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Abstract It is often the case that after a scheduling problem has been solved some
small changes occur that make the solution of the original problem not valid. Solving
the new problem from scratch can result in a schedule that is very different from
the original schedule. In applications such as a university course timetable or flight
scheduling, one would be interested in a solution that requires minimal changes
for the users. The present paper considers the minimal perturbation problem. It is
motivated by scenarios in which a Constraint Satisfaction Problem (CSP) is subject
to changes. In particular, the case where some of the constraints are changed after a
solution was obtained. The goal is to find a solution to the changed problem that is
as similar as possible (e.g. includes minimal perturbations) to the previous solution.
Previous studies proposed a formal model for this problem (Barták et al. 2004), a best
first search algorithm (Ross et al. 2000), complexity bounds (Hebrard et al. 2005),
and branch and bound based algorithms (Barták et al. 2004; Hebrard et al. 2005).
The present paper proposes a new approach for solving the minimal perturbation
problem. The proposed method interleaves constraint optimization and constraint
satisfaction techniques. Our experimental results demonstrate the advantage of the
proposed algorithm over former algorithms. Experiments were performed both on
random CSPs and on random instances of the Meeting Scheduling Problem.
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R. Zivan
Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
e-mail: zivanr@bgu.ac.il

A. Grubshtein (B) · A. Meisels
Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel
e-mail: alongrub@cs.bgu.ac.il

A. Meisels
e-mail: am@cs.bgu.ac.il



Constraints (2011) 16:228–249 229

1 Introduction

Constraint Satisfaction Problems (CSP) form an elegant model for representing
many real world combinatorial problems. CSPs are often used for representing and
solving scheduling problems [2, 9, 20]. In many scheduling applications, constraints
tend to change. In fact, some of the constraints might change after a solution was
obtained. Some examples are a problem of assigning nurses to shifts where a nurse
might call in sick, and a schedule of tasks in an industrial environment where a
machine can break down or a new urgent order might arrive. In many of these
scenarios, it is not enough just to find any other solution that satisfies the constraints
of the newly derived problem. Solutions, which are very different from the solution
of the original problem, are many times less desirable because they require too many
adjustments. In the school timetabling example, teachers and students have their
schedules and plan their actions according to it. Thus, when some constraints change,
it is desired to find a new solution that is as similar as possible to the solution that
was valid before the problem changed.

The present paper focuses on scenarios where after a CSP was solved, some
of the constraints have changed and the solution to the newly generated CSP is
required to include minimal perturbation, i.e., to be most similar to the solution of
the former problem. This additional requirement defines a qualitative order on the
set of solutions of the new (or changed) problem and the search for the most similar
solution becomes an optimization problem.

While industrial scheduling applications often include constraints that allow
solving this additional optimality requirement via efficient mathematical tools (e.g.,
linear programming [15]), discrete scheduling problems like timetabling applications
require exhaustive search methods to find the optimal solution with minimal pertur-
bation [3, 6]. This paper demonstrates that by exploiting the problem’s properties, it
is possible to effectively reduce the additional effort.

In order to find the solution to a newly generated CSP that is the most similar to
the previously valid solution, a new search method is proposed that exploits the fact
that its outcome must satisfy two requirements. These requirements are of dif ferent
levels of complexity. While the similarity requirement is an optimization requirement,
the second requirement (e.g., to solve the modified problem) is a satisfaction
requirement. A constraint satisfaction problem is NP-complete. In contrast, finding
the most similar solution to a given complete assignment is harder than NP [6].
Former solutions to the above problem were based on algorithms that attempt to
fulfill both requirements in a single phase [3, 6, 11]. As a result, the entire search
space was scanned in order to find a solution that satisfies both requirements. A
different approach can be formed by observing the following two facts. On the one
hand, the satisfaction requirement involves the complete search space of the new
(changed) CSP. On the other hand, in order to solve the similarity requirement, only
the values that were assigned to variables in the solution for the original problem
need to be considered (any other value would be considered a perturbation). Thus,
when dealing with the optimization problem, which is a harder problem, one can
actually consider a much smaller search space.

The present paper solves the problem by iteratively alternating between two
phases. In the first phase, a branch and bound (B&B) algorithm is used to find
a consistent partial assignment that includes only value assignments of the former
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solution. In this phase, only constraints between the assignments of the former
solution are being checked. An admissible heuristic that counts possible conflicts
between these value assignments generates a significant speedup. When a partial
assignment that includes only value assignments of the former solution is found by
the first phase of the algorithm, a second phase is performed to validate that this
partial assignment can be extended to a solution to the new CSP. In this phase, a
maintaining arc consistency (MAC) algorithm [4] is used and all values of unassigned
variables are taken into consideration. The search space to be scanned by the MAC
algorithm can become smaller, as the size of the partial solution found by the first
phase increases.

When the partial solution found in the first phase can be extended to a solution
to the new CSP, the number of perturbations is updated and becomes the new upper
bound and the solution is stored as the most similar that was found by the algorithm.
Then, the algorithm resumes its search for an assignment with fewer perturbations,
performing again the first phase.

Our experimental study shows a clear advantage of the approaches that follow a
B&B scheme over the best first systematic traversal of the search space proposed by
former studies [11]. The only exceptions are cases in which there exists a solution
within a very small number of perturbations. The proposed hybrid search also
outperforms the B&B algorithm that enforces generalized arc consistency GAC [6]
by a large factor. The experiments were performed both on randomly generated
uniform problems and on instances of the Meeting Scheduling Problem, one of the
real world scenarios that triggered this study.

