
Asynchronous Forward-Checking for DisCSPs ∗

Amnon Meisels and Roie Zivan
Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel
{am,zivanr}@cs.bgu.ac.il

Key Words: Distributed CSPs, Search, Forward-checking, Ordering Heuris-
tics

1. Introduction

Distributed constraints satisfaction problems (DisCSPs) are composed of agents,
each holding its local constraints network, that are connected by constraints
among variables of different agents. Agents assign values to variables, at-
tempting to generate a locally consistent assignment that is also consistent
with all constraints between agents (cf. (Yokoo, 2000a; Solotorevsky et al.,
1996)). To achieve this goal, agents check the value assignments to their
variables for local consistency and exchange messages among them, to check
consistency of their proposed assignments against constraints among vari-
ables that belong to different agents (Yokoo, 2000a; Bessiere et al., 2001).

Distributed CSPs are an elegant model for many every day combinatorial
problems that are distributed by nature. Take for example a large hospital
that is composed of many wards. Each ward constructs a weekly timetable
assigning its nurses to shifts. The construction of a weekly timetable involves
solving a constraint satisfaction problem for each ward. Some of the nurses in
every ward are qualified to work in the Emergency Room. Hospital regulations
require a certain number of qualified nurses (e.g. for Emergency Room) in
each shift. This imposes constraints among the timetables of different wards
and generates a complex Distributed CSP (Solotorevsky et al., 1996).

Several asynchronous backtracking algorithms for DisCSP s have been
proposed in recent years (Yokoo, 2000a; Bessiere et al., 2005; Silaghi and
Faltings, 2005). All of these algorithms process assignments of agents asyn-
chronously and rely on Nogoods for their correctness and termination. In
asynchronous backtracking, agents perform assignments asynchronously and
send out messages to constraining agents, informing them about their as-
signments (Yokoo, 2000a; Bessiere et al., 2005). Due to the asynchronous

∗ Research supported by the Lynn and William Frankel center for Computer Sciences and
the Paul Ivanier Center for Robotics and Production Management.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.1

2

nature of agents’ operations, the global assignment state at any particular in-
stance during the run of an asynchronous backtracking algorithm is in general
inconsistent.

The present paper proposes a new distributed search algorithm on DisCSPs,
Asynchronous Forward-Checking (AFC). The AFC algorithm processes only
consistent partial assignments and processes assignments synchronously. The
innovation of the proposed algorithm lies in processing forward checking
(FC) asynchronously, hence its name AFC. In the proposed AFC algorithm,
the state of the search process is represented by a data structure called Current
Partial Assignment (CPA). A CPA starts empty at some initializing agent that
records its assignments on it and sends it to the next agent. Each receiving
agent adds its assignment to the CPA, if a consistent assignment can be found.
Otherwise, it backtracks by sending the same CPA to a former agent to revise
its assignment on the CPA.

Each agent that performs an assignment on a CPA sends forward a copy of
the updated CPA, requesting all agents to perform forward-checking. Agents
that receive copies of assignments filter their domains and in case of a dead-
end send back a Not OK message. The concurrency of the AFC algorithm is
achieved by the fact that forward-checking is performed concurrently by all
agents. It is important to note that AFC performs forward checking against
consistent partial assignments, using copies of CPAs. 1

The AFC algorithm includes a protocol that enables agents to process
forward checking (FC) messages concurrently and yet block the assignment
process at the agent that violates consistency with future variables. The se-
quential way in which agents extend a consistent partial assignment, makes
dynamic ordering of agents as straightforward as in synchronous algorithms.
While the best heuristic for the AFC algorithm requires additional messages
to be exchanged between agents, a heuristic inspired by dynamic backtrack-
ing (Ginsberg, 1993), which does not need any additional messages, was also
found to be very effective (See Section 8).

The synchronous method of performing assignments in AFC may gen-
erate some confusion with simple synchronous backtracking algorithms for
DisCSP s (Synchronous Backtrack (Yokoo, 2000a), CBJ (Zivan and Meisels,
2003)). Synchronous Backtrack is the simplest DisCSP search algorithm
and performs assignments sequentially and synchronously, one agent at a
time in a fixed order. The proposed AFC algorithm performs assignments by
one agent at a time, but checks for consistency in an asynchronous process. As
will be evident, AFC is more efficient computationally than the best version
of asynchronous backtracking (section 8).

