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ABSTRACT

A common approach for solving distributed constraint optimiza-
tion problems (DCOPs) is to represent them with a graphical model
and to solve them with a message passing algorithm. Belief prop-
agation is a popular and well studied such incomplete inference
algorithm. Min-sum (often referred to as Max-sum) is the belief
propagation version that is used for solving minimization DCOPs.
Belief propagation is performed on a factor graph representation
of the problem, in which the graph nodes take an active role in
the algorithm, i.e., they perform calculations and exchange mes-
sages with their neighbors. Unfortunately, the standard version of
Min-sum fails to converge in many cases, and produces low qual-
ity solutions. Previous studies proposed methods to encourage its
convergence and improve solution quality.

Recently, empirical evidence indicated that the performance of
Min-sum can be immensely improved by enhancing it with damp-
ing of beliefs (constraint costs) that are exchanged by the graph
nodes. However, while this was empirically validated, a theoretical
understanding of this phenomenon has not yet been established.

In this research, we present a number of theoretical and empir-
ical results that achieve important mile-stones in understanding
damping’s success in improving Min-sum. These include adapting
theoretical tools that were suggested for analyzing Min-sum to
work with Damped Min-sum (DMS) and analyzing the effect of
damping on graphs with special structures. We show that when
belief propagation instantly converges, damping is redundant, and
thus, the main contribution of damping is in reducing the exponen-
tial growth of the inconsistent beliefs that are propagated in the
first steps of the algorithm’s run.
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1 INTRODUCTION

Distributed Constraint Optimization Problems (DCOP) are a general
model for representing and solving problems that are distributed
by nature, which have a wide range of applications in artificial
intelligence and multi agent systems [1, 16, 42]. Among the appli-
cations that can be represented as DCOPs are meeting scheduling,
multi-agent task allocation, disaster response and operating room
assignment [12, 13, 19, 24].

Two main approaches are commonly used for solving DCOPs:
first, distributed search, in which, usually, a candidate solution is
maintained and updated while traversing the solution space to find
one with higher quality than those found previously [21, 23, 43,
45]. The second is dynamic programming inference [6, 28, 31], in
which information is aggregated such that it enables the selection
of high-quality solutions. These inference algorithms are rooted in
techniques such as belief propagation and bucket elimination [7,
25], which are used to solve optimization problems represented by
graphical models.

Probabilistic inference is the general title for problems that in-
volve reasoning about complex distributions represented by graph-
ical models [22]. One such problem is the maximum a posteriori
(MAP) assignment problem, which seeks the most probable assign-
ment to a set of variables [34]. It is known to be equivalent to a
constraint optimization problem and the problems are easily trans-
formed from one to the other [10, 35, 40]. Because of this close
relationship, advancements in the design of inference algorithms
for constraint optimization problems are expected to have broader
implications for the design of algorithms for solving other combi-
natorial problems that can be represented by graphical models.

Min-sum (also called Max-sum when applied to maximization
problems) is an incomplete inference algorithm that received con-
siderable attention in recent years [3, 8, 10, 44]. It is designed as
a message-passing algorithm in which nodes of a factor graph ex-
change messages with neighboring nodes, and is a version of the
well-known belief propagation algorithm [25, 41], adjusted to solve
constraint optimization problems (COPs) and distributed COPs
(DCOPs) [2, 5, 15, 17]. It was found useful for solving multi-agent
applications such as sensor systems [36, 38, 42], task allocation for
rescue teams in disaster areas [30], and IoT applications [32].

Belief propagation in general (and Min-sum specifically) is known
to converge to the optimal solution for problems in which the con-
straint graph is acyclic, but there is no such guarantee for problems
which include cycles [10, 41]. Furthermore, in graphs with multiple
cycles, duplicated information is propagated, leading to inaccu-
rate and inconsistent inference [25]. Unfortunately, the underlying
problem-representation graphs of many realistic applications do
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include multiple cycles (e.g., [14, 23]). To improve Min-sum’s perfor-
mance on problems with multiple cycles, recent studies proposed
methods that reduce the effect of duplicated information and trigger
convergence to high quality solutions [4, 31, 47].

