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Abstract—1In this work, we consider path planning for a
team of mobile agents where one agent must reach a given
target as soon as possible and the others must accommodate
to avoid collisions. We call this practical problem the Single-
Agent Corridor Generating (SACG) problem and explore several
algorithms for solving it. We propose two baseline algorithms
based on existing Multi-Agent Path Finding (MAPF) algorithms
and outline their limitations. Then, we present the Corridor
Generating Algorithm (CGA), a fast and complete algorithm
for solving SACG. CGA performs well compared to the baseline
approaches. In addition, we show how CGA can be generalized
to address the lifelong version of MAPF, where new goals
appear over time.

I. INTRODUCTION

Consider a team of mobile agents operating in a physical
domain, e.g., a transportation system with autonomous vehi-
cles picking up and delivering passengers to their destination.
Suddenly, a medical emergency arises and one of the mobile
agents must arrive as soon as possible to the nearest hospital.
To do so, we must plan paths for all the agents such that the
respective agent reaches the hospital as soon as possible.
This work focuses on how to solve this type of multi-agent
path planning problem, which we denote as the Single-Agent
Corridor Generating (SACG) problem.

More generally, in a SACG problem, a single main agent
aims to reach a given goal location, while the other agents in
the environment are required to move away from the path of
the main agent to facilitate its movement. The objective is to
find a plan for all agents, such that the main agent reaches
its goal, while the other agents avoid collisions with it and
between themselves. SACG manifests in settings where there
is a main agent whose importance significantly outweighs the
other agents.

The SACG problem is situated between two well-studied
problems: single-agent path finding and multi-agent path
finding (MAPF) [30]. In single-agent path finding, the objec-
tive is to find a path in the graph from a given source vertex
to a given destination vertex. In MAPF, we are given a set
of source and destination pairs of vertices and the objective
is to compose a path for each source-destination pair such
that agents can follow these paths concurrently without
collisions [30]. Single-agent path finding is usually solved
with classical search algorithms such as Dijkstra’s algorithm
and A* [10]. There is a variety of approaches to solve MAPF,
including search-based [8], auction-based [1], and rule-based
algorithms [24, 19]. In SACG, we only require a single main
agent to reach its goal but a joint plan is required since
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other agents may need to move from their current position
to enable the main agent to reach its goal.

The first contribution of this work is an efficient,
polynomial-time procedure denoted as the Corridor Gener-
ating Algorithm (CGA) for solving a wide range of SACG
problems. CGA is an iterative algorithm that plans a single
step ahead. In every iteration, it moves the main agent
towards its goal, pushing the other agents out of the way
and ensuring the main agent’s step does not block the escape
route of the other agents. We prove that CGA is sound
and complete under very mild restrictions. We also pro-
pose tailored versions of two well-known MAPF algorithms,
PrP [28] and PIBT [24], for solving SACG. These will serve
as baselines for comparison of the SACG algorithm that we
introduce, i.e., CGA.

The second contribution of this work is to show how
a SACG solver, in our case CGA, can significantly im-
prove the performance of Lifelong Multi-Agent Path Finding
(LMAFP) [17] in some cases with crowded grids. LMAPF
is a practical generalization of MAPF in which agents are
constantly provided with new goals upon completing tasks.
Many existing LMAPF algorithms suffer from potential
deadlocks and livelocks, especially when the agents occupy
a densely populated region, e.g., the packing station in an
autonomous warehouse. With some minor modifications,
CGA offers a natural way to solve such cases by selecting
a single, arbitrary agent, as the “main agent” and applying
CGA to move it towards its goal. We analyze the resulting
LMAPF algorithm and show that under certain conditions it
ensures that all agents will eventually finish their tasks in a
finite amount of time.

The third contribution of our work is a comprehensive
experimental evaluation of CGA for solving SACG problems
as well as CGA for solving LMAPF problems. Our results
show that indeed CGA solves SACG problems very quickly
and outperforms baseline algorithms in terms of success rate,
and solution quality. Moreover, using CGA to solve LMAPF
proves to be highly effective in some cases, outperforming
baseline LMAPF algorithms in terms of throughput.