1 AFC should not be confused with Distributed Forward Checking (Meseguer and Jimenez,
2000) which is a method for keeping agents assignments private in asynchronous backtracking

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.2

3

The AFC algorithm is described in detail in Section 3 and its correctness
is proven in Section 4. Different ordering heuristics which can be used by
the AFC algorithm are presented in Section 5. Section 7 presents a dis-
cussion of the privacy level of AFC and how it may be increased if the
privacy requirements are higher. The impact of using the three best heuristics
is evaluated in Section 8. The performance of AFC is compared to that of
asynchronous backtracking (ABT) on randomly generated DisCSPs. AFC
outperforms ABT by a large factor on the harder instances of random prob-
lems. This is true for all three measures of performance: the number of con-
current constraints checks, the number of concurrent steps of computation
and the total number of messages sent (see section 8). A discussion of the
differences of the AFC algorithm from asynchronous backtracking and of
its improved performance is presented in section 9. Our conclusions are in
section 10.

2. Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction
problem - DisCSP) is composed of a set of k agents A1, A2, ..., Ak. Each
agentAi contains a set of constrained variablesXi1 , Xi2 , ..., Xini

. Constraints
or relations R are subsets of the Cartesian product of the domains of the
constrained variables. For a set of constrained variables Xik , Xjl , ..., Xmn ,
with domains of values for each variable Dik , Djl , ..., Dmn , the constraint is
defined asR ⊆ Dik×Djl× ...×Dmn . A binary constraintRij between any
two variablesXj andXi is a subset of the Cartesian product of their domains;
Rij ⊆ Dj ×Di. In a distributed constraint satisfaction problem DisCSP, the
agents are connected by constraints between variables that belong to different
agents (Yokoo, 2000a; Solotorevsky et al., 1996). In addition each agent has
a set of constrained variables, i.e. a local constraint network.

An assignment (or a label) is a pair < var, val >, where var is a variable
of some agent and val is a value from var’s domain that is assigned to it.
A compound label is a set of assignments of values to a set of variables. A
solution P to a DisCSP is a compound label that includes all variables of all
agents, that satisfies all the constraints.

Following all former work on DisCSPs, agents check assignments of val-
ues against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of
the other agents. The delay in delivering a message is assumed to be finite
(Yokoo, 2000a). One simple form of messages for checking constraints, that
appear in many distributed search algorithms, is to send a proposed assign-
ment< var, val >, of one agent to another agent. The receiving agent checks
the compatibility of the proposed assignment with its own assignments and

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.3

4

with the domains of its variables and returns a message that either acknowl-
edges or rejects the proposed assignment (cf. (Yokoo, 2000a; Bessiere et al.,
2001)).

3. Asynchronous Forward Checking - AFC

The AFC algorithm combines the advantage of assigning values consistent
with all former assignments and of propagating the assignments forward asyn-
chronously. Assignments in AFC are performed by one agent at a time. The
assigning agent keeps the partial assignment consistent. Each such assign-
ment is checked by multiple agents concurrently. Although forward-checking
is performed asynchronously, at most one backtrack operation is generated
for a failure in a future variable.

Agents assign their variables only when they hold the current partial as-
signment (CPA). The CPA is a unique message that is passed between agents,
and carries the partial assignment that agents attempt to extend into a com-
plete solution by assigning their variables on it.

Forward checking is performed as follows. Every agent that sends the CPA
forward sends copies of the CPA, in messages we term FC CPA, to all agents
whose assignments are not yet on the CPA (except for the agent the CPA
itself is sent to). Agents that receive FC CPAs update their variables domains,
removing all values that conflict with assignments on the FC CPA. Asyn-
chronous forward checking enables agents an early detection of inconsistent
partial assignments and initiates backtracks as early as possible. An agent that
generates an empty domain as a result of a forward-checking operation, ini-
tiates a backtrack procedure by sending Not OK messages which carry the
inconsistent partial assignment which caused the empty domain. A Not OK
message is sent to all agents with unassigned variables on the (inconsistent)
CPA. An agent that receives the CPA and is holding a Not OK message,
sends the CPA back in a backtrack message. The uniqueness of the CPA
ensures that only a single backtrack is initialized, even for multiple Not OK
messages. In other words, when multiple agents reject a given assignment
by sending Not OK messages, only one agent that received any of those
messages will eventually backtrack. The first agent that will receive a CPA
and is holding a relevantNot OK message. TheNot OK message becomes
obsolete when the partial assignment it carries is no longer a subset of the
CPA. (Other options for initializing backtrack operations were suggested
by (Nguyen et al., 2004) see Section 6).