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 presents the minimal perturbation problem and Section 4 presents the
proposed hybrid algorithm. A correctness proof for the proposed algorithm is
presented in Section 5. Our experimental study, which compares the proposed hybrid
algorithm with Roos’s algorithm [11] and the B&B with GAC algorithm [6] on two
families of problems, is presented in Section 6, followed by our conclusions.

2 Related work

Schiex and Verfaillie [16, 19] studied the problem of solving Dynamic CSPs. They
define a Dynamic CSP as a series of CSPs that differ one from the other in some of
their constraints (added constraints or removed constraints, or both). The main focus
of these studies was to find a solution for each CSP in the series as fast as possible.
Thus, a number of methods for acquiring a new solution for a changed CSP were
proposed. One of the proposed methods reuses inconsistent assignments (Nogoods)
that were found while solving the original CSP, when searching for a solution
to the revised CSP. Another method uses dynamic backtracking and local search
techniques starting with the solution of the original problem. However, none of the
proposed methods is guaranteed to find the solution most similar to the previous
solution. Still, the nogood recording (NR) method can be incorporated with any of
the methods we present in this paper, regardless of whether they were proposed by
us or by others. Our experimental results have shown that the use of short nogoods
as proposed in [16] does not improve the run of the algorithms. The reason is that NR
is effective for problems in which a CSP search algorithm generates short Nogoods.
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These problems include, in general, a very small number of solutions or no solutions
at all. On the other hand, the relevant CSPs for the minimal perturbations problem
(MPP) are problems with multiple solutions, where it is possible to define an order
on the quality of different solutions.

In [11], Roos et al. propose a method that, given a revised CSP and a solution
to the original problem, finds a solution to the new CSP that is the most similar to
the previous solution. The proposed method traverses the assignments of the CSP
according to their distance from the former solution and enforces arc consistency
after each change. Roos et al. found that this method is feasible only when the
constraints that change are unary constraints, and that it causes a significant slow
down in comparison with an algorithm that searches for any solution to the new
problem (our experimental study validates the inefficiency of this method). In a later
study, the authors offer approximation methods that are apparently feasible but do
not guarantee the finding of the most similar solution [12].

Hebrard et al. studied different aspects of finding similar and diverse solutions
to specific assignments for a CSP [6]. Their study is motivated by a variety of
applications, e.g., preferences elicitation, interactive constraint definitions, and the
stability of solutions in a dynamic environment. In [6], the authors prove that finding
a solution to a CSP that is as close to (or as distant from) a given set of assignments
is NP-hard (actually they prove it is F PN P[log n] − complete). They also propose an
algorithm for finding the closest solution to a given set of assignments. The proposed
algorithm is based on a Branch and Bound scheme and enforces generalized arc
consistency (GAC) on a soft global distance constraint in each step of the algorithm.
In a different paper, they propose an algebra that enables a combination of similarity
constraints to a set of ideal partial assignments, as well as distance constraints from
non-ideal partial assignments [7].

The minimal perturbation problem was studied for classic scheduling problems
in [14]. The authors proposed an integration of mathematical programming tech-
niques with constraint programming in order to speedup the search on this special
optimization problem. More specifically, the problem at hand is analyzed and
constraints that enable the use of mathematical programming, e.g., linear constraints,
are solved by efficient algorithms. The solutions are used within the constraint
program. This approach was extended in [15]. The authors discuss the potential of
their approach in detecting sub-problems, which can be solved more efficiently in
different CSP applications. Although the present paper is concerned with discrete
problems that do not admit of mathematical programming, our work is a response to
the proposal for future extensions of the approach presented in [15].

Bartak et al. proposed a formal model of the minimal perturbation problem
based on the CSP model and a Branch and Bound algorithm for solving it [3]. The
innovation in the proposed algorithm is that it allows incomplete solutions to the
problem. The Branch and Bound algorithm maximizes two criteria, the minimal
perturbation or maximal similarity as in [6] and the length of the solution found.
The present paper adopts the formalism proposed by [3], but seeks to find complete
solutions to the problem with minimal perturbation as in [6].

A thorough survey on constraint solving in uncertain and dynamic environments
can be found in [18]. The survey considers the wide range of issues and properties
of such problems including multiple approaches and frameworks to handle them.
These include solution reuse, reuse of reasoning, and the finding of robust (stable)
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solutions. For the problem of minimal perturbation (“minimal change" in their ter-
minology), they differentiate the CSP version of the problem [12] and the scheduling
problem [15]. However, the survey does not describe methods for finding minimal
perturbation solutions.

3 Problem definition

The formal description in this section follows the formalism proposed for this
problem in [3]. A Constraint Satisfaction Problem (CSP) is a triple � = (V, D, C),
where

– V = {v1, v2, ..., vn} is a finite set of variables.
– D = {D1, D2, ..., Dn} is a set of domains where Di is a finite discrete set of

possible values for the variable vi.
– C = {c1, c2, ..., cm} is a finite set of constraints restricting the values that the

variables can simultaneously take.

A partial assignment σ is a set of pairs < vari, vali j >, ..., < varl, vallk >, where
var ∈ V, vali ∈ Di and a variable is not included in more than one pair. A complete
assignment is a partial assignment that includes n pairs. Each member of the set of
constraints ci ∈ C is a partial assignment. A partial solution is a consistent partial
assignment, i.e., a partial assignment in which no constraints are violated (does not
include any members of C). A solution to a CSP is a partial solution with n value
assignments to variables (or a complete assignment with no violated constraints).
In other words, ci ∈ C is a partial assignment that cannot be a part of a solution.
Formally σ is a solution if and only if ∀σ ′ ⊆ σ ⇒ σ ′ /∈ C and |σ | = n.