II. BACKGROUND AND RELATED WORKS

The term corridor has been used in the context of path
planning in different ways. In some cases, it refers to
imposing constraints over the path planner to guide it towards
a desired location without enforcing a specific path [2, 25].
In other cases, it refers to pre-planning routes that are known
to be safe [26, 29]. Our work is significantly different since
we deal with a multi-agent scenario, where we can control
both the main agent as well as the other agents.
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The SACG problem we study in this work is similar to
Single-Agent Path Finding (SAPF) in that the objective of
both problems is to find a path for a single agent from its
current location to a given goal location. However, since in
SACG we plan for moving multiple agents, it is closer to
the Multi-Agent Path Finding (MAPF) and Multi-robot Path
Planning (MRPP) literatures. MAPF and MRPP are different
names for the problem of finding paths for multiple agents
such that each agent reaches its designated goal without
collisions with the other agents.

Many algorithms exists for solving this problem including
complete algorithms [33, 18, 5, 23, 22], incomplete algo-
rithms [35, 21, 24], rule-based algorithms [24, 19], RL-
based algorithms [7, 9, 3], and combinations of planning and
learning [6]. Kottinger et al.[12], Wen et al. [34] and Saxena
et al.[27] examine cases where agents have kinodynamic
constraints.

For completeness, we briefly describe two MAPF algo-
rithms, namely PrP [28] and PIBT [24] since they perform
well and can be easily adapt to solve SACG problems.

Prioritized Planning (PrP), also known as Cooperative
A* [28], is a popular algorithm that is widely used in many
recent suboptimal MAPF papers [13, 14, 32, 36, 4]. In
PrP, the agents plan one after another according to some
predefined order. That is, when the i** agent plans, it is
constrained to avoid the paths chosen for all ¢ — 1 agents
that have planned before it. The advantage of PrP is that it
is simple to implement and has a small runtime. However,
it is suboptimal and incomplete since its predefined priority
ordering can sometimes result in solutions of bad quality or
even fail to find any solutions for solvable MAPF instances.

PIBT [24] is a greedy MAPF algorithm, planning ahead a
single time-step. In every iteration, it generates where every
agents should move to in the next step, ensuring that at least
one agents ends up getting closer to its goal. It does so
by applying a recursive function that tries to move every
agent towards its goal while using the Priority Inheritance
techniques and a backtracking technique to break potential
deadlocks. Under some conditions, PIBT is guaranteed to
result in each agent reaching its goal, possibly perhaps at
different times.

One of the contributions of this work is an adapta-
tion of the proposed CGA algorithm to Lifelong MAPF
(LMAPF) [15], that is tailored for online MAPF [31]. In
LMAPEF, agents continuously receive new tasks from a
task assigner (the assigner is not part of our path-planning
system). When an agent reaches its current goal it receives
the next goal to travel to from the task assigner. The
efficiency of a LMAPF system is measured in terms of
throughput, i.e., the number of tasks that can be fulfilled
in a given period of time [16, 20]. One of the popular
approaches to solving LMAPF is to use the Rolling-Horizon
Collision Resolution (RHCR) framework [16]. RHCR allows
algorithms to repeatedly plan the next h steps (the horizon)
based on the agents’ current locations and goals. Agents then
proceed w < h steps, where w is a window parameter, and
the process repeats.

ITII. SINGLE-AGENT CORRIDOR GENERATING

A Single-Agent Corridor Generating (SACG) problem
is defined by a tuple (G,s,g,k,S), where G = (V,E)
is a strongly connected undirected graph representing the
possible locations the agents may occupy and the allowed
transitions between them; s and g are vertices in G rep-
resenting the start and goal locations of the main agent,
respectively; k is the number of agents in addition to the
main agent; and S = (S),...,S}) is the vector of vertices
in G representing the initial locations of other agents. A
solution to a SACG is a set of paths m,..., T, one per
agent, where m( is the path of the main agent and (1) the
paths do not conflict, (2) the path of every agent starts from
its start location, and (3) the path of the main agent ends
in g. Paths do not conflict if the agents following them do
not occupy the same vertex or edge at the same time. Our
objective in this work is to find solutions to SACG problem
such that the path of the main agent is minimal. The example
of SACG instance is shown in Fig. 1.

