)

Standard max-sum is known to perform poorly when there is cyclic propagation of infor-
mation on multiple cycles in the factor graph [7]. To overcome this shortcoming, we strictly
control the nature of cyclic information propagation. In particular, we direct each edge so
that the factor graph at each iteration is a directed acyclic graph (DAG), and only permit
messages in the direction of each edge. The directions of all edges (and hence the flows of
messages) are periodically and synchronously reversed. We term the sequence of iterations
between changes in direction a phase. Within each phase information propagation is purely
acyclic; cyclic information propagation only occurs across phases. The resulting algorithm
is Max-sum on an Alternating DAG (Max-sum_AD).

To define the DAG topology, we first select an order≺X on all variable-nodes in the factor
graph. This order on variable-nodes is then extended to a partial order ≺ on all nodes in the
factor graph by ordering each function-node between the two variable-nodes it connects:

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1175

Fig. 3 Transformation of a factor graph to a directed acyclic graph

v1 ≺ v2 ⇐⇒

⎧
⎪⎨

⎪⎩

v1 ≺X v2 v1, v2 ∈ X
v1 ≺X X v1 ∈ X , v2 ∈ F, Nv2 = {v1, X}
X ≺X v2 v1 ∈ F, v2 ∈ X , Nv1 = {X, v2}

(5)

This defines a directed acyclic graph (DAG) on the nodes, with directed edges from a node
only to the neighbors after it in ≺. The construction method ensures that the starting and end
points of the DAGmust be variable-nodes. Reversing the order flips the direction of all edges
so that nodes have edges only to neighbors before it according to ≺.

We note that, like any Max-sum algorithm, Max-sum_AD requires a generation of a
function node, and like Bounded Max-sum [30], Max-sum_AD requires that agents generate
a special structure on the factor graph, and replace directions during execution. Such structures
are common in DCOP literature, e.g., algorithms that use pseudo-trees [22,26,40], or BFS
trees [42]. On the other hand, local search algorithms such as DSA [41] do not require any
pre-processing. This is definitely an issue that one needs to consider when deciding which
DCOP algorithm to implement.

An example of the orientation of a factor graph to yield a DAG is depicted in Fig. 3. This
example uses≺X that orders the variable-nodes by the indices of the agents performing their
roles, with a variable-node performed by Ai ordered before a variable-node performed by
A j if i < j . The initial order on variable-nodes is X1 ≺X X2 ≺X X3. This is extended
to all nodes in the factor graph by setting X1 ≺ X2 ≺ X3 along with X1 ≺ F1 ≺ X3 and
X1 ≺ F2 ≺ X2 and X2 ≺ F3 ≺ X3.

The pseudo-code for Max-sum_AD given an order ≺ and phase length l is presented in
Fig. 4. Each node partitions its neighbors into two sets: those that come before it according
to ≺, and those that come after it. Initially, the set recipients of nodes that will receive its
messages are the neighbors that come after it according to ≺ (line 2). After a phase of length
l, the recipients changes to the set of neighbors that come before the node according to≺, and
the direction of message flow will continue to alternate every l iterations until termination
(lines 15–17).

The content of messages in Max-sum_AD is computed according to Eqs. (1) and (2)
(lines 9 and 12), just as in standard Max-sum. It is important to note that these computations
are based on the messages from all neighbors, not only those in Nv \ recipients. This means
that the messages from neighbors in recipients that are used as inputs to Eqs. (1) and (2)
are those received in the previous phase, or the initialized values of 0 if it is the first phase.
This is what facilitates cyclic information propagation across phases and allows agents to
eventually accumulate information based on all constraints in the DCOP.

123

1176 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 4 Max-sum_AD

For example, consider again the DAG in Fig. 3. In the first iteration, variable-node X1

computes and sends messages to F1 and F2, function-node F1 computes and sends a message
to X3, function-node F2 computes and sends amessage to X2, variable-node X2 computes and
sends a message to F3, and function-node F3 computes and sends a message to X3; because
this is the first iteration, these messages are all based on the received messages initialized
to 0. Variable-node X3 has no outgoing edges in the DAG and hence it sends no messages.
In the second iteration, all nodes but X1 receive the messages sent by their in-neighbors,
and all nodes but X3 again compute and send messages to their out-neighbors. For X1, these
are the same messages (because it has received no messages and hence continues to use the
initialized values), but for the other nodes their messages are updated to reflect the messages
they received from their neighbors. This continues until the end of the first phase.

After l iterations, the first phase ends and the directions of all edges in the DAG in Fig. 3
are reversed. Thus, in iteration l+1 all nodes but X1 receive the messages generated and sent
in iteration l, and all nodes but X1 then compute and send messages to their new recipients:
F1 and F2 send to X1, X2 sends to F2, F3 sends to X2, and X3 sends to F1 and F3. These
are the first messages sent by X3, and they are based on the messages that were generated
by F1 and F3 in iteration l. In contrast, X1 sent messages in the first phase but will not send
any messages in the second phase.

It is only in the second phase that cyclic information propagation begins, with nodes
being able to incorporate cost information accumulated in the first phase. For example, in
the first phase X1 sent messages that were not based on any constraint information since that
is generated by the function-nodes and X1 received no messages. However, in the second
phase, X1 begins to receive this information from F1 and F2. Similarly, in the first phase
X2 received cost information from F2 but not from F3. In the second phase, it receives cost
information from F3 and its beliefs thereby consider all constraints it is involved in. The
messages X2 receives from F3 are also based on information from F1 by way of X3. In
this way X2 and all other variable-nodes are able to consider all constraints in the prob-
lem.

Observe that in the first phase, X1 never receives any messages and hence its outgoing
messages QX1→F1 and QX1→F2 never change. Since F1 and F2 compute their messages
based on the constraints and X1’s messages, neither of which change, it follows that RF1→X3

and RF2→X2 never change after the second iteration when F1 and F2 first receive X1’s

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1177

unchanging messages. This trend continues in subsequent iterations of the first phase with
X2, F3, and finally X3 arriving at stable, unchanging outgoing messages. Likewise, in the
second phase, X3 never receives any messages after iteration l + 1, and hence its outgoing
messages do not change within that phase. The other nodes then arrive at fixed outgoing
messages in subsequent iterations in a reverse order to that they did in the first phase. In
this way, the messages and hence the beliefs and the value selections of all nodes converge
if the phases are sufficiently long. We next formally prove this property of single-phase
convergence (SPC).

Lemma 1 Given a DAG of the factor graph, the content of the messages received by any
node v does not change after �v + 1 iterations, where �v is the length of the longest path in
the DAG that reaches v.

Proof We prove the lemma by induction on �v . When �v = 0, it follows that v has no
incoming edges and hence the claim is vacuously true, establishing the base case. To prove
the inductive stepwe assume that the lemma holds for any node v′ with �v′ < �v . Because this
is a DAG, the longest path to any of the in-neighbors of v must be strictly less than �v . Thus,
according to the inductive hypothesis the messages received by all of v’s in-neighbors do not
change after �v iterations. Since the content of messages produced by a node is dependent
only on the most recently-received messages, it follows that the outgoing messages from the
in-neighbors of v also do not change after �v iterations. Since the outgoingmessage generated
by an in-neighbor of v at iteration �v is received by v on iteration �v +1, the claim also holds
for v. ��

Using Lemma 1, we can now establish the worst-case bound on the number of iterations
required in each phase to guarantee convergence in Max-sum_AD.

Theorem 1 (Single-Phase Convergence) In Max-sum_AD, if the phase length l ≥ 2n then
the messages of all nodes and the beliefs of all variable-nodes do not change after iteration
2n in each phase.

Proof By Lemma 1, the messages received by all nodes in a single phase do not change
after maxv �v + 1 iterations, where �v is the length of the longest path that reaches v in the
DAG for that phase. Since the variable-nodes’ beliefs are based solely on the most recently
received messages according to Eq. (3), they also do not change after iteration maxv �v + 1
of each phase.

Although the length of the longest path to each node depends on which of the two alter-
nating DAGs is being considered, maxv �v does not. This is because a sequence of nodes is
a path in a DAG if and only if the reversed sequence of nodes is a path in the DAG in which
all edges are reversed. Thus, the lengths of the longest paths are the same in both of the
alternating DAGs used by Max-sum_AD, and we can speak of maxv �v without reference to
the specific phase.

Paths in the DAGs must alternate between variable-nodes and function-nodes because the
DAGs are bipartite.Moreover, each pathmust begin and endwith a variable-node and contain
each variable-node at most once because of the definition of≺ in Eq. (5). Thus, each path can
contain atmostn variable-nodes andn−1 function-nodes, somaxv �v+1 ≤ (2n−1)+1 = 2n.

��
The guarantee of SPC is a virtue ofMax-sum_AD that is not shared by standardMax-sum.

Theorem 1 ensures that SPC can be achieved in a linear number of iterations even in the worst

123

1178 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

case, and convergence may be guaranteed in even fewer iterations depending on the diameter
of the DAG, as outlined in the proof.

If there is a unique value assignment that optimizes each variable-nodes’ beliefs, or if
value selection is deterministic in the case of ties, then Theorem 1 also implies that agents
converge to a complete assignment in each phase. We refer to the messages, beliefs, and,
when applicable, assignments that are converged to within a phase as the SPC messages,
beliefs, and assignments, respectively.

Changing the direction of communication is crucial to allowing variable-nodes to con-
sider all constraints in the problem. However, there is no guarantee that the new solution that
the agents converge to in the next phase will be an improvement over the previous assign-
ment. Guaranteeing suchmonotonic improvement across phases, or cross-phase convergence
(CPC) requires a modification to the algorithm, as described in the next section.