Following common practice in constraint programming [10, 17], we only consider
CSPs that include only binary constraints for simplicity of presentation. Such a
simplification is common in constraint programming since any problem with n-ary
constraints can be represented by a problem that includes only binary constraints [1].
However, neither our proposed algorithms nor their implementation are limited to
such problems.

A minimal perturbation problem (MPP) is a triple � = (�, α, δ), where:

– � is a CSP.
– α is a partial assignment for � that is called initial assignment.1

– δ is a function that defines a distance between any two assignments.

A solution to an MPP problem is a solution to � with minimal distance from α

according to δ.
For the problems we consider in this paper (and following [3]), δ is defined as

follows: Let σ and γ be partial assignments for �. We define W(σ, γ ) to be a set
of variables such that the value assignment for v in σ is different from the value
assignment for v in γ :

W(σ, γ ) = {
v ∈ V | 〈v, val〉 ∈ σ, 〈v, val′〉 ∈ γ, val 	= val′

}

1Although the formalism does not require the assignment to be complete, it is reasonable from the
motivating scenarios that in most problems to be considered, α will be a complete assignment.
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Fig. 1 Example: Problem �,
assignment α (depicted by
circles) and the solution with
minimal perturbations
(depicted by triangles)

In [3], W(σ, γ ) is called a distance set for σ and γ and the elements of the set are
called perturbations.

In an MPP, the distance function of some assignment σ from α is defined as the
cardinality of the set W(σ, α):

δ(σ, α) = |W(σ, α)| .

In other words, δ is the Hamming distance between σ and α.
Notice that the formalization does not include the problem for which α is a

solution. That is because the formalism is more general and applies to minimal
perturbations from any given assignment α to �.

We will refer to the value assignments to the variables within α as Solution Value
Assignments (SVAs). More specifically, if 〈vi, vali j〉 ∈ α then vi.SV A = vali j .

An example of an MPP is depicted in Fig. 1. The example includes a CSP �

with three variables each with three possible values. The constraints between the
variables are binary and depicted by logic signs near each arc. The circles represent
the assignment α. The triangles represent the solution to � that is most similar to α.
In Section 4 we use this example MPP to demonstrate the operation of our proposed
algorithm.

4 Finding a solution to a minimal perturbation problem

The proposed hybrid search algorithm for the minimal perturbation problem
(HS_MPP) includes two phases that are interleaved throughout the search. In the
first phase the algorithm assigns SVAs to variables. This generates a partial solution
that includes only SVAs, i.e., a partial solution σ to � with δ = 0 (zero distance
between α and σ ). This phase of the algorithm implements a Branch and Bound
scheme where the upper bound is the smallest δ among the solutions to � that were
found so far by the algorithm. If the algorithm detects that the partial solution σ

cannot be extended to a solution with a smaller δ than the current upper bound,
it backtracks. In order to detect the need to backtrack as early as possible, the
algorithm uses an admissible heuristic function described in Section 4.1. If no more
SVAs can be assigned to unassigned variables (i.e., all SVAs of unassigned variables
conflict with assigned SVAs) and the admissible heuristic does not breach the upper
bound, the second phase of the algorithm is performed. In the second phase, a
Maintaining Arc-Consistency algorithm (MAC-algorithm) is performed in order
to validate that the partial solution σ with δ = 0, found in the first phase, can be
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extended to a complete solution. If the second phase ends successfully and a solution
γ is found, it is recorded as the best solution so far and the upper bound is set to
δ(γ, α). The other option is that the satisfaction algorithm finds that σ cannot be
extended to a complete solution to �. In both cases, after this phase is completed,
the algorithm resumes the first phase by removing the last SVA assignment (i.e.,
backtracking).

Figures 2 and 3 present the code of the proposed hybrid algorithm for minimal
perturbation problems (HS_MPP). The main loop of the algorithm calls the first
phase in order to find a partial solution with δ equal to zero, which cannot be
extended to a larger solution with δ equal to zero and which is larger than n minus
the upper bound. When such an assignment is found, the second phase is called in
order to validate that the assignment can be extended to a solution to �.

Function phase1 tries to assign an SVA by calling function assign_SVA. After
each successful assignment of an SVA, the function checks that the current assign-
ment can still lead to a solution with δ smaller than the upper bound (line 9). If
not, the algorithm backtracks. When there are no more SVAs to assign, the function
assign_SVA will return false. Since the upper bound was not breached after the last
SVA was assigned, the current partial assignment σ is a partial solution, which, if
extended to a solution to �, will have a smaller δ than the upper bound. Thus, the
function returns true and the second phase is called.

In function phase2 a standard maintenance of arc consistency (MAC) algorithm is
used to check whether the partial solution that was found in phase1 can be extended

Fig. 2 Main part of the hybrid search MPP algorithm



Constraints (2011) 16:228–249 235

Fig. 3 Functions used by the hybrid search MPP algorithm

to a complete solution of � (line 15). If it does, this solution is stored and its δ is saved
as the new upper bound (lines 16–18). If not, the function backtracks (lines 19, 20).

Function assign_SVA makes an attempt to assign an unassigned variable with its
SVA (find an unassigned variable whose SVA is still in its domain). If it succeeds, the
function removes all conflicting SVAs from the domains of all unassigned variables
(lines 30–32). The function returns false if none of the unassigned variables has an
SVA in its domain.

Function backtrack removes the SVA assignment that was performed last. All
SVAs that were removed from the domains of unassigned variables after the last
SVA was assigned are returned back to their domains (lines 23, 24).

Function remove_SVA removes the SVA assignment from the current partial
assignment and removes the SVA from the variable’s domain (lines 39, 40). It also
adds the removed assignment to the set of assignments that were removed as a
conflict with the SVA that was assigned before it (lines 41–43). This ensures that the
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Fig. 4 Example: original
problem and solution

SVA will be returned to the variable’s domain once the exploration of the current
partial assignment will be completed.