Fig. 1: An example of a SACG instance. The orange circle
represents the main agent. The orange square is the goal g
of the main agent. The rest are obstacles (black areas) and
other agents (green circles) in a grid.

IV. BASELINE ALGORITHMS

In this section, we propose two baseline algorithms for
solving SACG that are based on simple adaptations of
existing MAPF algorithms, namely PrP [28] and PIBT [24].

The first algorithm that we call PrP_SACG, is a very
simple adaptation of PrP. We set the agents’ priorities such
that the main agent is the higher-priority agent, and select
the priorities of the other agents randomly. This will result in
planning the path for the main agent first, ignoring all other
agents, and having all other agents find a plan that avoids
conflicts with the main agent’s path (and the paths of all
other higher priority agents). As in standard PrP, the choice
of priorities for the other (non-main) agents is critical, and
in some cases, the algorithm will fail to find any solution.
To mitigate this to some extent, we incorporate the random
restart mechanism, i.e., PrP_SACG is performed multiple
times, choosing a different priority order for the other (non-
main) agents, until finding a valid solution. PrP_SACG is
a sound algorithm for SACG, and it runs in polynomial
time. However, it is incomplete, in the sense that there are
cases where regardless of the priorities chosen by the agent
a solution may not be found. Such a case is presented in Fig.
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2. The orange circle is the main agent that plans first. The
other two green agents plan afterward. There is no order of
planning by green agents that allows them to avoid collisions
with the main one.

- M
O 00
Fig. 2: Example of a failed instance for PrP_SACG. No order
in the planning of green agents allows for the avoidance of
collisions with the main (orange) agent.

The second baseline algorithm we propose is called
PIBT_SACG. PIBT_SACG is an adaptation of PIBT [24]
in which the main agent plans first in every iteration. In
addition, in PIBT_SACG we limit the Priority Inheritance
mechanism used in PIBT such that no other agent can
inherit the priority higher than the main agent. This is
needed to ensure that the main agent follows its shortest
path. Like PrP_SACG, PIBT_SACG is also sound and runs
in polynomial time. In addition, in a graph G where every
pair of vertices has a simple cycle of length at least 3,
PIBT ensures that every goal will eventually be visited [11]
(Theorem 4). Consequently, in such graphs PIBT_SACG is a
complete SACG algorithm, i.e., the main agent is guaranteed
to reach the goal. The requirement that every pair of vertices
has such a cycle is strong. For example, the SACG instance
depicted in Fig. 2 does not satisfy this requirement. Indeed,
PIBT_SACG fails to solve this instance since the main agent
will be stuck in two steps, causing the deadlock. However,
CGA will successfully handle the instance, by moving others
out of the corridor to the goal location.

V. CORRIDOR GENERATING ALGORITHM

In this section, we present the Corridor Generating Algo-
rithm (CGA), a polynomial-time algorithm for solving SACG
that is complete even under a very limited set of assumptions.
To explain CGA, we introduce the following terms.

Definition 1 (Separating Vertex): A vertex v in a graph
G is called a separating vertex (SV) if removing v from G
results in a graph with more connected components than G.
A vertex that is not an SV is called a non-SV. Fig. 3 shows
all the SV vertices in several grids.

Definition 2 (Corridor): A corridor in a graph G =

(V,E) is a path (vy,...,v,) € V in G such that all the
vertices vs, ...,V,_1 are separating vertices.
That is, a corridor in this work is a path in which all vertices
except the first and last must be SVs. The first and last
vertices may or may not be SVs. A trivial corridor is a path
comprising only a pair of vertices (vy,vs), where either vy
or vy is not a separating vertex.

