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Abstract. Distributed Constraint Optimization Problems (DCOPs) are an ele-
gant model for representing and solving many realistic combinatorial problems
which are distributed by nature. DCOPs are NP-hard and therefore most re-
cent studies consider incomplete (local) search algorithms for solving them. Dis-
tributed local search algorithms can be used for solving DCOPs. However, be-
cause of the differences between the global evaluation of a system’s state and the
private evaluation of states by agents, agents are unaware of the global best state
which is explored by the algorithm. Previous attempts to use local search algo-
rithms for solving DCOPs reported the state held by the system at the termination
of the algorithm, which was not necessarily the (global) best state explored.
A general framework for implementing distributed local search algorithms for
DCOPs was proposed in [24]. The framework makes use of a BFS-tree in order
to accumulate the costs of the system’s state in its different steps and to propa-
gate the detection of a new best step when it is found. The resulting framework
enhances local search algorithms for DCOPs with the anytime property. How-
ever, since most local search algorithms are mostly exploitive the potential of the
anytime framework has not been explored.
We propose a set of increased exploration heuristics that exploit the proposed
anytime framework. Our empirical study reveals the advantage of the use of the
proposed heuristics in the anytime framework over state of the art local search
algorithms.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for dis-
tributed problem solving that has a wide range of applications in Multi-Agent Systems
and has generated significant interest from researchers [1, 8, 11, 13, 15, 22]. DCOPs are
composed of agents, each holding one or more variables. Each variable has a domain
of possible value assignments. Constraints among variables (possibly held by differ-
ent agents) assign costs to combinations of value assignments. Agents assign values to
their variables and communicate with each other, attempting to generate a solution that
is globally optimal with respect to the costs of the constraints [11, 12].

There is a wide scope in the motivation for research on DCOPs, since they can be
used to model many every day combinatorial problems that are distributed by nature.



Some examples are the Nurse Shifts assignment problem [16, 6], the Sensor Network
Tracking problem [22], and Log Based Reconciliation problem [2].

DCOPs represent real life problems that cannot or should not be solved centrally
for several reasons, among them lack of autonomy, single point of failure, and privacy
of agents.

A number of studies on DCOPs presented complete algorithms [11, 13, 4]. How-
ever, since DCOPs are NP-hard, there is a growing interest in the last few years in
local (incomplete) DCOP algorithms [7, 22, 24, 17, 19]. Although local search does not
guarantee that the obtained solution is optimal, it is applicable for large problems and
compatible with real time applications.

The general design of most state of the art local search algorithms for DCOPs is
synchronous (DALO is the only published exception). In each step of the algorithm an
agent sends its assignment to all its neighbors in the constraint network and receives
the assignment of all its neighbors. They differ in the method agents use to decide
whether to replace their current value assignments to their variables, e.g., in the max
gain messages algorithm (MGM) [7], the agent that can improve its state the most in
its neighborhood replaces its assignment. A stochastic decision whether to replace an
assignment is made by agents in the distributed stochastic algorithm (DSA) [22].

In the case of centralized optimization problems, local search techniques are used
when the problems are too large to perform a complete search. Traditionally, local
search algorithms maintain a complete assignment for the problem and use a goal func-
tion in order to evaluate this assignment. Different methods which balance between
exploration and exploitation are used to improve the current assignment of the algo-
rithm [5, 14, 18]. An important feature of most local search algorithms is that they hold
the best assignment that was found throughout the search. This makes them anytime
algorithms, i.e., the quality of the solution can only increase or remain the same if more
iterations of the algorithm are performed [23]. This feature cannot be applied in a dis-
tributed environment where agents are only aware of the cost of their own assignment
(and maybe their neighbors too) but no one actually knows when a good global solution
is obtained.

In [24] a general framework for enhancing local search algorithms for DCOPs
which follows the general synchronous structure with the anytime property, was pro-
posed. In the anytime local search framework for DCOPs (ALS DCOP), the quality of
each state is accumulated via a Breadth First Search tree (BFS-tree) structure. Agents
receive the information about the quality of the recent states of the algorithm from their
children in the BFS-tree, calculate the resulting quality including their own contribu-
tion according to the goal function, and pass it to their parents. The root agent makes
the final calculation of the cost for each state and propagates down the tree the index
number of the most successful state. When the search is terminated, all agents hold the
assignment of the best state according to the global goal function.