One such method is damping [20, 29, 33, 37], which has been
empirically shown to overcome the double counting effect of multi-
ple cycles when solving distributed constraint optimization prob-
lems [4, 6]. Moreover, a recent study showed that by allowing a
subjective dynamic (attentive) damping factor for each edge in the
factor graph, and adjusting weights that can reduce beliefs received
from neighboring nodes, further improvement can be achieved [9].
However, while such attentive damping factors and belief weights
were tuned using deep neural nets, showing the potential of be-
lief propagation for solving COPs, they do not shed light on the
fundamental properties that underlie this success.

In order to gain theoretical understanding of the properties of
Min-sum, Zivan et al. [46] proposed the backtracking cost tree (BCT)
as an analytical tool, which traces the cost accumulation procedure
of the algorithm that results in beliefs sent from one node in the
factor graph to another. The BCT reveals and explains some of the
properties of Min-sum, such as scenarios in which it is guaranteed
to converge [46] and the conditions in which belief equalities are
generated in single-cycle graphs [5]. However, the structure and
content of the BCT of damped Min-sum (DMS) has not yet been
explored, and it is clear that to gain greater understanding of the
success of DMS, one must investigate the coefficients of its BCT.

In this paper we extend the theory on belief propagation Min-
sum optimization by investigating the success of damping in en-
couraging convergence of Min-sum to high quality solutions. Our
approach is to formalize the BCT of DMS and analyze the coeffi-
cients of costs exchanged by nodes in the BCT

More specifically we:

(1) Formalize the coefficients of the components of the BCT
when using DMS, as a function of the damping factor, in
chain structure, single-cycle, and lemniscate graphs; and we
give an overview for the general case.

(2) Prove that in a single-cycle graph, when the algorithm does
not converge, the coefficients are similar to the coefficients
in a specific single-cycle graph where the cycle’s size is equal
to a single interval of the repeated minimal route and on
which the algorithm does converge.

(3) Demonstrate that on single-cycle graphs where Min-sum
does not converge, the convergence achieved by DMS is a
result of value equalities between the beliefs of different
assignment alternatives.

(4) Prove that on problems with immediate convergence damp-
ing is not needed, regardless of the graph’s structure. This
result highlights the role of damping in reducing the effect
of the first iterations of the algorithm in which value assign-
ments that are not part of the optimal solution are selected
and included in the BCT - reducing the overall quality of
the ultimate solution.

2 BACKGROUND

A DCOP is a tuple (A, X, D, C), where A is a finite set of agents
{A1,Ay,...,Ap}; X is a finite set of variables {X1,Xo,...,Xm},
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where each variable is held by a single agent (an agent may hold
more than one variable); D is a set of domains {D1, Dy, ..., Dm},
where each domain D; contains the finite set of values that can be as-
signed to variable X; and we denote an assignment of value d € D;
to X; by an ordered pair (Xj, d); and C is a set of constraints (rela-
tions), where each constraint C; € C defines a non-negative cost for
every possible value combination of a set of variables and is of the
form Cj : Dj, xDj,X...xDj, — R*U{0}. A binary constraint refers
to exactly two variables and is of the form C;; : D;xD; — R*U{0}.
In our discussion of Min-sum we often refer to C;; as the cost table
and to Cjj[w, r] as the entry corresponding to w € D; and r € Dj.

A binary DCOP is a DCOP in which all constraints are binary.
Agents are neighbors if they are involved in the same constraint. A
partial assignment (PA) is a set of value assignments to variables, in
which each variable appears at most once. A constraint C; € C of
the form C; : Dj, X Dj, X...x Dj, — R* U {0} is applicable to PA
if each of the variables X , ..., Xj, are included in the PA. The cost
of a partial assignment PA is the sum of all applicable constraints to
PA over the value assignments in PA. A complete assignment (i.e.,
solution) is a partial assignment that includes all variables (X). An
optimal solution is a complete assignment with minimal cost.

For simplicity, we assume that each agent holds exactly one vari-
able (i.e., n = m) and we focus on binary DCOPs. These assumptions
are common in DCOP literature (e.g., [27, 43]).

2.1 Min-sum Belief Propagation

Min-sum operates on a factor-graph, a bipartite graph in which the
nodes represent variables and constraints [18]. Each variable-node,
representing a variable of the original DCOP, is connected to all
function-nodes representing constraints that it is involved in. Simi-
larly, a function-node is connected to all variable-nodes involved in
the constraint it represents. Variable-nodes and function-nodes take
an active role in Min-sum, i.e., they can send and receive messages,
and can perform computation. When used to solve a DCOP, each
node’s role is performed by an autonomous agent.