We note that it is possible to design Max-sum_AD such that each node in the factor-
graph sends messages only in a single iteration in each phase. Each node waits to receive
messages from all neighbors that come before it according to the order of nodes in the phase.
Nodes with no such neighbors send messages in the first iteration of the phase. Such a design
avoids sending redundant messages and reduces the communication cost. However, in this
design agents have more global awareness, e.g., they know the length of the paths they are
involved in, in each direction. A similar trade-off was presented in [30]. While the alternative
design reduces the number of messages sent, it does not affect the number of iterations until
convergence.

6 Max-sum_AD with value propagation (Max-sum_ADVP)

In this sectionwe introduce value propagation into theMax-sum_ADalgorithm to yieldMax-
sum_AD with Value Propagation (Max-sum_ADVP). We start by presenting the motivation
for value propagation and then go into the algorithmic details. We then prove that when
combined with value propagation, the algorithm visits monotonically improving complete
assignments starting in the fourth phase (second phase of value propagation), and that CPC
is guaranteed.

6.1 Motivation for value propagation

In order to understand the need for value propagation in Max-sum in general and specifically
in Max-sum_AD we identify two phenomena that deteriorate the ability of agents to identify
the value assignments that will minimize the cost of the solution.

The first phenomenonwas identified in previous studies on complete GDL algorithms [26,
37] and is exemplified by the graph coloring example in Fig. 5. In the first iteration, F1 uses
Eq. (2) to compute its message RF1→X1 by finding, for each possible value assignment of
X1, the minimum constraint cost over all possible value assignments to X2. Because there is
a value assignment for X2 that results in a cost of 0 for each value assignment of X1 (namely,
assigning X2 a different value than X1), RF1→X1(d) = 0 for all d ∈ D1. By symmetry, all
messages from function-nodes to variable-nodes also map every value assignment to 0. Due
to initialization, all messages from variable-nodes to function-nodes also map every value
assignment to 0, and hence it is easy to verify that using Eqs. (1) and (2) will likewise map
every value assignment to 0 for all future messages.

The result is that agents do not propagate any useful information. Because Max-sum and
Max-sum_AD both generate messages according to Eqs. (1) and (2), they are both subject to

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1179

Fig. 5 Example for the need for value propagation to resolve indeterminacy in value selection

this phenomenon. Upon termination, the variable-nodes are indifferent between their possible
value assignments: all values in their domains satisfy Eq. (4). A simple, deterministic value
selection implementation results in all agents selecting the same value, resulting in a global
cost of 3, the worst possible. A uniformly random value selection implementation results
in lower expected global cost, although it is still possible that the worst case solution is
found. Note, however, that this phenomenon of uninformative messages being passed is not
dependent on the graph coloring “not-equals” constraints; it also arises with coordination
“equals” constraints in which neighboring agents that select the same value incur no cost,
while neighboring agents that select different values incur a cost of 1. In such problems,
deterministic value selection would be optimal, while stochastic value selection would be
suboptimal. More generally, the constraints may impose costs on permutations of assignment
pairs (as in unique label cover problems [15]), for which both deterministic and stochastic
value selection would be suboptimal. It is unreasonable to defer addressing this shortcoming
to the value selection implementation, as the lack of information from Max-sum means it is
essentially equivalent to solving the original DCOP.

Value propagation resolves the indifference by having agents communicate their selected
values. An agent receiving such a message can then compute the costs that would be incurred
given the received value selections. For example, in DPOP, agents condition their beliefs
on the value selections of their direct ancestors in a pseudo-tree. After these beliefs are
computed, the root of the pseudo-tree initiates the value selection stage of the algorithm
by choosing its value and propagating this to its children. Subsequent agents in turn select
their own values and propagate the necessary value selections further down the tree. This
guarantees the optimality of DPOP even in the presence of ties in agents’ beliefs.

A different method to break ties was suggested by Farinelli et al. [7]. Each agent randomly
selects preferences over its variables’ values. These preferences are costs that are orders of
magnitude smaller than the costs in the actual constraints. The use of such preferences reduces
the probability of ties to be insignificant. However, if we use this method in graph coloring
problems similar to the problem above, it is easy to see that only personal preferences will be
propagated by the algorithm. Thus, the information propagated by the agents will be arbitrary
and the selection of values will be as well. We demonstrate in our experiments that the use of
this preference-basedmethod is not as beneficial as value propagationwhen solving problems
with multiple cycles.

Although breaking ties is the only motivation for value propagation in complete algo-
rithms, incomplete GDL algorithms such as Max-sum_AD have a second motivation: incon-
sistent cost calculations. We will illustrate this phenomenon using the factor graph depicted

123

1180 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 6 Example for the need for value propagation to avoid inconsistent cost calculation

in Fig. 6. There are two optimal assignments with total cost 4: {〈X1, a〉, 〈X2, a〉, 〈X3, a〉} and
{〈X1, b〉, 〈X2, b〉, 〈X3, b〉}. Consider now Max-sum_AD with ≺X according to the agents’
indices.3 By Theorem 1, the messages and beliefs converge by the sixth iteration of each
phase. Adopting the vector notations bi = (bi (a), bi (b)) for beliefs (and similarly for mes-
sages QX→F and RF→X), the SPCmessages and beliefs in the first two phases are as follows:

Phase 1 (Max-sum_AD):

b1 = (0, 0) QX1→F1 = (0, 0) QX1→F2 = (0, 0)
RF1→X3 = (2, 1) RF2→X2 = (1, 2)

b2 = (1, 2) QX2→F3 = (−0.5, 0.5)
RF3→X3 = (0.5,−0.5)

b3 = (2.5, 0.5)

Phase 2 (Max-sum_AD):

b3 = (2.5, 0.5) QX3→F1 = (0.5,−0.5) QX3→F3 = (0.5,−0.5)
RF1→X1 = (2.5, 0.5) RF3→X2 = (−0.5, 0.5)

b2 = (0.5, 2.5) QX2→F2 = (−0.5, 0.5)
RF2→X1 = (0.5, 2.5)

b1 = (3, 3)

In both the first and second phases, X2 will choose a and X3 will choose b, thereby precluding
selection of an optimal joint assignment of cost 4. Instead, the agents will incur a total cost
of 6: a cost of 1 from F1 or F3 and a cost of 5 from F3 or F1, depending on whether X1

chooses a or b, respectively.
This shortcoming arises because in the first phase, F1 and F2 each independently consider

possible assignments to X1 and optimistically assume X1 chooses the value assignment that
minimizes costs for each value of the recipient, according to Eq. (2). This optimism results
in messages to X2 and X3 that assume X1 will choose the same value assignment as the
recipients, while the independence leads to inconsistent assumptions by X2 and X3 about the
assignment X1 will actually take. In this case, X2’s choice of a is based on the assumption
that X1 will choose a, while X3’s choice of b is based on an assumption that X1 will choose
b.

3 We demonstrate the phenomenon for Max-sum_AD since it is easier to follow. In standard Max-sum, such
inconsistent information concerning the conflicting assignment of some node is propagated in all directions
and fed back to the node itself through cycles.

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1181

Even when the cost information is propagated back through the factor graph in the second
phase, the messages are based on the inconsistent assumptions from the first phase, resulting
in suboptimal assignments. Continuing the algorithm for additional phases does not remedy
this problem:

Phase 3 (Max-sum_AD):

b1 = (3, 3) QX1→F1 = (−1, 1) QX1→F2 = (1,−1)
RF1→X3 = (1, 2) RF2→X2 = (2, 1)

b2 = (1.5, 1.5) QX2→F3 = (0.5,−0.5)
RF3→X3 = (−0.5, 0.5)

b3 = (0.5, 2.5)

Phase 4 (Max-sum_AD):

b3 = (0.5, 2.5) QX3→F1 = (−0.5, 0.5) QX3→F3 = (−0.5, 0.5)
RF1→X1 = (1.5, 1.5) RF3→X2 = (0.5,−0.5)

b2 = (2.5, 0.5) QX2→F2 = (0.5,−0.5)
RF2→X1 = (1.5, 1.5)

b1 = (3, 3)

Phase 5 (Max-sum_AD):

b1 = (0, 0) QX1→F1 = (0, 0) QX1→F2 = (0, 0)
RF1→X3 = (2, 1) RF2→X2 = (1, 2)

b2 = (1, 1.5) QX2→F3 = (−0.5, 0.5)
RF3→X3 = (0.5,−0.5)

b3 = (2.5, 0.5)

In each of these phases, X2 and X3 will either choose different values (phases 4 and 5) or
there is indeterminacy that may cause them to choose different values (phase 3). (Note that
this example also features the first phenomenon of indeterminacy, so that even if X2 and X3

choose the same value in phase 3, X1 may choose a different value resulting in a suboptimal
solution.)

At the end of the fifth phase, the contents of all communicated messages are exactly the
same as those at the end of the first phase. Thus, the SPC messages and beliefs in the sixth
phase will be the same as those in the second phase, and the algorithm will cycle. Note that
X2 has different SPC beliefs in the first and fifth phases. This is because those beliefs were
based on RF3→X2 = (0, 0) for the first phase (as initialized), and RF3→X2 = (0.5,−0.5) for
the fifth phase (as received from F3 in the fourth phase). This difference has no impact on
the execution of the algorithm since beliefs do not affect the outgoing messages.

Although the difference in cost between the optimal solution and the solution found by
Max-sum_AD may seem small in this example, it is possible for it to be arbitrarily large in
general. Because F1 and F2 optimistically take theminimum over possible value assignments
of X1, the magnitude of the dispreferred costs do not matter. Thus, the behavior of the agents
and hence the solution that is found would be the same even if, for example, the cost of
CF1(a, b) = CF1(b, a) = CF2(a, b) = CF2(b, a) = 1000 instead of 5. On such a problem,
Max-sum_AD would find solutions of cost 1001.

Value propagation avoids inconsistency in the assumptions for calculating beliefs at
variable-nodes by computing consistent costs at function-nodes. In the example, if X1 had
selected a value and communicated it to F1 and F2, the function-nodes would have been able
to compute consistent costs based on this value for X1 and send these costs to X2 and X3.