The CGA algorithm performs the following steps itera-
tively until the main agent reaches its goal: (1) select a
corridor ¢ starting from the current location of the main
agent and ending in either the goal g or a non-separating
vertex, (2) evacuate the other agents from ¢, and (3) move

SV | sV | sV

SV

SV - - SV
SV

(b)

(© (d)

Fig. 3: Examples of the set of all the SVs for different graphs.
The red cells marked by “SV” are the SVs.

the main agent through c. Next, we describe how the corridor
is selected in step (1) and how it is evacuated in step (2).

a) Corridor Selection (CorSel): CGA maintains an
optimal path 7* from the agent’s current location to the
goal g. This path ignores the other agents and can be found
using standard shortest path algorithms such as A*. In every
iteration of CGA, it selects the maximal prefix of 7* that
forms a corridor. Let ¢4, be this corridor. By definition,
Cmaz €nds either in g or in a non-separating vertex. If all
the vertices in ¢4, are not occupied by any agent, the main
agent simply moves along c¢,,,, and we continue to the next
iteration of CGA. Otherwise, CGA employs the Corridor
Evacuation (CorEvac) procedure described below to evacuate
all the agents from c,,,, (except the main agent), before
moving the main agent along c,,q.

b) Corridor Evacuation (CorEvac): The CorEvac pro-
cedure iterates over the vertices in c¢,,q;, €vacuating any
agent that occupies them except the main agent. This is
done as follows. Let v be a vertex in c¢,,,, that is currently
occupied by a (non-main) agent and let V. be the vertices
in ¢4, we already iterated over. CorEvac finds the shortest
path in G from v to a vertex vy such that (1) vy is not
occupied by any agent, (2) vy is not in V., and (3) the path
to vy does not go through the location of the main agent.
Finding such a path can be done via a simple Breadth-First
Search from v. We call this path the Evacuation Path (EP)
of v. Now, all that is left to do is to move each of the agents
in this EP, in order of their distance to vy. Consequently,
this step ends when v and V. are no longer occupied by
any agent, and the entire corridor evacuation procedure ends
when ¢,,,4, does not include any agent except the main agent,
as required. Fig. 4 demonstrates an example of finding such
an EP.
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(b)

()

Fig. 4: (a) A grid and a vertex v to evacuate (orange square); (b) run a BFS starting from v until a the first unoccupied
vertex vy is found (green square); (c) identify the EP from v to vy (dotted red line); (d) move all agents in EP towards the

unoccupied vertex vy, starting from the neighbor of vy.
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Fig. 5: (a) The initial state with the corridor to evacuate; (b) - (d) the Evacuation Paths (EPs) are created one by one from

the agents inside the corridor; (e) -

The pseudo-code of CGA is presented in Algorithm 1.
The input to the algorithm is the main agent a, the other
agents A, and the graph G. First, CGA computes and stores
the set of all SVs. This is easily done in polynomial time
via dynamic programming. Then it runs the Algorithm 2
(described below) for each step of the algorithm (line 4),
which selects the next corridor the main agent should traverse
and computes appropriate EPs as needed. The next steps of
all agents are updated accordingly (lines 5-6). If the last node
of the updated path is the goal node, the algorithm halts (lines
7-8).

Algorithm 2 lists the pseudo-code of a step in CGA, CGA-
Step. The input of CGA-Step is the main agent a, the other
agents A, the graph G, and the set of SVs. The algorithm
returns the dictionary of additional future steps per agent.

(g) movement of agents along the EPs; (h) final state

The blue lines in Algorithm 2 are the adaptations for the
LMAPF case, which will be discussed later. The algorithm
starts with initializing the next_steps dictionary, the EP
list, and the corridor for the main agent ¢, (lines 3-4). If
there are no agents in c,,q, the main agent just proceeds
forward to line 21. Otherwise, we follow our CorEvac
procedure, creating evacuation plans (EPs) for every agent
in Cpq, and executing them (lines 9-20). Finally, the main
agent moves after them (line 21).