Function select_SVA_var simply returns a variable whose domain includes an
SVA.

Figures 4, 5, and 6 will be used to demonstrate the run of the proposed HS_MPP
algorithm. In Fig. 4, the original problem is depicted along with a consistent solution.
The problem includes three variables V = {v1, v2, v3}. All domains include three
values Di = {1, 2, 3}. There are inequality constraints2 between v1 and v2, v1 and
v3, and between v2 and v3. In Fig. 5 some of the constraints were changed. The
constraint between v1 and v2 was changed to v2 < v1 and the constraint between
v1 and v3 was changed to equality. After setting the upper bound to 3, the algorithm
starts in phase 1 by assigning the SVA of v1. After the assignment 〈v1, 1〉, all of the
SVAs that are conflicting with it are removed from the domains of their variables.
In the present example, SVAs of both v2 and v3 conflict with the SVA of v1 and
are removed. Notice that we do not check whether other values conflict with this
assignment. Since we did not describe the admissible heuristic, at this point we will
use the number of SVAs in domains of unassigned variables as our example heuristic.
Thus, at this point the lower bound is 3 − (1 + 0) = 2, which is lower than the upper
bound. The next attempt to assign an SVA fails so we move to phase 2. Since no
value can be assigned to v2, phase 2 fails to find a solution with a partial solution
〈v1, 1〉. After backtracking, the assignment of v1 is removed and the value 1 (the
SVA) is removed from D1. Then, phase 1 is resumed. The SVA of v2 is assigned
and since the SVA of v3 is not in conflict with it, we assign it to v3 and get the
partial solution 〈v2, 2〉, 〈v3, 3〉. Once again, the second phase is called and a solution is
found to the problem 〈v2, 2〉, 〈v3, 3〉, 〈v1, 3〉. After storing the solution and updating
the upper bound to 1, the algorithm backtracks by removing the assignment of v3

from the current assignment and removing the value 3 from D3. Then, since there
are no SVAs in the domains of the unassigned variables, the algorithm backtracks
again by removing the assignment of v2, removing 2 from D2, and restoring 3 to D3.
The next attempt to assign an SV A assigns 3 to v3. However, since there are no SVAs
remaining in D2 and D1, the lower bound is 3 − (1 + 0) = 2, which is larger than the
upper bound, 1. Thus, a backtrack is performed and the value 3 is removed from D3.
The next attempt to assign an SVA will fail and the algorithm will terminate. The

2For simplicity of the example, we use a logical description of the constraints instead of specifying all
excluded pairs of value assignments.
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Fig. 5 Example: new problem
� and assignment α

obtained solution with δ = 1 is depicted in Fig. 6. The triangles represent the solution
with minimal perturbations to the changed problem �, and the circles represent the
original solution α.

4.1 An admissible heuristic for the first phase

The first phase of the HS_MPP algorithm is an optimization algorithm that uses a
Branch and Bound scheme. As commonly used in optimization search methods, in
order to speed up the algorithm one can use an admissible heuristic that will increase
the lower bound [13]. As a result, the algorithm will detect a need to backtrack early.

In the first phase the algorithm is searching for a partial solution with δ = 0, which
is larger than the number of SVAs in the best solution found so far (γ ). A first
step in order to check whether the current assignment can be extended to a partial
assignment of SVAs of the required length, would be to check whether there are
enough SVAs left in the domains of unassigned variables. More specifically, if we
denote by n the cardinality of �.V, by k the length of the current partial solution σ ,
and by s the number of unassigned variables that include an SVA in their domain,
then the current assignment can be extended to a solution γ ′ with δ(γ ′, α) < δ(γ, α)

only if n − (k + s) < upper_bound. A larger lower bound can be achieved if we take
into consideration that every pair of unassigned conflicting SVAs cannot be assigned
in the same solution. Thus, instead of counting both SVAs in future assignments and
incrementing s by two, we increment s by only one for each such conflicting pair.
More formally, let s = spairs + ssingles, where spairs is the number of the distinct pairs
whose SVAs conflict among the s unassigned variables that include SVAs in their
domains, and ssingles is the number of the rest of the variables with SV As in their

Fig. 6 Example: problem �,
assignment α (circles) and the
minimal perturbation solution
(triangles)
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Fig. 7 An admissible heuristic
for HS_MPP

domain. If spairs > 0, then n − (k + s) < n − (k + spairs + ssingles). By using the above
admissible heuristic, one increases the probability of detecting a need to backtrack.
This idea can be extended to cliques of any size (i.e., s = ssingles + spairs + striplets...).

Figure 7 presents the code for the proposed admissible heuristic. First, a counter is
initialized to zero (line 1). Next, all unassigned variables are gathered in a temporary
set (line 2). The unassigned variables are removed one by one from the set. If a
variable does not have the SVA in its domain, the counter is not incremented (lines
4, 5). If it does include an SVA, this SVA is checked for conflict with another SVA in
the domain of some variable in the set. If so, both variables are removed from the set
and the counter is incremented by one (lines 6–8). If not, only the single variable is
removed and the counter is incremented by one (lines 9–11). The counter is returned
as the heuristic value (line 12).