123

1182 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 7 Max-sum_ADVP for variable-nodes

Fig. 8 Max-sum_ADVP for function-nodes

This in turn would have affected the beliefs of X2 and X3, allowing them to improve their
value selection and improve the quality of information being propagated through the factor
graph. This is especially important in larger problems, where more distant nodes will not
have direct knowledge of the value assignments that are selected but will still benefit from
value propagation in each neighborhood.

6.2 Introducing value propagation into Max-sum_AD

We overcome the two pathologies we identified above by augmenting Max-sum_AD with
a value propagation method similar to that used in complete GDL algorithms for avoiding
ties [26,30,37]. The resulting algorithm is Max-sum_AD with Value Propagation (Max-
sum_ADVP), whose pseudo-code is presented in Figs. 7 and 8 for variable-nodes and
function-nodes, respectively.

The structure of Max-sum_ADVP is very similar to that of Max-sum_AD, except that
the contents of the messages are altered to reflect the value propagation. Importantly, value
propagation is not used from the beginning of the algorithm, but starts in the third phase. This
is because effective value selection requires informed beliefs, and agents have not received
information to allow them to consider all constraints in the problem until the end of the
second phase. Indeed, our experimental study indicates that the best assignment found by
Max-sum_AD (without value propagation) is at the end of the second phase. Were value

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1183

propagation to begin instead on the first iteration of the first phase, agents would have no
information to base their choices on, and the premature selection and propagation of value
assignments would likely prevent them from considering low cost solutions.

When using value propagation, each variable-node X explicitly selects a value d̂X in each
iteration (Fig. 7, line 7) and sends it with the costmessages to recipient function-nodes (Fig. 7,
line 11); the cost message itself is computed using Eq. (1), just as in standard Max-sum and
Max-sum_AD. Each function-node F in turn maintains a partial assignment PAF that stores
the value selections of its neighbors. PAF is initially empty (Fig. 8, line 2) and is updated with
〈X, d̂X 〉 whenever value selection d̂X is received from a neighbor X ∈ NF (Fig. 8, line 9).

Function-node F utilizes PAF in generating RF→X messages by minimizing only over
assignments that are consistent with PAF for the other variables Y ∈ NF \ {X}. Formally,
this space of possible assignments is the consistent domain of CF given by

CD(CF ,PAF , X, d) = {d ∈ Dom(CF) : dX = d and ∀Y ∈ vars(PAF) \ {X}(dY = d̂Y)}
and the message generation for function-nodes in Max-sum_ADVP is

RF→X (d) = min
d∈CD(CF ,PAF ,X,d)

CF (d) +
∑

Y∈NF\{X}
QY→F (dY). (6)

The function-node uses Eq. (6) to generate the messages to recipient variable-nodes in Fig. 8,
line 11.

To demonstrate the functioning of Max-sum_ADVP, consider again the example in Fig. 6.
The first two phases proceed identically as described above for Max-sum_AD, as there is no
value propagation in Max-sum_ADVP until the third phase. The SPC beliefs and messages
for the third phase are as follows, assuming that X1 selects a given its indifference between
a and b.

Phase 3 (Max-sum_ADVP):

b1 = (3, 3), d̂X1 = a QX1→F1 = (−1, 1) QX1→F2 = (1,−1)
RF1→X3 = (1, 4) RF2→X2 = (2, 6)

b2 = (1.5, 6.5), d̂X2 = a QX2→F3 = (−2, 2)
RF3→X3 = (−1,−2)

b3 = (0, 2)

Note that value propagation has already caused the agents to converge within the phase to
one of the two optimal solutions. This doesn’t change in subsequent phases, as we show next.

Phase 4 (Max-sum_ADVP):

b3 = (0, 2), d̂X3 = a QX3→F1 = (0.5,−0.5) QX3→F3 = (−1.5, 1.5)
RF1→X1 = (2.5, 5.5) RF3→X2 = (−0.5,−1.5)

b2 = (1.5, 4.5), d̂X2 = a QX2→F2 = (0.5,−0.5)
RF2→X1 = (1.5, 5.5)

b1 = (4, 11)

Phase 5 (Max-sum_ADVP):

b1 = (4, 11), d̂X1 = a QX1→F1 = (−2, 2) QX1→F2 = (−1.5, 1.5)
RF1→X3 = (0, 3) RF2→X2 = (−0.5, 3.5)

b2 = (−1, 2), d̂X2 = a QX2→F3 = (−2, 2)
RF3→X3 = (−1,−2)

b3 = (−1, 1)

123

1184 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Phase 6 (Max-sum_ADVP):

b3 = (−1, 1), d̂X3 = a QX3→F1 = (0.5,−0.5) QX3→F3 = (−1.5, 1.5)
RF1→X1 = (2.5, 5.5) RF3→X2 = (−0.5,−1.5)

b2 = (−1, 2), d̂X2 = a QX2→F2 = (0.5,−0.5)
RF2→X1 = (1.5, 5.5)

b1 = (4, 11)

Themessages and beliefs at the end of the sixth phase are identical to those at the end of the
fourth phase and hence behavior in subsequent iterations will be cyclic. Moreover, observe
that the SPC beliefs in phase 4 and phase 5 are equal up to an additive constant for each
agent. That is to say, the relative valuations that each agent attributes to each of its domain
values remains constant from phase 4 onward: b1(a) − b1(b) = −7, b2(a) − b2(b) = −3,
and b3(a) − b3(b) = −2. Because it is the relative beliefs that matter in value selection,
the agents’ beliefs from phase 4 onward are functionally the same. In a sense, the agents
have converged to a stable solution across phases. In the next subsection, we prove that this
cross-phase convergence is not just an accident peculiar to this specific example but rather a
guaranteed property of Max-sum_ADVP.

6.3 Establishing monotonicity and convergence

In order to prove the monotonicity ofMax-sum_ADVPwe first prove the following Lemmas:

Lemma 2 Let F be a function-node with neighbor X ∈ NF. In the fourth or later phase of
Max-sum_ADVP, there exists a constant c such that the SPC message RF→X satisfies

RF→X (d) = CF (PA−X
F ∪ {〈X, d〉}) + c ∀d ∈ DX .

Proof The fourth phase ofMax-sum_ADVP is the second phase with VP, so by the time SPC
is achieved, F has received value assignments from all neighbors. Thus, CF is applicable to
PAF and Eq. (6) can be rewritten as

RF→X (d) = CF (PA−X
F ∪ {〈X, d〉}) +

∑

〈Y,d̂Y 〉∈PA−X
F

QY→F (d̂Y) ∀d ∈ DX .

It is clear that the second term,
∑

QY→F (d̂Y), does not depend on d and hence is a constant
with respect to the SPC message RF→X . ��

An immediate corollary of Lemma 2 is that for each pair of values d, d ′ ∈ Dx ,

RF→X (d) − RF→X (d ′) = CF (PA−X
F ∪ {〈X, d〉}) − CF (PA−X

F ∪ {〈X, d ′〉}).
That is, the difference between the costs included in the message for different values are
exactly the differences between the original costs in the constraint CF represented by F for
these values and the latest value assignment of F’s variable-node neighbors that were sent
to F .

Lemma 3 The complete assignment in each VP phase of Max-sum_ADVP is equal to a
complete assignment that would have been selected if agents had selected values sequentially.

Proof We prove the claim for a specific order of the variable-nodes, namely ≺X if the
directionality of edges in the factor graph is according to ≺ (i.e., in odd-numbered phases

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1185

of Max-sum_ADVP), and the reverse order on variable-nodes if the directionality of edges
is the reverse of ≺ (i.e., in even-numbered phases of Max-sum_ADVP). Since the two cases
are symmetric, we prove the claim for the first case.

We prove the claim by complete induction on the ordinal rank of variable-nodes according
to ≺X . The ordinal rank oX of X ∈ X is oX = |{X ′ ∈ X : X ′ ≺X X}|. For the base case,
suppose that oX = 0. By the definition of the DAG, X must have no incoming edges and
hence it receives no messages in the current phase. Thus, its beliefs do not change and so its
selection of value assignment can be performed before that of any other variable-node, and
so the base case is proved.

Suppose instead that oX > 0 and that the claim is proved for all X ′ with oX ′ < oX .
Let X ′ ∈ X be a variable-node that can reach X in the DAG. By construction of the DAG
according to the order ≺ defined by Eq. (5), it follows that oX ′ < oX . By Lemma 1, the
messages received by X ′ will not change after iteration �X ′ + 1 of the current phase, so d̂X ′
also will not change after iteration �X ′ + 1. Moreover, by inductive hypothesis, this value
selection is equal to one performed sequentially according to ≺X .

Thus, on iteration �X + 1 of the current phase, X has received messages from all in-
neighbors based on all the value selections of nodes that can reach X . Furthermore, by
Lemma 1, these messages will not change in subsequent iterations of the same phase.

Let Y be a variable-node constrained with X . Then by the definition of ≺, either Y ≺ X
or X ≺ Y . Thus, Y will either make its SPC value selection before X (if Y ≺ X) or after
X (if X ≺ Y). Since Y and X will not make their value selection in the same iteration, the
SPC value selection made by X in iteration �X + 1 is equivalent to one made by a sequential
process according to ≺X . Therefore, the inductive step and the lemma are proved. ��

The crucial step in the proof of Lemma 3—that two constrained variable-nodes never
make their SPC value selection in the same iteration—is dependent on our assumption of
binary DCOPs in this paper. This facilitated the definition of ≺ resulting in each function-
node lying between its neighboring variable-nodes in the DAG. The neighbors of constraints
of higher arity cannot be ordered in such a manner since at least two of themmust come after
the function-node in one of the two DAG directions. Resolving this to establish convergence
requires the addition of an auxiliary method to ensure that only one variable-node neighbor
of each function-node replaces its assignment at a time. One method to do this distributedly
would be for each function-node to create a single token that is passed between the variable-
node neighbors, allowing them to change their value selections.