In Min-sum, a message sent to — or from — variable-node X (for
simplicity, we use the same notation for a variable and the variable-
node representing it) is a vector of size |Dx| including a cost (or the
belief of a cost) for each value in Dx. In the first iteration, all nodes
assume that all messages they previously received (in iteration 0)
include vectors of zeros. A message Q%_)  that variable-node X
sends to function-node F in iteration i is formalized as follows:

R}TLX — a, where Fx is the set of function-
F’eFx\{F}

node neighbors of variable-node X and Rli;l_) s the message sent
to variable-node X by function-node F’ in iteration i — 1. a is a
constant that is reduced from all costs included in the message in
order to prevent the costs from growing arbitrarily large.

A message R sent from a function-node F to a variable-

i
QXHF -

F—X

node X in iteration i, includes for each value x € Dx: R}_} x =

Pﬂin cost({X,x), PA_x), where PA_x is a possible combination
-X

of value assignments to variables involved in F not including X.

cost({(X, x), PA_x) represents the cost of a partial assignment a =

{{X, x), PA_x}, whichis: f(a)+ i_,LF)[x’],
X' eXp\{X} (X" x")ea
where f(a) is the original cost in the constraint represented by F for
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the partial assignment a, XF is the set of variable-node neighbors
of F, and (Q”,LF [x"] is the cost that was received in the message
sent from variable-node X’ in iteration i — 1, for the value x’ that is
assigned to X’ in a. X selects its value assignment £ € Dy following
iteration k as follows: x = ar%gﬂn Y FeFy (Rllg_) O x]

x X

2.2 Single-cycle factor graphs

Belief propagation is known to converge to the optimal solution
in linear time when solving factor graphs with a tree structure
(includes no cycles). For factor graphs with a single-cycle, if be-
lief propagation converges at all, it converges to the optimal so-
lution [11, 39] (though it is not guaranteed to converge on such
factor graphs). When it does not converge it periodically changes
its selected assignments.

To explain this behavior, Forney et al. [11] show the similarity
of the performance of the algorithm on a cycle to its performance
on a chain-structured graph, with nodes similar to the nodes in the
cycle, but the chain length is the number of iterations performed
by the algorithm so far. Consider a sequence of messages starting
at the first node of the chain and heading towards the other end.
Each message conveys beliefs accumulated from the costs added by
function-nodes. Specifically, each function-node adds a cost to each
belief, which is the constraint cost of a pair of values assigned to its
neighboring variable-nodes. Each such sequence of cost accumula-
tions (i.e., each route) must become periodic at some point, and the
minimal belief is generated by the minimal periodic route. If this
periodic route is consistent, i.e., if the set of assignments implied
by the costs within it contain the same value for each variable, the
algorithm converges and the implied assignment is the optimal
solution; otherwise, it does not converge [11].

2.3 Damped Min-sum (DMS)

In order to add damping to Min-sum, a parameter A € [0, 1) is used.
Before sending a message in iteration k, a node performs calcula-

tions as in standard Min-sum. We use mif _jto denote the result
of the calculation made in standard Min-sum for the content of a
message intended to be sent from node i to node j in iteration k
and mi:; to denote the message sent by i to j at iteration k — 1.
The message sent by i to j at iteration k is calculated as follows:
ko= amkl nk
g 1—]j
to previously performed calculations with respect to the most re-
cent calculation performed. When A = 0 the resulting algorithm is
standard Min-sum.

my_o=Ami T+ (1— A)mi_)j. Thus, A expresses the weight given

2.4 Backtrack Cost Trees

For analyzing the behavior of Min-sum, the use of a backtrack cost
tree (BCT) was proposed by Zivan et al. [46]. It allows tracing for
each belief the entries in the cost tables held by function-nodes that
were used to compose it.

A BCT is defined for a belief that appears in a message (either from
some variable Xj to a function-node F;;, or from some function-
node Fj; to a variable X;). The belief is on the cost of assigning
some value x € D; to variable X;. Without loss of generality, we
will elaborate on messages from variables to function-nodes.
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=€) + R(X;=a;X;=b) +
=€) + R(X,=C:Xc=d) +
;X,=e) + R(X,=¢;X=d)

R(X;=biX,=e) +

R(X=CX=e) +  R(Xs=d;X,=e) +
R(X,=a:X,=b) p— e

RO4=CXs0)  R(X,=CXs=d)

Figure 1: (a) A lemniscate factor-graph. (b) An example of a
BCT for a belief in the message sent from X; to the function-
node Fi3 at time ¢ = 6 in the lemniscate depicted on the left.