In order to produce the best state out of m steps, the algorithm must run m+(2∗h)
synchronous steps where h is the height of the tree used. ALS DCOP does not require
agents to send any messages beside the messages sent by the original algorithm. The
space requirements for each agent are O(h) and it preserves a high level of privacy (see
[24] for details).



In this paper we study the potential of the proposed framework by proposing a set
of exploration methods (heuristics) which exploit the anytime property by introducing
extreme exploration to exploitive algorithms. We present an intensive empirical evalua-
tion of the proposed methods on three different benchmarks for DCOPs. The proposed
methods find solution of higher quality than state of the art algorithms when imple-
mented within the anytime local search framework.

The rest of the paper is organized as follows: Section 2 describes the distributed
constraint optimization problem (DCOP ). State of the art local search algorithms for
solving DCOPs, will be presented in Section 3. Section 4 presents ALS DCOP. Sec-
tion 5 presents a set of heuristics which increase the exploration of standard local search
algorithms. We evaluate the performance of the proposed heuristics in Section 6 Sec-
tion 7 presents our conclusions.

2 Distributed Constraint Optimization

A DCOP is a tuple < A,X ,D,R >. A is a finite set of agents A1, A2, ..., An. X
is a finite set of variables X1,X2,...,Xm. Each variable is held by a single agent (an
agent may hold more than one variable). D is a set of domains D1, D2,...,Dm. Each
domain Di contains the finite set of values which can be assigned to variable Xi. R is
a set of relations (constraints). Each constraint C ∈ R defines a non-negative cost for
every possible value combination of a set of variables, and is of the form C : Di1 ×
Di2 × . . .×Dik → R+ ∪ {0}. A binary constraint refers to exactly two variables and
is of the form Cij : Di × Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which all
constraints are binary. An assignment (or a label) is a pair including a variable, and a
value from that variable’s domain. A partial assignment (PA) is a set of assignments, in
which each variable appears at most once. vars(PA) is the set of all variables that appear
in PA, vars(PA) = {Xi | ∃a ∈ Di ∧ (Xi, a) ∈ PA}. A constraint C ∈ R of the form
C : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0} is applicable to PA if Xi1 , Xi2 , . . . , Xik ∈
vars(PA). The cost of a partial assignment PA is the sum of all applicable constraints
to PA over the assignments in PA. A full assignment is a partial assignment that includes
all the variables (vars(PA) = X ). A solution is a full assignment of minimal cost.

In this paper, we will assume each agent owns a single variable, and use the term
“agent” and “variable” interchangeably. We will assume that constraints are at most
binary and the delay in delivering a message is finite [11, 21]. Agents are aware only of
their own topology (i.e. only of their own neighbors in the constraints network and the
constraints that they personally and privately hold).

3 Local Search for Distributed Constraints problems

The general design of most state of the art local search algorithms for Distributed
Constraint Satisfaction and Optimization Problems (DisCSPs and DCOPs) is syn-
chronous. In each step of the algorithm an agent sends its assignment to all its neigh-
bors in the constraint network and receives the assignment of all its neighbors. We
present as an example an algorithm that applies to this general framework, the Dis-
tributed Stochastic Algorithm (DSA) [22]. The algorithms is presented following the



recent version of [22]. Notice that these algorithms were first designed for distributed
satisfaction problems in which a solution must not violate any constraint, but they can
be applied as is to Distributed Max CSPs (where the optimal solution is the complete
assignment with the smallest number of violated constraints) which is a special type of
DCOPs. Thus in our description we consider an improvement a decrease in the number
of violated constraints (as in Max-CSPs).

The basic idea of the DSA algorithm is simple. After an initial step in which agents
pick some value for their variable (random according to [22]), agents perform a se-
quence of steps until some termination condition is met. In each step, an agent sends
its value assignment to its neighbors in the constraints graph and receives the assign-
ments of its neighbors.1 After collecting the assignments of all its neighbors, an agent
decides whether to keep its value assignment or to change it. This decision which is
made stochastically has a large effect on the performance of the algorithm. According
to [22], if an agent in DSA cannot improve its current state by replacing its current
value, it does not replace it. If it can improve, it decides whether to replace the value
using a stochastic strategy (see [22] for details on the possible strategies and the differ-
ence in the resulting performance). A sketch of DSA is presented in Figure 1. After a
random value is assigned to the agent’s variable (line 1) the agent performs a loop (each
iteration of the loop is a step of the algorithm) until the termination condition is met.
In each step the agent sends its value assignment to all its neighbors and collects the
assignments of all its neighbors (lines 3,4). According to the information it receives, it
decides whether to replace its assignment; when the decision is positive it assigns a new
value to its variable (lines 5,6).