Lemma 4 During the VP phases of Max-sum_ADVP, starting from the second VP phase, if
at some iteration the value assignment of a single variable-node is replaced, then the global
cost is reduced by an integral amount.

Proof According to the corollary of Lemma 2, from the second VP phase, the differences
between costs sent in messages from function-nodes to variable-nodes represent the differ-
ences between the original costs in the constraints, thus, an assignment replacement must
decrease the local state of the variable (the sum of costs of the constraints it is involved in).
Denote by C−

i the set of constraints whose costs are reduced as a result of the assignment
replacement of variable-node Xi and denote by Δ(C−

i) the aggregated decrease in cost for
these constraints caused by the replacement. Similarly denote by C+

i the set of constraints
whose costs are increased following Xi ’s assignment replacement and denote by Δ(C+

i) the
aggregated increase in costs on these constraints. Obviously,Δ(C−

i) > Δ(C+
i), otherwise Xi

would not have replaced its value assignment. Since we assumed that no other variable-node
replaces its assignment at this iteration, the cost of the global state is reduced as well. As all
costs are integers, this reduction must also be integral. ��

123

1186 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

The properties stated in Lemmas 3 and 4 allow us to prove the following theorem:

Theorem 2 After the second VP phase, Max-sum_ADVP is weakly monotonic improving.

Proof According to Lemma 3, the value assignment selection made by the variable-nodes is
equivalent to a sequential selection. According to Lemma 4, from the fourth phase (second
VP phase) any change of a value assignment to a single variable causes an integral reduction
in the cost of the global state. Thus, according to both lemmas we have a process that is
equivalent to a sequential assignment selection process, in which at each iteration at most a
single value assignment is replaced, and this replacement results in an integral reduction in
the cost of the global state.4 ��
Corollary 1 (Cross-Phase Convergence) There exists a phase � such that in all subsequent
phases �′ > �, the SPC assignment found by Max-sum_ADVP in phase �′ is the same as
the SPC assignment found in phase �.

Proof Immediate from Theorem 2. The number of constraints in a DCOP is finite and the
costs are finite as well. Thus, if in every phase there is a monotonic improvement in cost, this
process must converge. ��
Corollary 2 Max-sum_ADVP achieves cross-phase convergence in a number of iterations
that is pseudo-polynomial in the number of agents and maximum cost of a single constraint.

Proof The number of constraints is polynomial in the number of agents because it is a
binary DCOP so the magnitude of the maximum possible cost of an assignment is pseudo-
polynomial in the number of agents and the maximum cost of a single constraint. Thus, if in
every phase there is an integral improvement in cost and there are a polynomial number of
iterations per phase, cross-phase convergence must occur in pseudo-polynomial time. ��

7 Exploration methods

Max-sum_ADVP is purely exploitive both in selecting values given current beliefs and in
updating those beliefs. While this guarantees monotonicity, the lack of exploration also
restricts the solutions that are ultimately found. We therefore propose two classes of explo-
ration methods that expand the set of candidate solutions and may thereby allow better
solutions to be found. The first class introduces exploration into the selection of values based
on current beliefs. The second class alters the message-passing protocol, to introduce more
widespread exploration that may alter the agents’ beliefs.

When analyzing the results per iteration of Max-sum_ADVP, one may notice that the first
four phases incur dramatic reductions in the global cost. Thus, the exploration methods we
proposed next were performed from the fifth phase and on. Attempts to begin sooner or later
were not as effective.

7.1 Value selection exploration methods

The first class introduces exploration to the selection of values given current beliefs. These
methods behave identically to Max-sum_ADVP for the first four phases: one phase in each

4 We note that in standard Max-sum, the use of VP does not guarantee monotonicity since neighboring agents
can replace assignments concurrently (as in DSA).

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1187

direction without value propagation followed by one phase in each direction with value
propagationwhere a best value is selected as each agent’s current value assignment, according
to Eq. (4). Beginning in the fifth phase, and inspired by exploration in local search algorithms
such as distributed simulated annealing [2,32], agents stochastically select value assignments
from subsets of their domains. Formally, for every iteration i and variable node X with domain

DX , each method defines a subset D̂i
X ⊆ DX of possible value assignments, and a sampling

function Ψ i
X : D̂X → [0, 1] that specifies the probability of choosing each value in D̂i

X , with∑
d∈D̂X

Ψ i
X (d) = 1.

Individual methods differ in the way that D̂i
X and Ψ i

X are computed. While we considered
many possible implementations, we found the following four to be the most successful:

– K neighbors. Variable-nodes select a value assignment uniformly at random from the set
of the K best values according to their beliefs. Because making such choices may cause
highly-constrained variable-nodes (i.e., those with many neighbors) to increase the costs
of a large number of constraints, this exploration is only performed on variable-nodes
that are constrained with at most a fraction φ ∈ (0, 1] of the total number of variables.
Formally, the subset of possible value assignments is

D̂i
X =

⎧
⎪⎪⎨

⎪⎪⎩

argmin
D′⊆DX :|D′|=K

∑

d∈D′
biX (d) if K < |DX | and |NX | ≤ φn

{
argmin
d∈DX

biX (d)
}

otherwise

and the sampling function is the uniform sampling function

Ψ i
X (d) = 1

|D̂i
X |

for all d ∈ D̂i
X . (7)

– K depth. The size of D̂i
X is based on �X , the length of the longest path to X in the DAG,

decreasing with increasing �X from K down to 1. The actual elements in D̂i
X are selected

greedily according to the current beliefs. Formally,

D̂i
X =

⎧
⎪⎪⎨

⎪⎪⎩

argmin
D′⊆DX :|D′|=K−�X

∑

d∈D′
biX (d) if K > �X

{
argmin
d∈DX

biX (d)
}

otherwise.

If K ≤ �X , and there are more than one values d ∈ DX that minimize biX (d), one of

them is selected so that D̂i
X is a singleton.

The sampling function is the uniform sampling function in Eq. (7).

– Decreasing bias. Instead of fixing the size of D̂i
X as the two previous methods did, the

decreasing bias method includes all value assignments with beliefs within a predefined
bias factor of the minimum belief. This bias factor is initially β and is reduced every two
phases by an amount δ. The reduction of the bias every two phases reflects the fact that
cost information fully cycles through the system every two phases, and the principle that
exploitation should be increased at the expense of exploration as the algorithmprogresses.
Formally,

123

1188 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

D̂i
X =

⎧
⎪⎨

⎪⎩

{
argmin
d∈DX

biX (d)
}

if β − δ · (i div 2l) < 0
{
d ∈ DX : biX (d) ≤ (

1 + β − δ · (i div 2l)) min
d ′∈DX

biX (d ′)
}

otherwise

where div is integer division and l is the phase length.
The sampling function is the uniform sampling function in Eq. (7).

– SA.This is an adaptation of the simulated annealing heuristic. Each variable-node X finds

a best alternative d to its current value assignment d̂ iX . If d is an improvement over d̂ ix ,
then X replaces its value assignment. If not, X replaces its assignment with a probability

calculated by the formula e−Δ/(i mod l) whereΔ = biX (d)−biX (d̂ iX) is the cost increment
when replacing the value assignment, mod is the modulo operator, and l is the phase
length, so that (i mod l) is the number of iterations performed in the current phase.5 The
use of i mod l resets the temperature of simulated annealing at the beginning of each
phase, facilitating renewed exploration with each change of direction in communication.
Formally,

D̂i
X =

{
d̂ iX , argmin

d∈DX \{d̂ iX }
biX (d)

}

and

Ψ i
X (d) =

⎧
⎪⎨

⎪⎩

1 if biX (d) < biX (d̂ iX)

e−Δ/(i mod l) if d �= d̂ iX and biX (d) ≥ biX (d̂ iX)

1 − e−Δ/(i mod l) otherwise.

7.2 Message passing exploration methods

The second class of exploration methods explores the Max-sum family of algorithms by
allowing the message-passing protocol to change in each phase. Although all members of
this family are designed to be purely exploitive, in practice they achieve different degrees
of exploration due to the presence or absence of different convergence and consistency
guarantees. By executing different versions of the Max-sum algorithm, agents are able to
take advantage of the differing balance of exploration and exploitation in each variant. We
consider the following four variants from most explorative to least explorative:

1. STD–standardMax-sum.This has themost exploration,with no guarantee of convergence
or consistency.

2. VP–standard Max-sum with the addition of value propagation. The use of value propa-
gation reduces the inconsistent information being propagated through the factor graph,
but there is still no guarantees on convergence due to cyclic information propagation.

3. AD–Max-sum_AD. Communicating on DAGs guarantees SPC but CPC is not guaran-
teed.

4. ADVP–Max-sum_ADVP. Themost exploitive version ofMax-sum considered, with both
SPC and CPC guaranteed. Unlike the Max-sum_ADVP algorithm presented in Sect. 6.2,
this variant will use value propagation in the first two phases if specified.

The variant to use in each phase is specified through a sequence 〈〈k1, alg1〉, 〈k2, alg2〉, . . . 〉
of pairs 〈k j , alg j 〉 specifying that algorithm alg j ∈ {STD,VP,AD,ADVP} should be run for
k j phases.

5 We are aware that in the literature there exist different versions of simulated annealing.We have implemented
a variety of them and present the most successful.

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1189

For example, one instance of this class is 〈〈2,AD〉, 〈20,ADVP〉〉, where Max-sum_AD is
run for two phases, thenMax-sum_ADVP is run for twenty phases. This combination actually
replicates the standard Max-sum_ADVP algorithm as described in Sect. 6.2: agents perform
Max-sum_AD for the first two phases and only commence value propagation beginning in
the third phase.