The belief is a sum of various components from which the BCT is
composed. At the root is the cost for a decision to assign some value
to a variable at a time t and the directed edges from its children
in the tree include the beliefs that were summed to generate that
belief. These edges lead to nodes representing the neighbors from
which the parent node received messages in time ¢ —1. Each of those
nodes is connected to the nodes from which it received messages
at time t — 2, with the edges containing the beliefs that were passed
to it. The tree leaves represent the nodes at time 0 (see Figure 1(b)).

For a single-cycle factor graph, the BCT for every belief is a
chain. Factor graphs with multiple cycles include variable-nodes
with more than two neighbors, and thus, the BCTs of their beliefs
include nodes with multiple children.

For each BCT, there is an implied assignment tree including the
value assignments that the variables at each time-point of the tree
would need to be assigned in order to incur the costs included in
the BCT. The value assignment selected by a variable at time ¢ is
the one with the minimal sum of beliefs sent to the corresponding
variable-node at iteration t — 1.

3 FORMALIZING THE COEFFICIENTS OF A
DMS BCT

The difference between regular Min-sum BCT and DMS BCT is the
weight that every node in the BCT is given in the calculation of
the belief at the root of the BCT. In standard Min-sum BCT, the
belief is a sum of the costs in all nodes of the BCT, i.e., the cost
taken from the entries in the function-node cost table and added in
the node of the BCT, is just itself. Thus, the belief is composed of
the sum of cost table entries of function-nodes, each multiplied by
the number of nodes in the BCT in which this cost table entry was
added. In contrast, in a BCT that is used to analyze the performance
of DMS, the cost added in each such BCT node is multiplied by a
coefficient that is a result of damping. These coefficients are calcu-
lated using a non trivial formula (as past messages are repeatedly
added, multiplied by an updated coefficient). Thus, to understand
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the difference between the BCTs, we must formalize the coefficients
within the BCT generated by DMS. We begin by examining graphs
with simple structures, before elaborating on the general case.

3.1 DMS Coeflicients for Chain-Structured
Graphs

Consider a factor graph with n variable-nodes, structured as a chain.
W.lo.g., we assume an order on the variable-nodes coinciding with
their indexes. While messages are sent in both directions, in a chain
structure factor graph a message does not affect the messages in
the opposite direction [5], thus, we will only consider the messages
. . k . L.
in ascending index order. Denote by Ry plsi<nj=i+l the
k
ij—
k

message sent by function-node F;; to X in iteration k and v
the vector it is carrying (to avoid redundancy, we will use R

k . Lo
and v; Y for the message and the vector it carries interchangeably).

Recall that we use C;;[w, r] to denote the entry in the cost table of

Fij corresponding to values w € D; and r € D; and similarly, that
Q;‘_)ij [w] andej_U.
vectors included in the messages sent in iteration k. Thus:

[r] correspond to the relevant entries in the

k
k -1 .
=(1- q
Riyalr] = ( M;A Jmin Ciz[w.r]

This is because Ri2—2 depends solely on the cost table Ci2. In each
iteration, we compute a new message as a weighted sum of all
previous computations, where (1 — 1) is the weight for the current
computation and A is the weight of the message from the previous
iteration. The min operation within the sum corresponds to the
standard Min-Sum message computation, which selects the minimal
value for the sending variable.

For F;j (i > 2), we must also account for the incoming message
Qi—ij from the previous variable node X; and the previous message
of Fjj, in iteration k — 1.

k
RE_lrl=(1-2) ) 297! min (Cijlw.r]+ k1wl
q=1
Next, we consider the limit of the iterations of each message R:
klflo Rk _,[r]= ‘2111)11 Cra[w,r]

k-1

k = mij .
m R,[r] = min (Cylw.r]+QfS),

kli—mo ij—j [w])
We can observe that the use of damping on a chain results in each
message converging to the same value as it would without damping.
This indicates that applying damping in chain structures does not
significantly alter the behavior of the algorithm.

Furthermore, in trees structures, while the function nodes receive
additional vectors their behavior essentially remains unchanged,
maintaining the same overall message dynamics.