DSA
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Fig. 1. Standard DSA for DisCSPs.

An example of a DisCSP is presented in Figure 2. Each of the agents has a single
variable with the values a and b in its domain. Dashed lines connect constrained agents
and all constraints are equality constraints. Although DSA is a uniform algorithm, i.e.,
the algorithm does not assume the existence of agents’ identifiers, we added identifiers
to the figure to make it easier to describe.

Before the first step of the algorithm each agent selects a random number. Assume
agents 1, 3, and 5 selected a and agents 2 and 4 selected b. In the first step all agents
can improve their states by changing their assignment. Following a stochastic decision

1 In this paper we follow the general definition of a DCOP and a DisCSP which does not
include a synchronization mechanism. If such a mechanism exists, agents in DSA can send
value messages only in steps in which they change their assignments.



Fig. 2. An example of a DisCSP.

only agents 2 and 5 replace their assignment. Now agents 1, 2, and 3 hold a and agents
4 and 5 hold b. At this step only agent 4 can replace its assignment and in the next only
agent 5 can replace. In the resulting state, all agents are holding a and the algorithm is
terminated.

4 Anytime Local Search framework for DCOPs

The ALS DCOP framework enhances DCOP synchronous local search algorithms
with the anytime property [24]. In the proposed framework, ALS DCOP , a tree is used
as in ADOPT [11] and DPOP [13]. In contrast to ADOPT and DPOP that require
the use of a pseudo-tree, the only requirement in ALS DCOP is that every agent has a
parent route to the root agent. Thus, a Breadth First Search (BFS) tree on the constraint
graph can be used. The BFS-tree structure is used in order to accumulate the cost of
agents assignments in the different states during the execution of the algorithm. Each
agent calculates the cost of the sub-tree it is a root of in the BFS-tree and passes it to
its parents. The root agent calculates the complete cost of each state and if it is found to
be the best state found so far, propagates its index to the rest of the agents. Each agent
Ai is required to hold its assignments in the last 2 ∗ di steps where di is the length of
the route of parents in the BFS-tree from Ai to the root agent and is bounded by the
height of the BFS-tree (h).

Next, we describe in details the actions agents perform in the ALS DCOP frame-
work regardless of the algorithm in use. In each step of the algorithm an agent collects
from its children in the BFS-tree the calculation of the cost of the sub-tree of which
they are the root of. When it receives the costs for a step j from all its children, it adds
its own cost for the state in step j and sends the result to its parent. When the root
agent receives the calculations of the cost of step j from all its children, it calculates
the global state cost. If it is better than the best state found so far, in the next step it
will inform all its children that the state in step j is the best state found so far. Agents
which are informed of the new best step store their assignment in that step as the best
assignment and pass the information about the best index to their children in the next



DSA in ALS DCOP
1. height← height in the BFS- tree
2. dist← distance from root
3. best← null
4. best index← null
5. current step← 0
6. if (root)
7. best cost←∞
8. value current← ChooseRandomValue()
9. while (current step < (m+ dist+ height))
10. send value and cost i to parent
11. send value to non tree neighbors
12. send value and best index to children
13. collect neighbors’ values
14. cost i← CalculateStepCost(current step− height)
15. if(root)
16. if(cost i < best cost)
17. best cost← cost i
18. best← value i
19. best index← i
20. if (message from parent includes a new best index j)
21. best← value j
22. best index← j
23. if (ReplacementDecision())
24. select and assign the next value
25. delete value (current step− (2 ∗ dist))
26. delete cost of step (current step− height)
27. current step++
28. for (1 to dist+ height)
29. receive message from parent
30. if (message from parent includes a new best index j)
31. best← value j
32. best index← j
33. send best index to children

Fig. 3. DSA in the ALS DCOP framework.

step. After every synchronous step the agents can delete the information stored about
any of the steps which were not the best and are not of the last 2 ∗ d steps. When the
algorithm is terminated, the agents must perform another 2h steps (again, h is the height
of the BFS-tree) in which they do not replace their assignment to make sure that all
the agents are aware of the same index of the best step.