Interleaving execution of the different algorithms can make use of their different conver-
gence properties to improve solution quality. For example, interleaving execution according
to {〈2,AD〉, 〈10,ADVP〉, 〈5, STD〉, 〈5,VP〉 〈10,ADVP〉} is expected to converge to a local
optimum (using 〈2,AD〉 and 〈10,ADVP〉), escape it (using 〈5, STD〉 and 〈5,VP〉) and con-
verge again (using 〈10,ADVP〉). If successful, the agents will cross-phase converge to a better
solution usingADVP after theSTD andVP phases, than they didwhen usingMax-sum_ADVP
initially.

The transition from one version to another needs to be performed with care since some
versions are very different from the others and messages have different forms. For example,
when transitioning from ADVP to STD, in the first iteration of the new STD phase, the agents
will receive the ADVPmessages sent in the last iteration of the previous, ADVP phase. These
messagesmay contain value assignment selections that would not normally be received under
the STD protocol. The myopic nature of Max-sum helps simplifying these transfers from one
version to the other. Agents need to follow the following three guidelines in every iteration
they perform, regardless of the version of the algorithm in the previous iteration:

1. When producing messages or selecting value assignments consider the most recently
received message received from each neighbor.

2. Use only the information that is relevant to the current version of the algorithm.
3. If a message does not include information expected in the current version (e.g., a value

assignment in VP or ADVP), interpret the message using the version of the algorithm that
does not require this information, but generate new messages so that the current protocol
can resume in the next iteration.

The above guidelines allowagents to execute the algorithm they are supposed to, regardless
of the algorithm performed in the previous iteration. For example, when shifting from ADVP
to STD, a function-node considers the messages received most recently from each of its
variable-node neighbors, no matter how long ago that may have been, and ignores the value
assignments the messages include. When shifting from STD to ADVP on the other hand, a
function-node will expect value assignment selections to be included in messages sent from
variable-nodes. However, in the first iteration these will not be included in the messages it
receives. Thus, in the current iteration it performs AD (i.e., generating messages according
to Eq. (2) instead of Eq. (6)) and starts ADVP (by generating messages according to Eq. (6))
in the next iteration. Variable-nodes starting ADVP, however, are required to send their value
assignments in the first iteration of the phase, so that the function-nodes can begin running
ADVP properly in the second iteration.

8 Experimental evaluation

In this section we present experiments comparing the performance of Max-sum_AD and
Max-sum_ADVP to leading incomplete DCOP algorithms, including various versions of
the Max-sum algorithm. After establishing the quality of the purely exploitive versions of
Max-sum_AD and Max-sum_ADVP in comparison with existing algorithms, we investigate

123

1190 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

the effects of adding exploration to these algorithms, and the effect of using them within the
anytime framework proposed in [42].
The experiments were performed on four types of minimization problems commonly used
in the DCOP literature. Each type of problem exhibits a different level of structure in the
constraint graph topology and in the constraint functions. All problems were formulated as
minimization problems.

1. Uniformly random DCOPs. Each agent holds a single variable with ten values in its
domain. The constraint graph for each problem instance was generated randomly by
adding a constraint between each pair of agents/variables independently with probability
p1. The cost of each pair of assignments of values to a constrained pair of variables
was selected uniformly at random between 1 and 10. Such uniform random DCOPs
with constraint graphs of n variables, k values in each domain, constraint density of p1
and bounded range of costs/utilities are commonly used in experimental evaluations of
centralized and distributed algorithms for solving constraint optimization problems [9,
18]. Both the constraint graph and the constraint functions are unstructured.

2. Graph coloring problems. These problems use random constraint graph topologies as
in the random minimization DCOPs, but all constraints Ci j ∈ R are “not-equal” cost
functions of the form

Ci j (di , d j) =
{
1 if di = d j

0 otherwise

for all di ∈ Di , d j ∈ Dj . Such random graph coloring problems are commonly used in
DCOP formulations of resource allocation problems [7,41]. Following the literature, we
used p1 = 0.05 and three values (i.e., colors) in each domain. While the constraint graph
is unstructured, the constraint functions are highly structured.

3. Scale-free network problems. The constraint graph topology was generated using the
Barabási–Albert (BA) model. An initial set of 10 agents was randomly selected and
connected. Additional agents were added sequentially and connected to 3 other agents
with a probability proportional to the number of links that the existing agents already
had. The cost of each joint assignment between constrained variables was independently
drawn from the discrete uniform distribution from 0 to 99. Each variable had 10 values in
its domain and the total number of agents in each problem instance was n = 50. Similar
problems were previously used to evaluate DCOP algorithms by Kiekintveld et al. [16].
The constraint graph is somewhat structured but the constraint functions are unstructured.

4. Meeting scheduling problems. Ninety agents scheduled 20 meetings into 20 time slots.
Each agent was a participant in two randomly chosenmeetings. For each pair ofmeetings,
a travel time was chosen uniformly at random between 6 and 10, inclusive. When the
difference between the time slots of two meetings is less than the travel time between
those meetings, any participants in both meetings are overbooked, and a cost equal to
the number of overbooked agents is incurred. These realistic problems are identical to
those used by Zivan et al. [42]. Both the constraint graph and the constraint functions are
highly structured.

In all experiments presented we depict the cost of the solution that the different algorithms
would have selected as a function of the number of iterations performed. In all the versions of
Max-sum in our experiments we used the random personal preferences method for breaking
ties that was suggested by Farinelli et al. [7]. In algorithms of the Max-sum family, agents
performed the roles of the variable-nodes representing their own variables, and each function-

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1191

node was performed by the agent with the smaller index who held a variable involved in its
constraint.

8.1 Comparison of exploitive algorithms

We first empirically establish the effectiveness of the purely exploitive versions of Max-
sum_AD and Max-sum_ADVP. We compared them to leading incomplete algorithms:
standard Max-sum [7], standard Max-sum with damping factor 0.8 [19], Bounded Max-
sum [30], DSA-C [41] and ADPOP [27]. Unless otherwise noted, ADPOP was limited to
maxDims = 3 due to practical considerations because the maximum table size (and hence
the running time) is exponential in twice the value of maxDims, as described in Sect. 2.

We also compared our algorithms with the solutions found using the primal and dual
formulations of a standard linear programming relaxation (LPR) [10]. The combinatorial
solutions were obtained from the LP solutions by choosing the assignments that maximized
the agents’ beliefs (directly for the primal formulation and using the samemethod as EMPLP
for the dual formulation [10]). Many recent inference algorithms such as MPLP [10] and
TRBP [39] attempt to converge to the solutions to the dual formulation and hence the dual LPR
is expected to provide higher quality assignments on average than any of these algorithms.
However, we found that the assignments obtained using the primal formulation had costs no
worse and in many cases much better than those obtained using the dual formulation, and
hence we report only the results obtained using the primal LPR.

In each experiment we report the solution cost averaged over 200 randomly-generated
problem instances for the algorithms when run for 2000 iterations. For Max-sum_AD and
Max-sum_ADVP, we used phase length of 2n to guarantee SPC, although in most cases they
converged much faster. Note that because LPR, Bounded Max-Sum and ADPOP are not
iterative algorithms, we report the solutions found by those algorithms at the end of their
execution.

Figure 9 presents the costs of the solutions when solving uniformly random DCOPs with
n = 50 and a relatively lowconstraint density of p1 = 0.2. It ismost apparent that the standard
Max-sum algorithm does not converge and instead traverses complete assignments with high
costs. LPR and Bounded Max-sum also do poorly, finding solutions only slightly better than
those ofMax-sum.Max-sum_AD converges to solutions of lower cost than any of these three

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

Max um

LPR

Bounded Max um

Max um AD

ADPOP

Max um

Max um ADVP

DSA

Fig. 9 Solution cost when solving uniformly random DCOPs with low density (p1 = 0.2)

123

1192 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

3500

3700

3900

4100

4300

4500

4700

4900

5100

5300

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

LPR

Bounded Max um

Max um

Max um AD

ADPOP

Max um ADVP

DSA

Max um

Fig. 10 Solution cost when solving uniformly random DCOPs with high density (p1 = 0.6)

algorithms in the first phase, and continues to find much improved solutions in the second
phase. However, in the third and subsequent phases, the SPC assignments have costs similar
to or even higher than those of the second phase. These solutions also have higher costs than
those found by ADPOP.Max-sumwith damping also does not converge, however, it explores
solutions of much lower cost than standardMax-sum, and produces solutions with lower cost
than ADPOP. DSA and Max-sum_ADVP find the solutions with the lowest costs. Since we
begin value propagation only after the second phase, Max-sum_ADVP performs identically
to Max-sum_AD in the first 200 iterations. However, in the third phase, Max-sum_ADVP
converges to solutionswithmuch lower cost thanMax-sum_ADdoes. In the following phases
it is observable that Max-sum_ADVP monotonically improves, as we proved in Sect. 6.3,
until it finally converges to the solution with the lowest cost after the seventh phase.

Figure 10 presents the results for uniformly random problems with n = 50 and a higher
constraint density of p1 = 0.6.LPRdoes very poorly, suggesting that the inference algorithms
that approximate it will be of little use for such dense, unstructured problems. BoundedMax-
sumand standardMax-sumfind solutionswith similar costs, in contrast to the results on sparse
problems showing Bounded Max-sum narrowly outperforming standard Max-sum. This is
reasonable because Bounded Max-sum must remove more edges in denser problems and
thus, more constraints are ignored when producing the solution. The relative performance
of the other algorithms is similar to that for sparse problems, with Max-sum_ADVP again
finding solutions of low cost, as do DSA and Max-sum with damping. However, Max-sum
with damping does even better than on low density problems, and in final iterations of the
run, outperforms Max-sum_ADVP.