3.2 DMS Coefficients for Single-Cycle Graphs

When Min-sum solves a single-cycle factor graph, it reaches a
repeated minimal route that it executes until termination [5, 11,
39]. Convergence is achieved if this route is consistent, i.e., each
variable-node is assigned the same value. Otherwise, it repeats an
inconsistent minimal route, whose length is the number of values
assigned to a variable-node in the route, multiplied by the size of
the cycle [5]. Before reaching the infinitely repeated minimal route,
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the algorithm may traverse value assignments that are not part of
the repeated minimal route, which we term as the tail [5].

3.2.1 DMS Coefficients for Single-Cycle Structured Graph with a
Consistent Minimal Route. For simplicity, we begin by analyzing
the case in which the algorithm converges instantly, i.e., there is
no tail. W.l.o.g., we will consider a single-cycle factor graph with
three variable-node, so the algorithm converges right away to the
optimal solution, which we term X; = 0,X2 = 0,X3 = 0.

Our approach is to investigate the coefficients of the costs added
in the BCT, separately, for each function-node. W.l.o.g., we will
analyze the generation of the coefficient of the entry C12[0, 0] and
we denote the cost in this entry by c[g o]

Iteration 1: (1 — A)cg)

Iteration 2: A(1 - A)cjo) + (1 = A)c[o0] = c[o,0](1 = A)(1+A)

Iteration 3: A(1—A)(1+A)cpoo) + (1= A)c[oo] = €[00 (1 = A)(1+
A+22)

Iteration 4: Acpg)(1-21)(1 +A%)+(1- A)efoo] = €lo0)(1—A)(1+
A+2A2+23)

Iteration 7: Acjo01(1 - A)(1 + A2 B3+ M)+ (1 - A)(epoo) +
(1 —A)3C[0!0]) = c[o,01(1 —DA+A+ A2+ B+ 420+ (1-2)3)

Iteration 13: Ac[gq)(1—2A) (1+ A%+ + A1+ (1-2)3(1+42+102% +
2013 +3544 +5645)) +1 = A) (c[o0] +€[oo] (1 = 1) (1 +3A+64% +
10A% +1524 42145+ 282°+ (1-1)%) = c[o0] (1 - ) (1+A+A%+ 2% +
A A2 (1-2)3 (144441012 42043 43504 4561% +8410) + (1-1)%)

We focus on iterations 7 and 13 because the cycle size is 6, thus,
these iterations follow the first and second times that the cycle has
been completed by the algorithm, respectively. This analysis leads
to the following general coefficient I'1 formula in a cycle including
n variable-nodes at iteration k:

k k-2n
-1
L=(1-2)- )2+ @-pm (‘“" )/1‘1‘1
g=1 g=1 n
k2 qg+2n-1
1-— 2n+1 q—lm
+(1-2) ; ( o ))L

The structure of the equation is based on the iterative logic of
the algorithm. Each time a route returns to its starting point, a
new term is added to the equation, marking the completion of a
cycle. The coefficient for each newly added term is determined
by the expression (1 — 1) , raised to a power that corresponds to
the number of function nodes traversed, and is also influenced by
the expression (1+A-c; +A% - ca + A3 - c3+...). As the process
iterates, past messages are progressively combined with the current
value, causing the power of A to increase. The numerical constants
q+LkT;’1Jn_1) which is

L5t
influenced by the number of function nodes traversed in the process.

To generalize this process, each part, representing a set of mes-
sages during one cycle, is:

are derived from the binomial coefficient (

k- K5t j2n k=1,
(1_A)L%Jn+1 Z (‘I"'LkgillJ” 1)/151—1
=l L5 In

To perform a more in-depth analysis of the coefficient, we ana-
lyzed the changes in coefficient values across iterations with differ-
ent damping factors. Figure 2 demonstrates that these coefficients
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maintain a monotonically increasing, approximately linear trend,
regardless of the damping factor used. Thus, the main claim used in
Forney et al. [11], Weiss [39] to prove the optimally of the solution
of belief propagation when it converges on single-cycle graphs is
maintained in the presence of damping.