The code for DSA in the ALS DCOP framework is presented in Figure 3 2. The
structure of the framework is homogeneous for all algorithms with a distributed syn-
chronous local search general structure (such as DSA and DBA). It is interleaved in
the algorithm execution as follows:

2 We assume the existence of a BFS tree when the algorithm begins.



1. In the initialization phase, besides choosing a random value for the variable, agents
initialize the parameters which are used by the framework. The root initializes an
extra integer variable to hold the cost of the best step (lines 1-7 in Figure 3).

2. In order to get the best out of m steps of the algorithm, m+ h steps are performed
(notice that for each agent the sum of height and dist is equal to h which is the
height of the global BFS-tree). This is required so all the information needed for
the root agent to calculate the cost of the m steps will reach it (line 9 in Figure 3).

3. After values are exchanged, each agent calculates the cost of the state according to
its height. An agent with height hi calculates the cost of the state in which its sub-
tree was in hi steps ago. The root agent checks if the cost it calculated is smaller
than the best cost found so far and if so saves its information. All other agents check
if the best index received from their parent is new. If so they save the information
(index and assignment) of the step with the corresponding index (lines 16-22 in
Figure 3).

4. Before the step is over, the agent deletes the information that has become redundant.
This includes the information on the cost which it passed to its parent on this step
and the assignment of the step which its index should have been received on this
step in case it was found to be better than previous steps by the root agent (lines
25,26 in Figure 3).

5. On the next step, the value message an agent sends to its parent will include the
cost calculation it had performed in this step and the messages to its children will
include the index of the best step it knows of.

6. When the termination condition of the algorithm is met, the agents perform addi-
tional h steps in which only the best index is propagated down the tree. This way, if
the last step cost calculated by the root agent is found to be best, its propagation to
all agents is completed. Furthermore, by performing these steps, the possibility that
different agents hold best assignments which belong to different steps is prevented
(lines 28-33 in Figure 3).

An example of the performance of the ALS DCOP framework is presented in
Figures 4 to 6. To keep the example simple, we only demonstrate the accumulation of
the cost of a single step and the propagation of its index once it is found as the best so
far. The figures do not show that while the costs of step i are being accumulated, costs
and indexes of adjacent steps are also being passed by agents in the BFS-tree.

A DCOP in which the dashed lines connect neighbors in the constraint network
and the arrows represent the BFS-tree arcs (each arrow is from parent to child) is
presented on the left hand side of Figure 4. The costs in the figure are the private costs
calculated for each agent to its state at step i. In the next step, all the leaf agents in the
BFS-tree (agents 3, 4 and 5) send their costs to their parents in the tree and the parents
add their private costs to the costs they receive from their children. The resulting state
is depicted on the right hand side of Figure 4 in which agent 2 added the costs for step
i it received from its children agents 4 and 5 to its own cost of step i and got a cost of 8
for step i. Agent 1 received the cost of agent 3 and added it to its own cost but it still did
not receive the cost for step i from agent 2. At the next step, agent 1 receives the cost
of step i from agent 2 and can calculate the total cost of step i (see the left hand side
of Figure 5). Since it is smaller than the best cost achieved so far, agent 1 updates the



Fig. 4. On the left - Private costs of agents in step i. On the right - Calculations of the cost of step
i at step i+ 1.

Fig. 5. On the left - Calculations of the cost of step i at step i + 2. On the right - Propagation of
the new best index, step i+ 3.

Fig. 6. Propagation of the new best index, step i+ 4.

new best cost to be 15 and in the next step sends a notification about a new best index
in its messages to its children in the BFS-tree (see the right hand side of Figure 5). In
the next step (Figure 6), the rest of the agents receive the notification that they should
preserve the assignment they held in step i. Since the height of the BFS-tree is 2, the
process of accumulating the cost of step i by the root agent and the propagation of the
information that it was found to be the best step took 4 steps.