The next set of experiments tested the incomplete inference algorithms on graph coloring
problems with n = 50 agents, density p1 = 0.05, and three colors. Because these problems
are much sparser with much smaller domains than the uniformly random problems, it was
possible to run ADPOP with maxDims = 8. The results presented in Fig. 11 are similar to
the results presented for random problems, but standard Max-sum and LPR perform excep-
tionally poorly. As we mentioned in Sect. 6.1, when solving this type of problems, the only
information communicated by Max-sum agents are their random tie-breaking preferences
and thus the solutions selected are arbitrary. LPR fails for similar reasons: the many ties
result in poor solutions when rounding the fractional LP solutions to obtain discrete value

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1193

0

100

200

300

400

500

600

700

800

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

Max um

LPR

Bounded Max um

Max um AD

Max um Damp

DSA

ADPOP

Max um ADVP

Fig. 11 Solution cost when solving graph coloring problems

2600

3100

3600

4100

4600

5100

5600

6100

6600

7100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

Max um

LPR

Bounded Max um

Max um AD

ADPOP

DSA

Max um Damp

Max um ADVP

Fig. 12 Solution cost when solving scale-free networks

assignments. Max-sum with damping does much better than standard Max-sum, but here it
fails to improve while exploring after the first few iterations. The other algorithms do not
suffer this shortcoming and hence find much better solutions than Max-sum and LPR. Their
performance relative to each other is similar to that for the uniformly random problems,
although ADPOP and Max-sum_ADVP find solutions of very similar cost. ADPOP’s strong
performance is due to the high value of maxDims that we were able to use for these prob-
lems, as it allows closer approximation of the true cost tables passed by the complete DPOP
algorithm. Max-sum_ADVP still finds the best solutions on average, and its advantage over
ADPOP, while slight, is statistically significant at the p = 0.01 level.

The next set of experiments were on scale-free networks with the results presented in
Fig. 12. As expected, standard Max-sum does not exhibit the pathology it exhibited when
solving graph coloring problems. However, all other algorithms outperform it and the dif-
ferences between their results are similar to the differences between the results produced
in the experiments presented above, with Max-sum_ADVP again dominating. It is notable
that Bounded Max-sum has an advantage over standard Max-sum on structured problems.

123

1194 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

90

100

110

120

130

140

150

160

170

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

Max um

LPR

Bounded Max um

Max um AD

ADPOP

Max- um

DSA

Max um ADVP

Fig. 13 Solution cost when solving meeting scheduling problems

Max-sum_ADVP outperforms both DSA and ADPOP in these settings and Max-sum with
damping gets close in the latest iterations of its run.

The final type of problems we considered were the meeting scheduling problems, with
results presented in Fig. 13. The results are generally similar to those for graph coloring,
which is not surprising because the cost structure contains soft mutual exclusion constraints
over subsets of the domains to penalize overlapping meetings. Standard Max-sum and LPR
both find very bad solutions, although Max-sum is worse by a considerable margin. Max-
sum_ADVP again finds better solutions than all competing incomplete algorithms.

8.2 Comparison with optimal and scalability

We next compare the solutions found by the incomplete algorithms to the optimal solutions.
The optimal solutions were found by solving a mixed integer program formulation of the
problems using a modern, centralized, commercial solver, Gurobi 5.6. Although this solver
is highly optimized, the inherent complexity of the DCOPs restricted these experiments to
smaller uniformly random problems with 10 agents (n = 10). The problems generated were
either sparse with p1 = 0.2 or dense with p1 = 0.6. In both settings each agent held a single
variable with domain size of 10.

Figures 14 and 15 present the ratios of the costs achieved by the incomplete algorithms to
the optimal costs. On sparse problems ADPOP does best, finding solutions with an average
approximation factor of 1.2 of the optimal cost. Max-sum_ADVP also does very well on
average, finding solutions with aproximation factor of 1.3 of the optimum. These two algo-
rithms have a significant advantage over all other algorithms including DSA and Max-sum
with damping. On dense problems Max-sum_ADVP outperforms ADPOP, with an approx-
imation factor of roughly 1.2. However, DSA and Max-sum with damping also do well.
LPR and Bounded Max-sum produce similar results and outperform standard Max-sum on
both settings. Interestingly, standard Max-sum, Max-sum with damping and Max-sum_AD
seem to be slowly improving with the increasing number of iterations; this effect is more
pronounced with dense problems than with sparse problems. Overall, standard Max-sum
still does very poorly (even worse relatively speaking than in the larger problems), and Max-
sum_AD at best matches the performance of ADPOP in dense problems. However, in dense
problems, Max-sumwith damping outperformsMax-sum_ADVP towards the end of the run.

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1195

1

1.5

2

2.5

3

3.5

4

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Ra
�o

 to
 O

p�
m

al

Itera�ons

Max um

Bounded Max um

LPR

Max um AD

ADPOP

DSA

Max- um

Max um ADVP

Fig. 14 Ratio of costs to optimal when solving small uniformly random DCOPs with low density (p1 = 0.2)

1

1.2

1.4

1.6

1.8

2

2.2

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Ra
�o

 to
 O

p�
m

al

Itera�ons

Max um

Bounded Max um

LPR

Max um AD

ADPOP

DSA

Max um ADVP

Max-Sum

Fig. 15 Ratio of costs to optimal when solving small uniformly randomDCOPs with high density (p1 = 0.6)

Overall, the trends for the incomplete algorithms appear to be roughly consistent with the
results for larger problems in Figs. 9 and 10, which suggests that their performance, relative
to the optimal in those problems (where it is prohibitively expensive to compute the optimal
solution), may also be similar.

The graph coloring problems are easier to solve than the uniformly random problems, due
to their structure, constraint sparseness, and smaller domains. This allowed us to compute the
optimal solutions to the full n = 50 problems. Because 19% of the problems were perfectly
colorable (i.e., had optimal solutions of cost 0), it is notmeaningful to consider approximation
ratios. Instead we note that Max-sum_ADVP found solutions that on average violated only
4.225 more constraints than optimal.

We were also able to compute the optimal solutions to the meeting scheduling problems
due to their considerable structure. Because these problems do not have any solutions with 0
cost, it is meaningful to consider approximation ratios.Max-sum_ADVP achieved an average
approximation ratio of 1.027 on these problems, getting very close to optimal. The plot of
the approximation ratios is very similar to Fig. 13 and therefore is omitted.

Figure 16 presents the performance of the incomplete inference algorithms solving large,
sparse, uniformly random problems with n = 70. It is clear that the broad trends, with
Max-sum_AD outperforming standard Max-sum and Bounded Max-sum, Max-sum_ADVP
performing similar to DSA and Max-sum with damping slowly improving until achieving

123

1196 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Co
st

Itera�ons

Max um

Bounded Max um

Max um AD

Max um Da

Max um ADVP

DSA

Fig. 16 Solution quality when solving large uniformly random DCOPs with low density (p1 = 0.2)

similar results to DSA and Max-sum_ADVP, continue at this larger problem size. Combined
with the results in Figs. 9 and 14, this strongly suggests that our empirical findings hold over
a wide range of problem sizes and will continue to apply as the problems scale. We obtained
similar results when scaling the other problem types and omit them to avoid redundancy.

8.3 Comparison of exploration methods

After establishing the dominance of the exploitive Max-sum_ADVP algorithm over all other
converging incomplete inference algorithms, we move on to check whether the exploration
methods proposed in Sect. 7 can improve its performance further. We first compare to the
value selection exploration methods, then the message passing exploration methods.

The value selection exploration methods were evaluated for different parameter values,
and we present the results using themost successful settings.We found these to be K = 2 and
φ = 0.5 for K neighbors; K = 3 for K depth; and β = 0.5 and δ = 0.1 for decreasing bias.
There were no tunable parameters for SA, although we also considered several alternative
variants (e.g., randomly choosing a candidate alternative selection); the form described in
Sect. 7 performed best.

Figure 17 presents results for sparse random problems with n = 50 and p1 = 0.2.
The results demonstrate that K neighbors and SA were not beneficial. The curve for SA is
similar in appearance to that of Max-sum_AD in previous experiments. This is because SA
also demonstrates SPC due to decreasing temperature, but no CPC due to the temperature
resetting at the beginning of each phase. Decreasing bias, which transitions from exploration
to exploitation on a cross-phase level, initially performs extremely poorly, but eventually
improves to be very close to Max-sum_ADVP. K depth performs very similarly to Max-
sum_ADVP for most of its execution and ends with just slightly better solutions on average.
The differences at the end of execution, although very narrow, are all statistically significant
at the p = 0.01 level.

Similar results were achieved on the different dense random problems, with the exception
of K neighbors, which performed little exploration because most nodes have high degree and
thus do not satisfy the condition that |NX | ≤ φn. K neighbors thus performed very similarly
to Max-sum_ADVP. We omit the graph to avoid redundancy.

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1197

Fig. 17 Solution cost of Max-sum_ADVP compared to value selection exploration methods when solving
random DCOPs with low density (p1 = 0.2)

Fig. 18 Solution cost of Max-sum_ADVP compared to value selection exploration methods when solving
graph coloring problems

K neighbors and SA were not beneficial when solving graph coloring problems, as shown
in Fig. 18. K depth again performed similarly to Max-sum_ADVP but ultimately found
slightly worse solutions. Decreasing bias did not explore extremely bad solutions as it did
with the random problems, and its improvement across phases eventually led it to find even
better solutions thanMax-sum_ADVP. Again, all apparent differences at the end of execution
were statistically significant at the p = 0.01 level. Similar results were also found for scale-
free networks (Fig. 19) and meeting scheduling problems (Fig. 20).

The results obtained with the value selection exploration heuristics support two broad
conclusions. First, techniques designed tomaintainCPCare preferable to thosewhich demon-
strate only SPC or no convergence at all. This is most clearly seen in the comparison between
Decreasing bias, SA, and K neighbors. Second, these methods, while inspired by approaches

123

1198 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 19 Solution cost of Max-sum_ADVP compared to value selection exploration methods when solving
scale-free network problems

Fig. 20 Solution cost of Max-sum_ADVP compared to value selection exploration methods when solving
meeting scheduling problems

successfully employed to introduce exploration to local search algorithms, are able to provide
only limited amounts of useful exploration to Max-sum_ADVP. This can be seen both in the
modest improvements achieved by K depth in uniformly random problems and Decreasing
bias in graph coloring problems, and also in the relatively low values of K that weremost suc-
cessful with K neighbors and K depth. Because solution quality degrades as K is increased,
the most successful forms of K neighbors and K depth tend to behave quite similarly to
Max-sum_ADVP.