As an example of the benefits of the proposed admissible heuristic, consider the
problem depicted in Fig. 8. In this example � includes 4 variables V = {v1, ..., v4}
and the constraints are inequalities between v1 and v2, and between v2 and v3,
equality between v1 and v3, and v2 < v4. α is represented by circles on the SVAs.
We examine the state after assigning 〈v1, 1〉. Notice that the only SVA that is in
conflict is v3.SV A, and therefore it is removed from D3. Now if we take the lower

Fig. 8 Admissible heuristic
example
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bound as the size of the problem minus the size of the current assignment and the
unassigned variables with an SVA in their domain, we get 4 − (1 + 2) = 1. However,
if we observe variables v2 and v4, we notice that their SVAs cannot be assigned
simultaneously. Thus, we count them only once and get 4 − (1 + 1) = 2 which is a
higher lower bound.

4.2 Handling non-binary constraints

Our presentation of the proposed admissible heuristic seems to exploit the properties
of problems with binary constraints. Although, as mentioned in Section 3, every CSP
with non-binary constraints can be represented by a CSP that includes only binary
constraints, it is important to mention that the proposed heuristic is applicable to
problems that include non-binary constraints as well.

Note that the phase of removal of all SVAs that conflict with the current assign-
ment, as done in lines 31–33 of the algorithm in Fig. 3 (function assign_SVA), is not
dependent upon the constraints being binary. For non-binary constraints, after a new
SVA assignment is added to the current assignment σ , the SVAs of every unassigned
variable vi should be removed from Di if ∃c ∈ C such that c ⊆ σ ∪ 〈vi, vi.SV A〉.

For our admissible heuristic, a similar observation can be made. We include in
spairs any pair of unassigned variables vi and v j for which:

∃c ∈ C s.t. c ⊆ σ ∪ {〈vi, vi.SV A〉, 〈v j, v j.SV A〉} .

5 Correctness of HS_MPP

In order to prove that the proposed algorithm is correct, one needs to prove that:

1. A solution reported is a solution to �.
2. The solution reported is the solution to � with minimal perturbations with

respect to α.
3. The algorithm terminates.

The first is immediate. In phase one, after each SVA assignment, all conflicting
SVAs are removed from the domains of unassigned variables (lines 21–33 in Fig. 3).
Thus, two conflicting SVAs cannot be assigned in this phase. The fact that the
extension of the solution in the second phase does not violate constraints is derived
from the soundness of the standard MAC algorithm.

In order to prove the second condition for correctness, we need to prove that the
solution reported for �, γ , is the most similar solution to α. More formally, ∀γ ′, which
is a solution to �, δ(γ ′, α) ≥ δ(γ, α). To this end we first prove the following lemmas:

Lemma 1 The algorithm backtracks from a partial assignment generated in phase 1,
only when the current assignment cannot be extended to a solution with more SVAs
than in the best solution found so far.

Proof There are only two places where the algorithm backtracks from an assignment
generated in phase 1. The first is after the check for the upper bound is performed in
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line 9 of Fig. 2. The difference between the cardinality of the set �.V and the number
of SVAs in the current assignment and in the domains of unassigned variables
is a clear lower bound for δ. In addition, the heuristic described in Section 4.1
increases this lower bound by considering pairs of conflicting SVAs in the domain
of unassigned variables only as a single possible assignment of an SVA. Thus, the
heuristic reports the difference between the cardinality of V and possible SVA
assignments and therefore it maintains its admissibility.

The second backtrack is performed at the end of phase two, when either a partial
solution found in phase one was successfully extended to a solution and its δ was
stored as the upper bound, or, the MAC algorithm failed to extend it to a complete
solution.

In both cases, the potential of the current assignment to be extended to a solution
with the minimal δ was either excluded by phase 1 or explored by phase 2. 
�

Lemma 2 In phase 1, the algorithm never produces the same partial assignment twice.

Proof In function backtrack the last assigned SVA is removed by calling function
remove_SVA. When removing the assigned SVA, it is also removed from the domain
of its variable. Then, the variable is added to the set of variables whose SVA removal
was caused by the last assigned SVA. When the algorithm backtracks from the k’th
assigned SVA, this SVA will never be assigned until the algorithm backtracks from
the k − 1 SVA assignment. Thus, an SVA will not be assigned again until the partial
assignment left after its removal is changed. This partial assignment will never be
produced again because when the algorithm backtracks from the first assigned SVA,
there is no earlier assignment that caused its removal; therefore it will never be
assigned again. 
�

Theorem 1 HS_MPP reports the solution with the minimal perturbation solution and
terminates.

Proof The first part of the theorem, regarding the minimal perturbation property of
the reported solution, is derived from Lemmas 1 and 2, and the exhaustiveness of
the assign_SVA function. If phase 1 ends successfully, the partial solution generated
includes more SVAs than the solution with minimal perturbations found so far. The
correctness of the standard MAC algorithm ensures that, if this partial assignment
can be extended to a solution, it will be found and stored as the new solution with
minimal perturbations. From Lemma 1 we know that the algorithm backtracks only
if the current assignment cannot be extended to a consistent partial assignment of
SVAs that includes more SVAs than in the stored solution. In other words, when
no better solution can be found. Lemma 2 ensures that the algorithm would not
run into infinite loops. Moreover, function assign_SVA attempts to assign any SVA
before shifting to the second phase. Therefore, it generates all the combinations of
SVAs that were not excluded by a backtrack operation. Thus, all relevant partial
assignments are explored.

The termination of the algorithm follows from Lemma 2 and the finite size of the
problem. 
�
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6 Experimental evaluation

The performance of the proposed HS_MPP algorithm was empirically evaluated
and compared to the algorithms by Roos et al. [11] and by Hebrard et al. [6].
Experiments were conducted on problems from two different domains—randomly
generated CSPs and random instances of the Meeting Scheduling Problem (MSP).
In both domains HS_MPP considerably outperformed former algorithms.