5 Exploration Heuristics

The standard use of local search algorithms for DisCSPs and DCOPs prior to the pro-
posal of the ALS DCOP framework included running the algorithm for some number
of iterations (M ) and reporting the complete assignment (solution) held by the agents
after the Mth iteration. This use of the algorithm favored exploitive algorithms such as
MGM and DSA over explorative algorithms like DBA [22].

The ALS DCOP framework allows the selection of the best solution traversed by
the algorithm and thus can encourage the use of explorative methods. We propose a
number of heuristics which implement different approaches towards exploration:

– The first heuristic type we propose combines two exploration strategies which were
found successful in previous studies. The first is a periodic increase in the level of
exploration for a small number of iterations. This approach was found successful
for the DCOP model proposed for mobile sensing agent teams DCOP MST [25].
The second is periodic restarts which in the case of local search methods result
in a selection of a random assignment periodically. The random restart strategy is
commonly used in constraint programming methods, e.g., [20]. We used the DSA-
C version of DSA as the basic platform on which we incorporated the heuristics
which incorporated these two strategies of search. In our basic version of DSA-C
an agent replaces its assignment in a 0.4 probability if its best alternative value
assignment does not increase the cost of its current assignment. The following two
heuristics were combined with DSA-C:
1. DSA-C-PPIRA1: PPIRA stands for Periodic Probability Increase and Random

Assignments. Every 15 iterations we increased the probability of replacing an
assignment to 0.8 for 5 iterations. Random selections in which each agent se-
lects a random assignment were performed every 35 iterations.

2. DSA-C-PPIRA2: Every 8 iterations we increased the probability of replacing
an assignment to 0.9 for 5 iterations. Random selections in which each agent
selects a random assignment were performed every 50 iterations.

– The second exploration approach we implemented formulates a dependency be-
tween the probability for replacing an assignment and the potential for improve-
ment that this replacement offers. Such a dependency was suggested for the DSA
algorithm in the DSA-B version. I DSA-B agents would not replace assignments
if the number of violated constraints was zero. This method is compatible for dis-
tributed CSP problems where the aim is to satisfy all constraints. However, it is
not applicable for DCOPs for which there is always some endured cost for a pair
of assignments of constrained agents. Thus we propose the following heuristic that
implements this approach: The heuristic is denoted by DSA-SDP where SDP stands
for Slope Dependent Probability: If there is an improving alternative the probability
for replacing the assignment is calculated as follows:

p = 0.65 +min(0.25,
current cost− new cost

current cost
)

If the alternative is not improving the current cost the probability is calculated as
follows:



p =

{
current cost−new cost

current cost > 1, 0
current cost−new cost

current cost ≤ 1, max(0.1, 0.4− current cost−new cost
current cost )

In this case (that the best alternative is not improving) we change in probability p
only every 40 iterations to allow the algorithm time to converge.

– The last heuristic implements the approach of random restarts in a more monitored
way. Here we do not select a complete assignments randomly but rather have single
agents select a random assignments when they detect an over exploitive situation.
We use the ability of the DBA algorithm to detect quasi local optima states and have
agents detecting such a situation, break out of them by selecting a random assign-
ment. We call this algorithm DRB which stands for Distributed Random Breakout.
Like in the DBA algorithm the quasi local optima detected by the algorithm are
states in which the best alternative of an agent and all its neighbors are not improv-
ing the current state. The difference is in the method for escaping this state which is
random in DRB in contrast to DBA where the structure of the problem is changed
by adding weights to constraints.

6 Experimental Evaluation

In order to emphasize the impact of the ALS DCOP framework on distributed local
search, a set of experiments that demonstrate the effect of the proposed framework when
combined with intensive exploration methods is presented.

Three different types of problems were used in the experiments, random DCOPs,
graph coloring, and meeting scheduling. These problem were selected to demonstrate
the effectiveness of the framework and the proposed heuristics on uniform, structured
and realistic problems.

The uniform problems we used in our experiments were minimization random DCOPs
in which each agent holds a single variable. Each variable had ten values in its domain.
The network of constraints in each of the experiments, was generated randomly by se-
lecting the probability p1 of a constraint among any pair of agents/variables. The cost
of any pair of assignments of values to a constrained pair of variables was selected uni-
formly between 1 and 10. Such uniform random DCOPs with constraint networks of
n variables, k values in each domain, a constraint density of p1 and a bounded range
of costs/utilities are commonly used in experimental evaluations of centralized and dis-
tributed algorithms for solving constraint optimization problems [4].