Function-Node Coefficient

180

Iteration

Figure 2: Function-Node coefficient

In order to understand the relationship between this coefficient
and the coefficient of each cost added in the BCT nodes from which
it is composed, we formalize its components, each representing the
factor that a particular function-node cost table entry is multiplied
by in the different levels of the BCT. Thus, we denote the coefficients
of the three function-nodes «, f and y, and w.l.o.g. we investigate the
componnents that are composed to generate a. These are denoted
by: a1, az, a3, . .., am where a; represents the contribution from (or
the weight of) the first function-node cost table entry added in the
BCT node that is the farthest from the root (i.e., closest to the leaf -
the “oldest” one) in the BCT, a2 from the one above it that refers to
the same entry, and so forth until a;,, which is the closest to the
root.

We formalize a; at iteration k as follows:

k 1
AT , =0
ak=(1-2) { E - [th 1=
Zq:k,ZH , otherwise
0 sl ’IJ <1
+(1 A)n+1 Zk 2n (q+n I)Aq 1 ’ |_ J 1
ZS:;?LH (qﬂ; 1))Lq oy 0therw1se
0 L5 <2
+(1 /1)2"+1 Zk 4n (q+2n l)ﬂ.q 1 ’ |_ J _
Zk 4n (q+§: 1))Lq ! otherW1se

q=k—6n
+{ ...

Since we are dealing with a single-cycle factor graph with a
consistent minimal route, the BCT exhibits a repeating pattern
across the cycle’s length. In other words, the expression referring
to the first 2n iterations will always be the same in a,. If m is large
enough, then the expression representing the iterations 2n + 1 to
4n will always be the same in a;,—1 and so forth. In other words,

for every component a1 to a, in every iteration the Value added
k—2n

to aj, 2 < i < misreduced from a;_1. in other words 0( =a;

for any k > 2n.
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0
Iteration

Figure 3: a1, a2, @3, 24 as a function of the number of iterations,
on a cycle with three function-nodes, with a damping factor
A=0.9.

13 20 By ) )
Iteration

100

Figure 4: a, §, y as a function of the number of iterations, on
a cycle with three function-nodes, with a damping factor
A=0.9.

Thus, for the coefficient o = ;’Z’l alk, m = |_k2;nlj + 1, the

difference between its value in iteration k and in iteration k — 1, i.e.,
ak—ak-1 equals the last expression of a1, that represents the values
added to it in the k modulo 2n iterations. Formally, this expression
is calculated as follows:
(q+ L&t In - 1)”_1
L5t In

Our empirical results, shown in Figure 3, suggest that a1 converges
to a constant value. Hence, the rest ; values eventually converge
to the same constant. As a result, we can deduce that the coefficient
exhibits linear behavior, as demonstrated in Figure 4, which presents
the three coefficients @, f and y as a function of the number of
iterations, when the algorithm solves a three function-node cycle
graph.

Our most important empirical result is presented in Figure 5. It
presents the results of a sample of many experiments we performed
on cycles with different sizes and different convergence properties,
all reporting similar results. Figure 5 shows the sum of beliefs for
each variable nodes, as a function of the number of iterations of the
algorithm, when solving a three function-node cycle graph. The
first, (a), is a graph on which the algorithm converges right away
to a consistent route, i.e. to the optimal solution. The second, (b), is
a cycle with a consistent route, which does, however, includes a tail
(that is, the algorithm does not converge right away). Similar results

=~

-1
n

2,

q=1

k=L
(1 _ A)L%Jﬂ-{-l

l2n

o
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Figure 5: Sum of beliefs as a function of the number of iterations for (a) three value assignments of a three function-node
cycle with a consistent minimal route and immediate convergence; (b) three value assignments of a three function-node graph
with a consistent minimal route, but with a tail (not immediate convergence); (c) Variable assignment of six values in a three
function-node cycle graph - an inconsistent minimal route — and with no tail.

were obtained for all single-cycle graphs that include a consistent
minimal route, regardless of their size. Intuitively, this happens
because for each variable node, all cost table entries summed to
calculate the beliefs are damped an equal number of times, which
is the size of the cycle. For example, consider the three cycle factor
graph on the top of Figure 6. It includes three variable nodes and
three function nodes. If you consider the distance of the function
nodes from X you have Fy2 and Fi3, which adjacent to X1, therefore
their distance from X7 on one side includes one damping operation,
but on the other side, five damping operations. F3 on the other
hand is on the other side of the cycle and every cost sent from Fz3
to X7 goes through three damping operations, regardless of the
direction. Thus, all costs are damped 6 times all together on both
directions. Moreover, this seems to indicate that we see assignment
equality, i.e., variables’ costs are the same, and the choice of variable
is decided based on tie-breaking.