Next we present a comparison between Max-sum_ADVP and the message passing explo-
ration methods, which include different combinations of converging and non-converging
algorithms from the Max-sum family. We consider three specific combinations:

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1199

Fig. 21 Solution cost of Max-sum_ADVP and message passing exploration methods when solving random
DCOPs with low density (p1 = 0.2)

– ADVP_VP_ADVP = 〈〈2,AD〉, 〈2,ADVP〉, 〈2,VP〉, 〈2,ADVP〉, 〈2,VP〉, . . . 〉, alternat-
ing two phases of standard Max-sum with value propagation and two phases of
Max-sum_ADVP until termination.

– STD_AD_ADVP = 〈
4, STD〉, 〈4,AD〉, 〈12,ADVP〉〉.

– ADVP_AD_ADVP = 〈〈2,AD〉, 〈2,ADVP〉, 〈2,AD〉, 〈2,ADVP〉 . . .
〉
, alternating two

phases of Max-sum_AD and two phases of Max-sum_ADVP until termination.

Figure 21 presents a comparison of Max-sum_ADVP with these three message passing
explorative methods on sparse, random DCOPs. The graph curves illustrate the convergence
properties of the algorithms. While AD and ADVP converge in each phase, the STD and VP
versions do not. Moreover, the only version that exhibits CPC is ADVP. ADVP_VP_ADVP
and ADVP_AD_ADVP both find statistically better solutions than Max-sum_ADVP upon
termination. There is no significant difference between the quality of solutions found by
STD_AD_ADVP and Max-sum_ADVP at the end of execution.

The results for dense, random problems are very similar to those for sparse problems
and are omitted. Max-sum_ADVP and STD_AD_ADVP again perform statistically equally,
while the other two exploration methods outperform Max-sum_ADVP at the p = 0.01
significance level.

Figures 22, 23 and 24 present the results of the message passing exploration methods
when solving graph coloring, scale-free networks and meeting scheduling problems, respec-
tively. Overall, the results are broadly similar to those on the uniformly random problems.
On graph coloring and meeting scheduling problems, ADVP_VP_ADVP explores very low
quality solutions during its VP phases. This strongly suggests that value propagation alone is
not sufficient for standard Max-sum to escape its pathologies on these types of problems as
described in Sect. 6.1. Its exploration is much more successful on the scale-free networks, as
it was on the uniformly random problems. ADVP_AD_ADVP improves Max-sum_ADVP
on both scale-free networks and graph coloring problems. However, ADVP_AD_ADVP’s
advantage over Max-sum_ADVP on graph coloring problems is very slight although sta-
tistically significant. Coupled with the success of exploration methods on the uniformly

123

1200 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 22 Solution cost of Max-sum_ADVP and message passing exploration methods when solving graph
coloring problems

Fig. 23 Solution cost of Max-sum_ADVP and message passing exploration methods when solving scale-free
networks

random problems, this set of experiments suggests that the absence of constraint structure is
a more significant factor in the effectiveness of message passing exploration methods than
the constraint topology.

8.4 Anytime results

While the advantages of the proposed Max-sum_ADVP algorithm over standard Max-sum
and Bounded Max-sum, are obviously considerable, the comparison with Max-sum with
damping and with Max-sum_ADVP with exploration heuristics is not conclusive. Not only
are the results often close, but the exploration also makes it hard to determine when (after

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1201

Fig. 24 Solution cost of Max-sum_ADVP and message passing exploration methods when solving meeting
scheduling problems

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

An
y�

m
e C

os
t

Itera�ons

LPR

Bounded Max um

Max um

ADPOP

Max um AD

Max um ADVP

DSA

Max um Damping

Fig. 25 Anytime cost of the Max-sum versions solving random DCOPs with low density (p1 = 0.2)

how many iterations) to evaluate the proposed heuristics, since at any point in time some
of the algorithms may be in an explorative phase. To this end we implemented the anytime
framework proposed by Zivan et al. [42] and implemented all algorithms we experimented
with abovewithin the framework.Wecould then performpaired difference tests to statistically
determine which algorithms had found significantly better solutions at any point during
execution.

Figure 25 presents the anytime results of the incomplete algorithms on sparse random
problems. It is clear that the exploration by Max-sum and Max-sum_AD that is evident in
Fig. 9 is actually productive, resulting in decreasing anytime costs as the algorithms proceed.
This exploration allows Max-sum_AD to surpass ADPOP. While versions of Max-sum that
are guaranteed to converge, i.e., LPR,BoundedMax-sumandMax-sum_ADVPdonot benefit
from the anytime implementation,Max-sumwith damping (like standardMax-sum andMax-
sum_AD) performs exploration that is captured by the anytime mechanism and produces a

123

1202 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

Fig. 26 Anytime cost of Max-sum_ADVP and value selection exploration methods when solving random
DCOPs with low density (p1 = 0.2)

Fig. 27 Anytime cost of Max-sum_ADVP and message passing exploration methods when solving random
DCOPs with low density (p1 = 0.2)

significant improvement over Max-sum_ADVP. This suggests (as we discuss at the end of
this section), that in contrast to the assumption that belief propagation algorithms perform
best when they converge, effective exploration may produce better solutions.

Figure 26 presents the anytime results for the value selection exploration methods. These
results show that SA performs useful exploration, finding better solutions than ADPOP
over the course of execution. While the anytime framework does help the value selection
exploration methods, allowing K depth to find better solutions than Max-sum_ADVP at a
significance level of p = 0.01, the actual difference is still very small for these problems.

Figure 27 presents the anytime results for the message passing exploration methods.
These results confirm that ADVP_AD_ADVP and ADVP_VP_ADVP continue to improve

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1203

0

100

200

300

400

500

600

700

800

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

An
y�

m
e

Co
st

Itera�ons

Max um ADVP

Max um Damp

ADVP_VP_ADVP

Decreasing bias

Fig. 28 Anytime cost of Max-sum_ADVP, Max-sum with damping and the best exploration methods when
solving graph coloring problems

2200

2700

3200

3700

4200

4700

5200

5700

6200

6700

7200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

An
y�

m
e

Co
st

Itera�ons

Max um ADVP

Decreasing bias

ADVP_VP_ADVP

Max um Dam

Fig. 29 Anytime cost of Max-sum_ADVP, Max-sum with damping and the best exploration methods when
solving scale free net problems

over time through exploration. In contrast, STD_AD_ADVP appears to have converged to
solutions of the same quality as Max-sum_ADVP.

To avoid redundancy, we do not present the anytime results for dense random uniform
problems. The trends seen in Figs. 25, 26, and 27 concerning which algorithms continue to
improve through exploration hold in the dense problems as well.

In Figs. 28, 29 and 30 we present the results of the best exploration methods of both types,
Max-sum_ADVP and Max-sum with damping, on the structured and realistic benchmarks.
The results on these setups were much less conclusive than on the random uniform problems.
On scale free nets, Max-sumwith damping still has an advantage overMax-sum_ADVPwith
the exploration methods, but the results of ADVP_VP_ADVP are quite close. On meeting
scheduling problems, Decreasing bias produces almost similar anytime results to the results
produced by Max-sum with damping. Finally, on graph coloring problem, Decreasing bias
has a small advantage, although once again, the results are very close.

123

1204 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

90

100

110

120

130

140

150

160

170

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

An
y�

m
e C

os
t

Itera�ons

ADVP_VP_ADVP

Max um ADVP

Decreasing bias

Max um Damp

Fig. 30 Anytime cost of Max-sum_ADVP, Max-sum with damping and the best exploration methods when
solving meeting scheduling problems

8.5 Discussion

Belief propagation literature, including the papers that apply Max-sum to DCOP, follow a
consistent thesis, that these algorithms perform best when they converge. Thus, this study
follows others within the DCOP community and in the larger graph-model community, to
design a guaranteed convergence version ofMax-sum thatwould produce high quality results.
Our empirical study indicates that we have succeeded in this task. The Max-sum_ADVP
algorithm converges to solutionswithmuch higher quality than other guaranteed convergence
versions such as BoundedMax-sum and LPR. It also performed better thanADPOP andDSA
on most benchmarks.

Nevertheless, our previous experience with incomplete DCOP algorithms encouraged us
to investigate further, and reveal whether a balanced combination between exploration and
exploitation can produce higher quality results, and be captured using the anytime mecha-
nism we proposed in a previous research. When considering the actual average results per
iteration, Max-sum_ADVP outperformed standard Max-sum and Max-sum with damping,
on most benchmarks. The most successful exploration methods we proposed improved it
(slightly) further. However, when we used Max-sum with damping in combination with the
anytime mechanism, the results on random uniform problems and on scale free nets signifi-
cantly outperformed the guaranteed convergence versions ofMax-sum, and on graph coloring
problems produced similar results to Max-sum_ADVP. The comparison with the exploration
methods we proposed revealed that on random uniform problems Max-sum with damping
performs more efficient exploration, while on realistic structure problems, this advantage is
not conclusive.

The significant advantage of Max-sum with damping, when combined with an anytime
mechanism, over guaranteed convergence incomplete inference algorithms on some bench-
marks, indicates that the basic common assumption that belief propagation performs best
when it converges may not always hold, and that although we were able to generate the
most successful guaranteed converging version of Max-sum, the most powerful property of
Max-sum is its ability (in some versions) to perform efficient exploration.

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1205

9 Conclusion

The Max-sum algorithm offers an innovative approach for solving DCOPs. Unfortunately,
when problems include multiple cycles in the constraint graph, the algorithm does not con-
verge and the solutions it visits are of low quality. This is in spite of its exploitive structure.