Our implementation of the algorithms follows the description in [11] and [6]. For
the algorithm proposed by Roos we have explored the possible assignments from
the minimal number of perturbations, and for every possible assignment we applied
a MAC procedure to verify its consistency. The algorithm proposed by [6] was
implemented by adding a consistency verification to the standard MAC procedure
that all values in the variables’ domains can be assigned without breaching the
upper bound. More specifically, that by assigning a value to its variable we do not
generate a perturbation that will increase the number of perturbations within the
current assignment to be equal or larger to the upper bound (the smallest number of
perturbations found in a complete solution so far).

6.1 Experiments on random (uniform) CSPs

Randomly generated (uniform) CSPs are parameterized by n variables; k values in
each domain; a value p1, which is the probability that two variables are constrained
(constraint density); and a tightness value p2, which is the probability that two values
of constrained variables are in conflict. These problems are commonly used in the
empirical evaluations of CSP algorithms [17].

The first set of experiments was conducted on random CSPs. Several setups were
considered: including 20, 30, and 40 variables (n = 20, 30, and 40). In all setups,
variables’ domains included 10 values for each variable (k = 10). Several density
values were examined, and the tightness value, p2, was varied between 0.1 and
0.9. For every value of fixed density and tightness (p1, p2), 50 different random
problems were generated and solved, and the evaluation metric used was the number
of constraint checks (CCs). The constraint check counter was increased each time
a binary constraint between two value assignments of two distinct variables, was
checked. This method is commonly used for evaluating CSP search algorithms, since
it is implementation independent [8, 10, 22].

In these experiments, the problems were first solved by a standard CSP algorithm.
The solution to the original problem was then saved and used as input to the MPP
search algorithms along with a revised version of the problem. The new problems
were based on the original ones but had 1% of the constraints changed (removed and
added). Next, the Dynamic CSP search algorithms were used to find the solution to
the revised problems that is as similar to the input as possible. As the tightness of the
problems increases, some of the original problems become unsolvable. Furthermore,
the introduction of additional constraints transformed some solvable problems into
unsolvable ones. For p2 values larger than 0.6, none of the problems were solvable.

We began by evaluating Roos et al.’s algorithm (RB-AC) and compared its
performance to that of HS_MPP. As the authors of RB-AC themselves note, the
algorithm’s performance is expected to exert a large computational effort during the
search for the closest solution: “repairing a solution is much harder than creating a



242 Constraints (2011) 16:228–249

Fig. 9 Performance of hybrid
search and RB-AC on random
problems (n = 20, p1 = 0.3)

new solution from scratch if many non-unary constraints are violated by the solution
that needs to be repaired” [11]. Indeed, our results on the smaller problems (n = 20),
comparing RB-AC and our Hybrid search, depicted in Fig. 9, assert this claim and
discouraged further use of this algorithm in the following evaluations.

It is clear that the performance of RB-AC drastically decreases when the problems
become tight, compared to the HS_MPP algorithm. This may be caused by the
increased distance of the optimal solution from the initial assignment, α. One way
to validate this relation between solutions’ distance and the performance of the
algorithm is to consider the results of the algorithm on problems sharing the same
difference size (same Hamming distance) between the two solutions, as presented
in Fig. 10 (using a similar setup). When the smallest distance from α of any solution
to � is greater than two assignments, RB-AC becomes worse by almost an order of
magnitude than the proposed hybrid search algorithm. For distance equal or larger
than 5, we did not get a result in reasonable time (runs were terminated).

We next proceeded to examine larger problems, comparing the proposed
HS_MPP algorithm to two alternatives. A former algorithm, proposed by Hebrard
et al. [6], uses global consistency (see Section 2) and will be referred to as MPP_GAC.

Fig. 10 Performance of hybrid search and RB-AC on random problems (n = 20, p1 = 0.3) as a
function of the solutions’ distance from the initial assignment α
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An alternative algorithm of a different nature can be used to establish a scale.
Here we use the standard MAC algorithm [4]. It searches for any solution for �

(not necessarily a minimal perturbation solution) ignoring δ and α. This alternative
is used only as a scale because it does not provide an optimal solution with a
minimal perturbation. The larger problems included 30 variables (n = 30) with 10
values (k = 10). We ran this setup with p1 = 0.3 and varied the p2 values over
the entire range. Figure 11 depicts the results of this experiment. As the tightness
value exceeded p2 = 0.4 the generated problems became unsolvable. It is interesting
to note that for p2 = 0.4 the CCs count for finding a non minimal solution to the
problem by the standard MAC algorithm is longer on the average than the time to
find a minimal perturbation for the proposed algorithm.

Our last experiment (Fig. 12) used even larger problems—40 variables (n =
40, k = 10, p1 = 0.1). In this experiment the initial problems became unsolvable for
p2 values larger than 0.6. As before, the effort in terms of CCs exerted by MAC
exceeded that of our proposed algorithm as p2 approached it critical value (“phase
transition”).

These results clearly demonstrate that the performance of the proposed Hybrid
search is far superior to that of RB-AC and MPP_GAC. It is quite encouraging to
observe in Figs. 11 and 12 that for large problems the performance of HS_MPP is
roughly within an order of magnitude of that of a non-optimal MAC and at times
even better. This difference in performance is much smaller than the difference
between the MPP_GAC algorithm and HS_MPP (see Fig. 11).