VI. CGA IN LIFELONG MAPF

With some modifications, CGA can be particularly useful
in the context of Lifelong MAPE. We refer to this modified
version of CGA as CGA(L) and describe it in this section.

The pseudo-code of CGA(L) is presented in Algorithm
3. The algorithm follows the Prioritised Planning frame-
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Algorithm 1 CGA

Algorithm 3 CGA(L)

1: Input: (a, A,G := (V, E))
2: SVS <« create_svs (G)
3: while T'rue do
4 next_steps + CGA-Step (a,A,G, SVS)
add next_steps(a) to a.plan
add next,steps(;l) to fl.plans
if a.last_node is a.goal then
return a.plan, fl.plans
9:  end if
10: end while

® W

Algorithm 2 CGA-Step

1: Input: (a, A,G := (V,E),SVS)

2: Output: next_steps

3: next_steps < empty dictionary
4: ev_paths <4 empty list

5: Cmaz & get_corridor (a,G,SVS)

6: if cjpae is @ then

7:  return g

8: end if

9:

c_.agents < agents in Cmax
10: for c.a in c_agents do

II:  ev.path < get.EP(c.a, Cmas, A,G)
122 if ev.path is @ then

13: return J

14:  end if

15: add ev_path to ev_paths

16: end for

17: for ev_path in ev_paths do
18: ev_agents < agents in ev_path
19: next_steps (ev_.agents) <
move (ev_agents, ev_path,
next_steps (;1) )
20: end for
21: next_steps (a) <
move (4, Cmaz, next_steps (fl) )
22: return next_steps

work, where the agents are assigned priorities and higher-
priority agents plan before lower-priority agents. The input
of CGA(L) is the graph G and a group of agents A where
every agent a; € A is associated with its current goal g; and
the plan it is currently following ;. We refer to m; as the
active plan of agent 7. Initially, the active plan of all agents
is empty. CGA(L) is called in each time step ¢, outputting
the next location each agent should go to and potentially
updating the active plans of some agents.

When CGA(L) is called, it loops through the agents in
order of their priorities (lines 3-13). If the agent a; has
an active plan it will follow it in the next time step, and
CGA(L) continues to the next agent (line 4). Otherwise,
CGA(L) generates an active plan for a; and possibly other
lower-priority agents by running a single iteration of CGA

1: Input: (A,G :=(V,E),SVS,t)

2: planned <4 agents with an active plan
3: for a € A do

4:  If a € planned: continue

5: G’ + prohibit (planned, G)

6: A« A\ planned, a

7:  next < CGA-Step(a, A’, G', SVS)

8 if next is @ then

9: continue

10:  end if

11: update (A4, next)

122 add agents in next to planned

13: end for

14: unplanned «+ A\ planned

15: For each agent a € unplanned: stay
16: Put finished agents at the end of A

(Algorithm 2) for that agent (line 7), considering previously
planned paths as obstacles (line 5). If this iteration of CGA
succeeds, the algorithm updates the plans of agents (line
11) and puts the updated agent into the planned list (line
12). Otherwise, i.e., when the agent cannot find a corridor
or cannot evacuate it (blue parts in Algorithm 2), then its
active plan remains empty in this time step. Every agent
with an empty active plan remains in its current location for
the next time-step (lines 14-15). All agents that reach their
goal location are placed at the end of the order of agents for
the next iteration so that eventually every agent will enjoy
being first in the order (line 16).

VII. THEORETICAL RESULTS

First, we analyze the runtime of CGA. The runtime
complexity of the Corridor Selection is O(|V| + |E|) as
it simply runs a breadth-first search. Similarly, finding an
EP for a single vertex requires O(|V| + |E|). CorEvac
searches for an EP at most |A| times, and thus its runtime
is O(|A|(|]V|+ |E|)). The number of iterations in CGA is at
most the number of vertices in the graph. Thus, the runtime
of CGA is O(|A|2(|V] + |E))).