3.22 DMS Coefficients of Inconsistent Routes for Single-Cycle Graphs.
As previously noted, in single-cycle graphs, Min-sum can encounter
an inconsistent minimal route, which oscillates between multiple
entries at each function node, and as a result, different values are
selected to be assigned to variables in different iterations. Cohen et
al. proved that two entries of the same cost table of a function-node,
which are both included in such an inconsistent minimal route,
cannot be in the same row or column of the cost table [5].

We proved above that when DMS is applied to graphs where Min-
sum converges, it converges such that the sum of beliefs received by
each variable node for the value assignment in the optimal solution
is equal to the sum of beliefs that the other variable-nodes receive
for their value assignments in the optimal solution (without DMS).

Next, we will prove the same phenomenon occurs when the
algorithm oscillates for all values that are included in the minimal
route, i.e., the algorithm converges to a state in which the sum
of beliefs is equal for all values that are included in the minimal
route, whether it is consistent or not. Thus, in cases where it is
not consistent, and more than one value is included in the minimal
route in each domain, damping apparently results in assignment
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equality (since our empirical simulations indicate for every variable-
node there are multiple values in its domain that the agents receives
for them the same lowest sum of beliefs).

LEmMMA 3.1. For every single-cycle graph G, on which the repeated
minimal route is inconsistent, there is a single-cycle graph G’ in
which the same minimal route is consistent. Moreover, the number
of function-nodes in graph G’ is the number of cost table entries in a
single interval of the minimal route in graph G.

Proor. Consider a single-cycle graph G with n function-nodes
on which Min-sum converges to an inconsistent minimal route, os-
cillating among x entries at each function node. We generate a new
single-cycle graph G’ with n-x function nodes. Let the original func-
tion nodes be Fi, Fa3, ..., Fy1. Thus, the value assignments induced
by the minimal route include Vi, Va,, ..., Vn,, Vig: Vap o oo Vg o0 Vi
Vay, - V.. We create G’ by generating a variable-node for each
of the value assignments induced by the minimal route. Then, in
each function-node connecting two consecutive variable-nodes, we
change the cost of every entry that is not included in the minimal
route to the maximal cost in the original cost table plus one. If the
minimal route included a tail, the entries of the tail are not changed
as well. Obviously, the minimal route in G is a minimal route in G’,
and moreover, no other route in G’ can have a smaller normalized
cost than the minimal route in G. m]

Figure 5 (c) demonstrates how the sum of beliefs for all value
assignments induced by the inconsistent minimal route converge
to the same cost.

THEOREM 3.2. The beliefs generated by DMS on a single-cycle
graph G with an inconsistent minimal route, corresponding to the
value assignments included in the minimal inconsistent route, are
identical to the beliefs corresponding to the minimal route, sent by
DMS on a single-cycle graph G’ in which the same minimal route is
consistent.

PRrOOF. By construction (as described in the proof of Lemma 3.1)
the algorithm follows the same minimal route, the same entries in
the function-node cost-tables are accumulated and the beliefs are
multiplied by the same damping factors. O
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Figure 6: Inconsistent route in a single-cycle graph example
As an example, examine Figure 6, which includes a single-cycle

graph, composed of 3 function-nodes and three variable nodes. In
this case, the algorithm converges to an inconsistent route, denoted
as, c1 — ¢4 — C¢ — €3 — €3 — ¢5 — cq.... We construct a single-
cycle graph with 6 function-nodes as described in Lemma 3.1. This
single-cycle factor graph cycle includes a consistent route that is
identical to the minimal inconsistent route in the original factor
graph. Consequently, the algorithm converges when solving the
six variable-node factor graph to a consistent route that accurately
reflects the dynamics of the initial inconsistent route.

3.3 Formalizing the Coefficients of a DMS BCT
for Multiple-Cycles Graphs

As noted above, empirical evidence in previous studies revealed that
damping mitigates the duplicated information phenomenon when
belief propagation is applied to graphs with multiple cycles [26].
Thus, DMS outperforms Min-sum when solving problems that their
underlying representing factor graph includes multiple cycles [4],
but it is not clear how this is achieved. To extend our understand-
ing of this phenomenon, we examine a simple case: a symmetric
lemniscate factor graph (co-shaped graph).