All our experiments on random DCOPs included 120 agents. Each data point rep-
resents an average of 50 runs of the algorithm solving different problems.

In our first experiment the probability for a constraint between two agents (density
parameter p1) was set to 0.2. Figure 7 presents the cost of the state in each iteration
of the different algorithms. On the left hand side the results presented are for existing
local search algorithms for DCOPs. On the right, the results of local search algorithms
combined with the exploration methods we propose in this paper are presented. It is
quite clear that the trends in these two graphs are very different. On the left hand side we



Fig. 7. The cost in each iteration of local search algorithms when solving random DCOPs, p1 =
0.2.

Fig. 8. Anytime cost in each iteration of the local search algorithms when solving random DCOPs,
p1 = 0.2.

have exploitive algorithms while on the right it is apparent that the algorithm perform
intensive exploration.

Figure 8 presents the anytime results for all algorithms on the same random setup.
The three exploration heuristics which we combine with DSA outperform the other
algorithms. For the DRB algorithm, a larger number of iterations is required (approx-
imately 300) to reduce the cost to a level which is lower than the cost of the solutions
found by existing algorithms.

Similar results were obtained for much more dense DCOPs (p1 = 0.6). The results
for this setup are presented in Figure 9. While most heuristics perform quite similarly
to the more sparse case, the DSA-C-PPIRA2 heuristic has a huge improvement in its
anytime performance after 200 iterations. It seems that the extreme explorative selection
of parameters allows it to traverse states which no other algorithm explores on dense
problems.

The second set of experiments were performed on graph coloring problems. Each
graph coloring problem included 120 agents, and as before, each data point represents



Fig. 9. Anytime cost in each iteration of the local search algorithms when solving random DCOPs,
p1 = 0.6.

Fig. 10. Anytime cost in each iteration of the local search algorithms when solving graph coloring
problems.

an average of 50 runs of the algorithm solving different problems. The number of colors
in the problem (domain size) was 3 and the density parameter p1 = 0.05.

Figure 10 presents the results of the algorithms when solving graph coloring prob-
lems. Once again the heuristics combined with DSA are most successful. However, the
DSA-SDP method outperforms the others. It seems that the structure of the graph col-
oring problem is exploited best by this method. On the other hand, there is a large gap
in between the results obtained by the different versions of DSA and MGM as well to
the the results of the two versions of DBA we compared with.

The last set of experiments were performed on realistic Meeting Scheduling Prob-
lems (MSPs) [3, 9, 10]. The agents’ goal in a MSP is to schedule meetings among them.
We designed the problem as a minimization problem, thus, agents set their preferences
by giving lower costs to meetings which are more important to them. In addition, for
every two meetings we selected randomly an arrival time that is required to get from



Fig. 11. Anytime cost in each iteration of the local search algorithms when solving m eeting
scheduling problems.

the location of one meeting to the other. When the difference between the time-slots of
the meetings was less than the arrival time their was a cost endured. The cost was the
number of agents participating in these meetings. The setup in this experiment included
90 agents and 20 meetings. There were 20 available time-slots for each meeting. The
arrival times between meetings were selected randomly between 6 and 10.

The results in Figure 11 indicate once again that on problems with structure DSA-
SDP performs best. On the other hand, in contrast to the graph coloring problems, the
DRB algorithm performs well and is competitive with some of the DSA versions.

7 Conclusions
The ALS DCOP framework enhances synchronous local search algorithms for DCOPs
with the anytime property. This property enables the use of intensive exploration search
methods which were too risky to use before. The negligible cost in time, space and
communication load of the framework makes it most attractive. However, existing local
search algorithms were designed to converge to a high quality solution at the end of the
run and avoided extreme exploration.

In this paper we proposed a set of methods which are substantially more explorative
than former local search algorithms. Our experimental evaluation reveals that using
these methods within the ALS DCOP framework improves the quality of the reported
solution. Our experimental study included random, structured and realistic problems.
It is apparent from our results that explorative heuristics dominate exploitive heuristics
on all problem structures. However, for different problem types different exploration
heuristics had the advantage.

In future work we intend to investigate the relation between the problem’s structure
and the heuristic type.
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