Next, we analyze the completeness of CGA.

Lemma 1: In CGA, if the main agent is occupying a non-
SV and the number of unoccupied vertices in a graph G is
greater than or equal to the length of the longest corridor in
G then the CorEvac procedure will successfully evacuate all
agents from the corridor ¢4 -

Proof outline. Since the main agent is not occupying an SV,
there exists a path from every vertex in c¢,,q, to any vertex
in G that does not go through the main agent’s location. As
there are more unoccupied vertices than vertices in Cp,qz,
there exists an unoccupied vertex in GG for every vertex in
Cinaz- Thus, an EP will be found for every vertex in ¢4,
as required. [J

Theorem 1: [Completeness] If the main agent is not occupy-
ing an SV and the number of unoccupied vertices in a graph
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is equal to or greater than the length of the longest corridor
in G then CGA is guaranteed to solve any solvable instance.
Proof outline. The Corridor Selection (CorSel) procedure in
CGA ensures that the main agent moves from one non-SV
vertex to another along an optimal path to the goal. Due to
Lemma 1, CorEvac will successfully evacuate the corridor
connecting these two non-SV vertices. Consequently, after a
finite number of steps the main agent will reach its goal. O
Note that the requirement for completeness in Theorem 1 is
strictly weaker than the requirement for PIBT_SACG. That
is, every problem for which PIBT_SACG is complete also
satisfies the requirement in Theorem 1 and thus will also be
solvable by CGA. This is because if a graph G has a simple
cycle of size 3 between every vertex, then G has no SV.
Theorem 2 (Reachability of CGA(L)): In CGA(L), if the
number of unoccupied vertices is larger than the longest
corridor then every agent is guaranteed to reach its next goal
location in a finite amount of time.

Proof: Following Theorem 1, the agent with highest priority
will reach its goal location in a finite amount of steps, as it
applies CGA without any restrictions. CGA(L) assigns the
lowest priority to agents that has reached their goals. Thus,
eventually every agent will be the highest priority agent and
reach its goal.

VIII. EMPIRICAL RESULTS

We conducted two sets of experimental evaluations: one
for solving SACG problems and one for solving LMAPF
problems. All algorithms were implemented in Python and
ran on a MacBook Air with an Apple M1 chip and 8GB of
RAM.

A. SACG Experiments

This set of experiments was performed on four different grids
from the MAPF benchmark [30]: empty-32-32, random-32-
32-20, maze-32-32-4, and room-32-32-4, as they present
different levels of difficulty. The grids are visualized in
Fig. 6. The number of agents varied from 100 to 1000.
SACG problems were created as follows. All agents were
placed in random start locations in the given grid, and a
goal location was selected randomly for the main agent.
25 random instances were generated in this way for every
number of agents and grid.

To solve the generated SACG instances, we implemented
CGA and the two baselines, PrP_SACG and PIBT_SACG. For
PrP_SACG we allowed 100 random restarts before declaring
that no solution has been found. We considered the following
standard metrics for comparison: success rate and sum-of-
costs. Success rate is the number of SACG instances out of
all the algorithms succeeded in solving. An additional metric
to consider is to examine the Sum-of-costs (SoC) which is a
sum of all movements of agents that were needed to solve
SACG. SoC embodies the cost of a solution that we prefer
to minimize.