6.2 Experiments on Meeting Scheduling Problems (MSPs)

Following our initial results on random problems, we proceed to examine the impact
of dynamic changes on structural CSPs; the specific examples used here are random
instances of the Meeting Scheduling Problem (MSP). In an MSP, each variable mi

corresponds to a meeting. The domain of each variable consists of the different time
slots available for that meeting. Two meetings mi and m j are connected by a con-
straint if at least one participant is required to attend both meetings. Each constraint

Fig. 11 Performance of algorithms on larger (n = 30, k = 10) random problems
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Fig. 12 Performance of algorithms on the largest (n = 40, k = 10, p1 = 0.1) random problems

between two meetings enforces a restriction that is termed Arrival Constraint [5, 21]
In addition to not being held simultaneously, some meetings need a finite gap of
several time slots due to the time it takes to arrive from one meeting to the other.
This restriction is not necessarily symmetrical—for example, traveling from A to B
by mass transportation does not take the same time as traveling from B to A.

While a change to a random CSP may be easily applied by randomly introducing
prohibited pairs, the nature of an MSP problem enforces a specific structure. Our
experimental evaluation of dynamic MSPs introduces two types of changes:

– Additional arrival constraints (due to traffic jams, train re-scheduling, etc).
– New links between meetings previously unconnected (a participant of a meeting

mi is required to attend another meeting m j as well).

The experimental setup includes 30 meetings with ten different time slots each.
The average density value, p1, is 0.2 (i.e., participants of a given meeting also take
part in six other meetings on the average).

The first setup includes additional arrival constraints. That is, following the
solution of the original problem, ten meeting pairs were selected at random and a
varying number of additional delay units were introduced to the constraint between
the two.

Figure 13 (top) depicts the results of comparing the performance of HS_MPP to
the global arc consistency algorithm of Hebrard et al. and to MAC [4].3 The MAC
algorithm simply finds a solution to the revised problem (again, with no consideration
of the initial assignment α). The results in Fig. 13 show that HS_MPP is robust to
additional arrival constraints. In contrast, the global arc consistency algorithm of
Hebrard et al. was greatly affected by these additional constraints and required a

3The algorithm of Roos et al. was not compared here because it fails to complete its run within a
reasonable amount of time in this setting. Our results for random problems and the results presented
in [11] indicate why the algorithm proposed by Roos et al. is unsuitable for solving large problems
with changed binary constraints as the problems in this set of experiments.
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Fig. 13 Impact of adding delays to meeting pairs

computational effort (CC) that was larger by three orders of magnitude. It is also
worth noting that when the minimal number of perturbations was small, HS_MPP
required slightly less CCs than the MAC algorithm to find a solution.

In real world problems such as the MSP, it is often of interest to examine the
actual run time. The bottom part of Fig. 13 depicts the average time to completion
in the same experiment. These results verify that the main metric we use in this
section (constraint checks) is valid for evaluating run-time. We assume that the
small differences are caused by implementation differences. Our results demonstrate
again that HS_MPP is able to produce optimal solutions considerably faster than
MPP_GAC.

The second setup considered MSPs similar to those used in the first setup.
Following the solution to each problem, new links were added between randomly
selected meeting pairs. While the additional arrival constraints in the first setup
increased the tightness value (p2), adding new links only increased the problem’s
density value (p1). The results of this experiment are depicted in Fig. 14.
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Fig. 14 Impact of adding new links between meetings

Figure 14 (top and bottom) demonstrates the robustness of HS_MPP. While
the performance of MPP_GAC decreases dramatically when more links are added,
HS_MPP performs the same number of CCs (roughly the same length of time) in
order to find the most similar solution. This time is up to four orders of magnitude
faster than MPP_GAC. The growth in the number of links between meetings is
correlated with the average minimal distance to α (i.e., when a single meeting pair
was connected the average distance was 1, when 5 meeting pairs were connected
it was 2.12, when ten pairs were connected it was 3.32, followed by 4.2, 4.76, 5.84,
and 6.44). While the increased minimal distance severely degraded the performance
of MPP_GAC, the proposed HS_MPP maintained a near constant number of
CCs throughout this experiment. Once again, both metrics—CCs and run-time—
produced similar results.

Figures 15 and 16 present experimental results for much larger MSPs. These MSPs
included 60 variables (meetings) with five time-slots each. As before, the trends
indicate that HS_MPP is able to produce the optimal result with less computational
effort even when the problem instances are significantly larger.
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Fig. 15 Adding delays to meeting pairs in large problems

6.3 Discussion

The experimental study of compares three very different algorithms for solving the
minimal perturbation problem. The first, RB-AC, proposed by Roos et al., searches
the assignments according to their distance from the initial assignment α [11]. Thus,
the first solution to be found is the optimal solution. This approach was found to
be effective only when the tightness of the problem (and the resulting difference
between the original and the new solution) is very small. The second algorithm is
based on Branch and Bound and enforces global arc consistency on a soft constraint
of similarity [6]. The Branch and Bound algorithm is evidently much faster than the
best first search of Roos et al. However, forcing global arc consistency can be an
overhead in terms of computation mainly because the optimality of a new solution

Fig. 16 Adding new links between meetings in large problems
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is determined only by the value assignments that were included in α (the SVAs).
The Hybrid Search algorithm proposed in the presented study avoids the overhead
of enforcing global arc consistency on the entire CSP. It separates the search into an
optimization phase and a satisfaction phase. The optimization phase can include only
one value for each variable (the value assigned to it in α). The search space of the first
phase (the optimization phase) in the proposed algorithm is defined by the number
of consistent combinations of SVAs. The second phase, which considers the entire
domain of variables, is performed only when a relevant partial solution is found by
the first phase. It needs to consider only values in domains of unassigned variables. In
addition, it solves a constraint satisfaction problem, which is easier than a constraint
optimization problem. This results in a significant improvement in performance. In
many cases of the experimental evaluation, the improvement in run-time is by an
order of magnitude and more.