In this paper we proposed new algorithms of the Max-sum family that guarantee conver-
gence. The Max-sum_AD algorithm uses an alternating DAG to avoid cycles. We proved
that when the algorithm is performed in a single direction, it converges after a linear number
of iterations. After performing a linear number of iterations in each direction the algorithm
converges to a high quality solution after taking all of the problem’s constraints into consider-
ation.As execution continues in the following phases, the algorithmwill converge to solutions
that are not necessarily monotonically improving. In fact, our empirical results reveal that
after the second direction change, the algorithm may explore complete assignments of the
same or even lower quality.

We further solve a weakness of the algorithm that cost calculations, which are propagated
and used for selecting value assignments by agents, are often considering different value
assignments for the same variable and hence, are inconsistent. In order to overcome this
shortcoming of the algorithm we propose the use of value propagation. To validate that we
propagate values with high quality we begin value propagation after the algorithm has con-
verged for the second time so that all of the problem’s constraints are taken into consideration.

The resulting algorithm Max-sum_ADVP guarantees to monotonically improve after a
constant (small) number of direction changes and to converge in pseudo-polynomial time.
Our empirical study reveals that convergence is achieved after a small number of direction
changes.

After designing an exploitive version of the algorithm that guarantees convergence we
made an attempt to improve the performance further by introducing two classes of explo-
ration methods, one inspired by simulated annealing has agents select a value assignment
from a subset of high quality assignments and the second balanced between exploration and
exploitation by combining exploitive and explorative versions of the algorithm. Thus, after
the algorithm converged to a solution using a monotonic, convergence-guaranteeing version,
we performed an explorative version for a limited number of iterations and then used the
exploitive version to converge to a possibly different solution.

Our empirical study reveals the advantage of Max-sum_ADVP over all guaranteed con-
vergence incomplete inference algorithms. It also outperforms by a large factor standard
Max-sum, which did not converge on any problem setup we have experimented with. On the
other hand,Max-sumwith damping, although it also did not converge in most cases, explored
solutions of much higher quality than standard Max-sum, and on some benchmarks, even
in similar quality to the quality of solutions that Max-sum_ADVP converged to. Among
the exploration methods proposed, a member of the second class that combines exploitive
and explorative versions of the algorithm, was found to improve the performance of Max-
sum_ADVP further on benchmarks with non-uniform constraint graphs. That been said, on
most benchmarks the anytime results of this method were inferior toMax-sumwith damping.
This indicates that, in contrast to the common assumption, Max-sum has a, yet unrevealed,
potential as an explorative algorithm, which can be captured via an anytime mechanism. We
intend to investigate this potential in future work.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

123

1206 Auton Agent Multi-Agent Syst (2017) 31:1165–1207

References

1. Aji, S. M., &McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Information
Theory, 46(2), 325–343.

2. Arshad, M., & Silaghi, M. C. (2004). Distributed simulated annealing. Distributed constraint problem
solving and reasoning in multi-agent systems, frontiers in artificial intelligence and applications series,
112 November 2004.

3. Bejar, R., Domshlak, C., Fernandez, C., Gomes, K., Krishnamachari, B., Selman, B., et al. (2005). Sen-
sor networks and distributed CSP: Communication, computation and complexity. Artificial Intelligence,
161(1–2), 117–148.

4. Brito, I., & Meseguer, P. (2010). Improving dpop with function filtering. In AAMAS (pp. 141–148).
5. Brito, I., Meisels, A., Meseguer, P., & Zivan, R. (2009). Distributed constraint satisfaction with partially

known constraints. Constraints, 14(2), 199–234.
6. Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113(1–2), 41–85.
7. Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralized coordination of low-power

embedded devices using the max-sum algorithm. In AAMAS (pp. 639–646).
8. Gershman, A., Grubshtein, A., Rokach, L., Meisels, A., & Zivan, R. (2008). Scheduling meetings by

agents. In DCR workshop at AAMAS 2008, Estoril, Portugal, May.
9. Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding. Journal of Artificial

Intelligence Research, 34, 25–46.
10. Globerson, A., & Jaakkola, T. (2007). Fixing max-product: Convergent message passing algorithms for

map lp-relaxations. In NIPS.
11. Hatano, D., & Hirayama, K. (2013). Deqed: An efficient divide-and-coordinate algorithm for dcop. In

IJCAI.
12. Hazan, T., & Shashua, A. (2010). Norm-product belief propagation: Primal-dual message-passing for

approximate inference. IEEE Transactions on Information Theory, 56(12), 6294–6316.
13. Heras, F., & Larrosa, J. (2006). Intelligent variable orderings and re-orderings in dac-based solvers for

WCSP. Journal of Heuristics, 12(4–5), 287–306.
14. Hirayama, K., & Yokoo, M. (2000). An approach to over-constrained distributed constraint satisfaction

problems: Distributed hierarchical constraint satisfaction. In Proceedings of the third international joint
conference on autonomous agents and multiagent systems (pp. 135–142).

15. Khot, S. (2002). On the power of unique 2-prover 1-round games. In Proceedings of the thirty-fourth
annual ACM symposium on theory of computing (pp. 767–775).

16. Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for approximate
distributed constraint optimization with quality bounds. In AAMAS (pp. 133–140).

17. Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2), 181–208.

18. Larrosa, J., & Schiex, T. (2004). Solving weighted csp by maintaining arc consistency. Artificial Intelli-
gence, 159, 1–26.

19. Lazic, N., Frey, B., &Aarabi, P. (2010). Solving the uncapacitated facility location problem usingmessage
passing algorithms. In International conference on artificial intelligence and statistics (pp. 429–436).

20. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A graphical-
game-based approach. In PDCS) (pp. 432–439), September 2004.

21. Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004). Taking DCOP to
the real world: Efficient complete solutions for distributed multi-event scheduling. In 3rd International
joint conference on autonomous agents and multiagent systems (AAMAS 2004), 19–23 August 2004, New
York (pp. 310–317).

22. Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: asynchronous distributed constraints
optimizationwith quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

23. Netzer, A., Grubshtein, A., &Meisels, A. (2012). Concurrent forward bounding for distributed constraint
optimization problems. Artificial Intelligence, 193, 186–216.

24. Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., & Faltings, B. (2011). Pseudo-tree-based incomplete algo-
rithm for distributed constraint optimization with quality bounds. In J. Lee, (Ed.), CP 2011, LNCS 6876
(pp. 660–674).

25. Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint
optimization problems. In IJCAI (pp. 1446–1451), Hyderabad, India, January 2007.

26. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In IJCAI (pp.
266–271).

123

Auton Agent Multi-Agent Syst (2017) 31:1165–1207 1207

27. Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In P. van Beek (Ed.), CP
2005, LNCS 3709 (pp. 802–806).

28. Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized coordination
in robocup rescue. The Computer Journal, 53(9), 1447–1461.

29. Reeves, C. R. (Ed.). (1993). Modern heuristic techniques for combinatorial problems. New York, NY:
Wiley.

30. Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralized
coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

31. Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint optimization. In
CP (pp. 624–632).

32. Smith, M., & Mailler, R. (2010). Getting what you pay for: Is exploration in distributed hill climbing
really worth it? In IAT (pp. 319–326).

33. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., & Weiss, Y. (2008). Tightening lp relaxations for
map using message passing. In UAI (pp. 503–510).

34. Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralized coordination of contin-
uously valued control parameters using the max-sum algorithm. In AAMAS (pp. 601–608).

35. Teacy, W. T. L., Farinelli, A., Grabham, N. J., Padhy, P., Rogers, A., & Jennings, N. R. (2008). Max-sum
decentralized coordination for sensor systems. In AAMAS (pp. 1697–1698).

36. Vinyals, M., Pujol, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2010). Divide-and-coordinate: Dcops
by agreement. In AAMAS (pp. 149–156).

37. Vinyals, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2011). Constructing a unifying theory of dynamic
programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent
Systems, 22(3), 439–464.

38. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J. A., Yin, Z., Tambe,M., & Bowring, E. (2011).
Quality guarantees for region optimal dcop algorithms. In AAMAS (pp. 133–140). Tapei.

39. Yanover, C., Meltzer, T., &Weiss, Y. (2006). Linear programming relaxations and belief propagation: An
empirical study. Journal of Machine Learning Research, 7, 1887–1907.

40. Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algo-
rithm. Artificial Intelligence Research (JAIR), 38, 85–133.

41. Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search and distributed
breakout: Properties, comparishon and applications to constraints optimization problems in sensor net-
works. Artificial Intelligence, 161(1–2), 55–88.

42. Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint
optimization. Artificial Intelligence, 212, 1–26.

43. Zivan,R.,&Peled,H. (2012).Max/min-sumdistributed constraint optimization throughvalue propagation
on an alternating DAG. In AAMAS (pp. 265–272).

44. Zivan,R.,Yedidsion,H.,Okamoto, S.,Glinton,R.,&Sycara,K. P. (2015).Distributed constraint optimiza-
tion for teams of mobile sensing agents. Autonomous Agents and Multi-Agent Systems, 29(3), 495–536.

123

	Balancing exploration and exploitation in incomplete Min/Max-sum inference for distributed constraint optimization
	Abstract
	1 Introduction
	2 Related work
	3 Distributed constraint optimization
	4 Standard Max-sum
	5 Max-sum on an alternating DAG (Max-sum_AD)
	6 Max-sum_AD with value propagation (Max-sum_ADVP)
	6.1 Motivation for value propagation
	6.2 Introducing value propagation into Max-sum_AD
	6.3 Establishing monotonicity and convergence

	7 Exploration methods
	7.1 Value selection exploration methods
	7.2 Message passing exploration methods

	8 Experimental evaluation
	8.1 Comparison of exploitive algorithms
	8.2 Comparison with optimal and scalability
	8.3 Comparison of exploration methods
	8.4 Anytime results
	8.5 Discussion

	9 Conclusion
	References