As with single-cycle graphs, examine the case in which the al-
gorithm converges instantly to the optimal solution (i.e., no tail).
Consider a leminscate factor graph with three variable-nodes in
each cycle (Figure 1). We again investigate the coefficients of the
costs added in the BCT. Let us examine the generation of the coeffi-

k  .[r]. Our analysis

cient of the entry C13[0, 0] in the message Rj;_,,
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leads to the following general coefficient ¥; formula at iteration k:

k
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part 3n
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a1 (1= Y ( )AH...)

i=1 4n

The only difference between the coefficients in a lemniscate and
those shown above for single-cycle graphs are the constants that
multiply each part of the formula (in this example: 1, 1, 5, 13, 41,....).
To gain deeper insights into the series of constants, a detailed ex-
ploration of the BCT is essential (Figure 7). For each iteration of the
BCT, we identify and enumerate the relevant nodes that contribute
to our coefficients, which are marked in red. These nodes define
each constant in the series. Through a systematic approach utiliz-
ing iterative bounded Depth-First Search (DFS), we can accurately
compute this series of constants.

This method allows us to compute the parameters of general
graph structures, offering a versatile approach without limiting
ourselves to a specific graph structure. This provides a solid founda-
tion for analyzing complex structures and contributes to a broader
understanding of the underlying patterns in the BCT in the future.

4 DMS CONVERGENCE

Beyond examining the convergence of DMS using simulations, we
are able to present a more general statement.

THEOREM 4.1. Min-sum algorithm will converge to the optimal
solution when there is no tail (i.e., when convergence to the final route
is immediate). This result holds irrespective of the damping factor
used or the structure of the graph.

Proor. Using induction on k, the number of iterations of the
BCT (that is, its depth):

Base Case: Consider a BCT after 1 iteration, meaning a single
function node. In this trivial case, the algorithm will calculate the
message by the minimal entries. And as there is no tail, the minimal
belief assignment is a part of the optimal solution. This holds true
regardless of the damping factor, as all messages are multiplied by
the same constant (1 — 7).

Induction assumption: Assume that for a BCT after k iterations,
Min-sum created beliefs, and the minimal belief assignment of the
root is a part of the optimal solution, regardless of the damping
factor or the structure of the graph.

Induction Step: Consider a BCT after k + 1 iteration. We need to
show that Min-sum algorithm created the minimal belief assign-
ment of the root that is a part of the optimal solution, regardless
of the damping factor or the structure of the graph. By adding one
iteration to the BCT, the leaves are function nodes. The message
each function node creates contains a belief that is part of the mini-
mal belief assignment. Because there is no tail, we have only one
minimal route that creates the minimal belief assignment of the
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Figure 7: BCT of a leminscate factor graph with three function nodes in each cycle

root. Therefore, the beliefs that the leaves send are in the same
route of the minimal route (if they were not, the algorithm would
have a tail). Additionally, damping only multiplies the leaf function
node messages by the same constant, meaning that we still main-
tain the minimal belief assignment as part of the optimal solution.
Following the leave layer, in the rest of the BCT the minimal route
is the optimal solution according to the induction’s assumption. We
note that there isn’t any assumption on the graph structure. O

5 CONCLUSION

Belief propagation is a well-known and widely used algorithm
for solving combinatorial optimization problems that can be rep-
resented by graphical models. While the theoretical knowledge
regarding this algorithm is limited, empirical evidence indicate that
the use of damping much improves its outcome.

In this paper, we presented theoretical and empirical results that
extend the knowledge regarding the reasons for the success of
damping to improve belief propagation. First were able to detail
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formulas that calculate the coefficients of the costs which are ac-
cumulated by the algorithm, and their multiplication as a result of
damping. Then, we demonstrate that when damping is used and
the algorithm solves a single-cycle graph, the beliefs for all values
that are included in the minimal repeated route converge to the
same value. Thus, when the minimal route is inconsistent, these
empirical results indicate that it converges to assignment equality
(agents cannot tell which of the values that belong to the minimal
route to assign to their variables). Finally, we prove - for all graph
topologies — that when the graph does not include a tail, i.e., the
algorithm converges right away to the optimal solution, damping
is not required. Thus, we conclude that the key role of damping
in improving belief propagation is in eliminating the effect of the
initial inconsistent part of the route, i.e., the tail. By understanding
which in which cases damping is not crucial to an optimal outcome,
we hope to help future research to particular issues which we now
understand to be key to its success.
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