7 Conclusion

A hybrid search algorithm for finding a solution to the minimal perturbations prob-
lem was presented. The proposed algorithm performs optimization and satisfaction
phases alternately. The optimization phase is performed on a much smaller search
space than that of the complete problem. The satisfaction phase is used to determine
if an assignment with a potential to be optimal can lead to a complete solution. Our
experimental study demonstrates the great potential of this approach in comparison
to best first search and to the use of global arc consistency over soft constraints.

The proposed algorithm not only outperformed other algorithms that searched
for the optimal solution, but in some cases it also outperformed a standard MAC
algorithm that searched for any solution to the satisfaction problem. This encourages
further investigation of the proposed algorithm in wider scopes of dynamic AI search
problems.

References

1. Barták, R. (1998). Guide to constraint programming. http://kti.mff.cuni.cz/∼bartak/constraints/.
2. Barták, R. (1999). Dynamic constraint models for planning and scheduling problems. In New

trends in constraints (pp. 237–255).
3. Barták, R., Muller, T., & Rudova, H. (2004). A new approach to modeling and solving minimal

perturbation problems. In Recent advances in constraints (pp. 233–249). Berlin: Springer.
4. Bessiere, C., & Regin, J. C. (1996). MAC and combined heuristics: Two reasons to forsake FC

(and CBJ?) on hard problems. In Proc. second international conference on principles and practice
of constraint programming, CP 96 (pp. 61–75). Cambridge, MA.

5. Gent, I. P., & Walsh, T. (1999). CSPLib: A benchmark library for constraints. Technical report,
APES-09-1999, 1999. Available from http://csplib.cs.strath.ac.uk/.

6. Hebrard, E., Hnich, B., O’Sullivan, B., & Walsh, T. (2005). Finding diverse and similar solutions
in constraint programming. In The twentieth national conference on artif icial intelligence, AAAI-
2005. Pittsburgh, PA, USA.

7. Hebrard, E., O’Sullivan, B., & Walsh, T. (2007). Distance constraints in constraint satisfaction.
In The twentieth international joint conference on artif icial intelligence, IJCAI-2007. Hyderabab,
India.

8. Kondrak, G., & van Beek, P. (1997). A theoretical evaluation of selected backtracking algo-
rithms. Artif icial Intelligence, 21, 365–387.

http://kti.mff.cuni.cz/~bartak/constraints/
http://csplib.cs.strath.ac.uk/


Constraints (2011) 16:228–249 249

9. Meisels, A., & Kaplanski, E. (2002). Scheduling agents—Distributed employee timetabling. In
Proc. 4th conf. on autom. timetabling, PATAT-2002 (pp. 166–80). Ghent, Belgium.

10. Prosser, P. (1996). An empirical study of phase transitions in binary constraint satisfaction
problems. Artif icial Intelligence, 81, 81–109.

11. Roos, N., Ran, Y., & van den Herik, H. J. (2000). Combining local search and constraint propaga-
tion to find a minimal change solution for a dynamic csp. In Artif icial intelligence: Methodology,
systems, applications (pp. 272–282).

12. Roos, N., Ran, Y., & van den Herik, H. J. (2002). Approaches to find a near-minimal change so-
lution for dynamic csps. In Fourth international workshop on integration of AI and OR techniques
in constraint programming for combinatorial optimisation problems (pp. 373–387).

13. Russell, S., & Norvig, P. (2005). Artif icial intelligence, a modern approach (2nd ed.). Englewood
Cliffs: Prentice-Hall.

14. Sakkout, H. E., Richards, T., & Wallace, M. (1998). Minimal perturbation in dynamic scheduling.
In Proc. 13th European conference on artif icial intelligence, ECAI-98 (pp. 504–508). Brighton.

15. Sakkout, H. E., & Wallace, M. (2000). Probe backtrack search for minimalperturbation in
dynamic scheduling. Constraints, 4(5), 359–388.

16. Schiex, T., & Verfaillie, G. (1994). Nogood recording for static and dynamic constraint satisfac-
tion problem. International Journal on Artif icial Intelligence Tools (IJAIT), 3(2), 187–207.

17. Smith, B. M. (1996). Locating the phase transition in binary constraint satisfactionproblems.
Artif icial Intelligence, 81, 155–181.

18. Verfaillie, G., & Jussien, N. (2005). Constraint solving in uncertain and dynamic environments—
A survey. Constraints, 10(3), 253–281.

19. Verfaillie, G., & Schiex, T. (1994). Solution reuse in dynamic constraint satisfaction problems. In
Twelfth national conference on artif icial intelligence, AAAI-1994 (pp. 307–312).

20. Wallace, R. J., & Freuder, E. (2002). Constraint-based multi-agent meeting scheduling: Effects
of agent heterogeneity on performance and privacy loss. In Proc. 3rd workshop on distributed
constrait reasoning, DCR-02 (pp. 176–182). Bologna.

21. Wallace, R. J., & Freuder, E. (2005). Constraint-based reasoning and privacy/efficiency tradeoffs
in multi-agent problem solving. Artif icial Intelligence, 161(1–2), 209–228.

22. Zivan, R., & Meisels, A. (2006). Message delay and discsp search algorithms. Annals of Mathe-
matics and Artif icial Intelligence (AMAI), 46, 415–439.


	Hybrid search for minimal perturbation in Dynamic CSPs
	Abstract
	Introduction
	Related work
	Problem definition
	Finding a solution to a minimal perturbation problem
	An admissible heuristic for the first phase
	Handling non-binary constraints

	Correctness of HS_MPP
	Experimental evaluation
	Experiments on random (uniform) CSPs
	Experiments on Meeting Scheduling Problems (MSPs)
	Discussion

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