Fig. 6 shows the success rate results as a function of the
number of agents. As can be seen, on all grids CGA solved
all instances while PIBT_SACG and PrP_SACG solved a

TABLE I: LMAPF: Throughput

Fig. 8 Alg. 50 75 100 125 150 175 200
PrP 12.92 6.28 0.32 - - - -
(a) PIBT 79.84 58.24 13.56
CGA(L) | 60.00 61.24 33.00 - -
PrP 8.40 8.64 6.00 1.96 0.36
(b) PIBT 67.00 63.52 56.32 33.36 13.40
CGA(L) | 4632 44.76 46.12 45.92 27.28 -
PrP 22.80 17.76 11.48 3.84 1.60 0.08
(c) PIBT 12240 13392 13380 130.92  83.16 14.84
CGA(L) | 9492 98.72 99.64 92.04 80.12 27.68 -
PrP 34.84 36.48 25.48 10.56 3.88 0.68 0.20
(d) PIBT 146.00 176.44 187.08 205.88 207.12 16580  78.28
CGA(L) | 107.00 12232 13456 134.00 14240 137.00 107.92

fraction of instances with a larger number of agents. For
instance, in a room grid with 600 agents, PrP_SACG could
not solve any instance in our given time limit, PIBT_SACG
solved around 90% and CGA solved all 25 instances.

Fig. 7 compares the SoC obtained by each algorithm. The
z-axis is the number of solved instances. The y-axis is the
solution quality of a given instance (lower is better). We
can clearly see that CGA outperforms other algorithms. For
example, in a random some instances executed close to 2500
moves, while the highest number for CGA is under 500.

B. LMAPF Experiments

Next, we conducted a set of LMAPF experiments. The
main metric for comparison in the LMAPF experiments is
the throughput obtained after 100 iterations. Throughput is
measured as the sum of agents’ reached goals during the
execution.

Initially, CGA was developed to solve SACG, not LMAPF.
Indeed, in our experiments on MAPF benchmark [30] PIBT
significantly outperforms CGA(L) in terms of throughput.
The reason for this is that PIBT aims to push every agent
towards its goal even when the agent is required to free the
way for higher priority agents. Unlike PIBT, CGA does not
consider the preferences of other agents except the main one,
while moving them away from corridors. Nevertheless, there
are cases where PIBT cannot find a solution, as shown in
Fig. 2. To demonstrate the performance of CGA(L) in such
cases compared to PIBT, we created four small 15 x 15
grids of different arrangements of rooms with narrow single
entries. These grids are shown in Fig. 8. The number of
agents used in our experiments varied from 50 up to 200,
depending on the capacity of a grid. Random goal locations
were created for every agent that reached its goal. As in
SACG experiments, we executed 25 random instances per
every number of agents and grid. Consequently, the baseline
algorithms for comparison are PrP and PIBT. PrP works in
a RHCR framework with w = h = 5, which we found the
best. PIBT has no modifications.

Table I shows throughput results per grid (4, 8, 6, 2 rooms),
algorithm, and number of agents. From the table, it is clear
that with an increasing number of agents the advantage
transfers from PIBT to CGA(L). For example, in 15-15-four-
rooms grid, PIBT succeeds in completing 13.25 goals on
average, while CGA(L) completes 33, which is 2.4 times
better. One of the future directions of research is to try to
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combine the advantages of both PIBT and CGA into a single
algorithm.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the Single-Agent Corridor
Generating (SACG) problem, which is a multi-agent path
planning problem in which a single main agent must move to
its goal location and the other agents move to avoid colliding
with it. We proposed two baseline algorithms for solving
SACG problems that are based on existing Multi-Agent Path
Finding (MAPF) algorithms. Then, we proposed the Corridor

Generating Algorithm (CGA), a dedicated algorithm for
solving SACG problems. CGA runs in polynomial time and
is complete under certain conditions. Experimentally, we
showed that CGA solves SACG problems more efficiently
than the baseline approaches in terms of success rate and
solution cost. Then, we introduced CGA(L), a Lifelong
MAPF (LMAPF) algorithm that is based on CGA. CGA(L)
is fast to compute and we show experimentally that it can be
more effective than baseline LMAPF algorithms in densely
populated scenarios. Yet, in sparser scenarios CGA(L) is
outperformed by existing LMAPF algorithms. Future work
can integrate ideas from existing LMAPF algorithms and
CGA(L). Another direction for future work is to develop
distributed methods for solving SACG.
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