The AFC algorithm is run on each of the agents in the DisCSP and uses
the following objects and messages:

− CPA (current partial assignment): a message that carries the currently
valid (and consistent) partial assignment. A CPA is composed of triplets

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.4

5

of the form < A,X, V > where A is the agent that owns variable X and
V is the value that was assigned toX byA. Each CPA contains a counter
that is updated by each agent that assigns its variables on the CPA. This
counter is used as a time-stamp by the agents in the AFC algorithm and
is termed the Step-Counter (’SC’). The partial assignment in a CPA is
maintained in the order the assignments were made by the agents.

− FC CPA : A message that is an exact copy of a CPA. Every agent that
assigns its variables on a CPA, creates an exact copy in the form of a
FC CPA (with the same SC) and sends it forward to all unassigned
agents.

− Not OK : Agents update their domains whenever they receiveFC CPA
messages. When an agent encounters an empty domain, during this pro-
cess, it sends a Not OK message. The Not OK message carries the
shortest inconsistent subset of assignments from the FC CPA and in-
forms other agents that this partial assignment is inconsistent with the
sending agent’s domain.

− AgentV iew: Each agent holds a list of assignments which are its up-
dated view of the current assignment state of all other agents. TheAgentV iew
contains a consistency flagAgentV iew.consistent, that represents whether
the partial assignment it holds is consistent. The AgentV iew contains
a step counter(SC) which holds the value of the highest SC received
by the agent.

− Backtrack: An inconsistent CPA (i.e. a ’Nogood’) sent to the agent with
the most recent conflicting assignment.

3.1. ALGORITHM DESCRIPTION

The main function of the algorithm AFC is presented in figure 1 and performs
two tasks. If it is run by the initializing agent (IA), it initiates the search by
generating a CPA (with SC = 0), and then calling function assign CPA
(line 2-4). All agents performing the main function wait for messages, and
call the functions dealing with the relevant type of message received. The
two functions dealing with receiving the CPA and assigning variables on it
are presented in Figure 1.

Function receive CPA is called when the CPA is received either in a
forward move or in a backtrack message. After storing the CPA, the agent
checks its AgentV iew status. If it is not consistent and it is a subset of the
received CPA, this means that a backtrack of the CPA has to be performed.
If the inconsistent AgentV iew is not a subset of the received CPA, the
CPA is stored as the updated AgentV iew and it is marked consistent. This

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.5

6

AFC:
1. done← false
2. if(IA)
3. CPA← generate CPA
4. assign CPA
5. while(not done)
6. msg← receive msg
7. switch msg.type
8. stop: done← true
9. FC CPA: forward check
10. Not OK: process Not OK
11. CPA: receive CPA
12. backtrack CPA: receive CPA

receive CPA:
1. CPA← msg CPA
2. if(not AgentView.consistent)
3. if(contains(CPA, AgentView))
4. backtrack
5. else
6. AgentView.consistent← true
7. if(AgentView.consistent)
8. if(msg.type = backtrack CPA)
9. remove last assignment
10. assign CPA
11. else
12. if(update AgentView(CPA))
13. assign CPA
14. else
15. backtrack

assign CPA:
1. CPA← add local assignments
2. if(is assigned(CPA))
3. if(is full(CPA))
4. report solution
5. stop
6. else
7. CPA.SC++
8. send(CPA,next)
9. send(FC CPA,other unassigned agents)
10. else
11. AgentView← shortest inconsistent partial assignment
12. backtrack

Figure 1. AFC Algorithm - receive and assign CPA

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.6

7

reflects the fact that the received CPA has revised assignments that caused
the original inconsistency. The rest of the function calls assign CPA, to
extend the current partial assignment. If the CPA is a backtrack, the last as-
signment is removed first (lines 8, 9). Otherwise, the AgentV iew is updated
to the received CPA and its consistency with current domains is checked and
updated. The assignment of variables of the agent currently holding the CPA
is performed by the function assign CPA.

Function assign CPA tries to find an assignment for the agent’s local vari-
ables, which is consistent with local constraints and does not conflict with
previous assignments on the CPA. If the agent succeeds it sends forward the
CPA or reports a solution, when the CPA includes all agents assignments
(lines 2-5). If the agent fails to find a consistent assignment, it calls func-
tion backtrack after updating its AgentV iew with the inconsistent partial
assignment, that was just discovered (lines 11-12). Whenever an agent sends
forward a CPA (line 8), it sends a copy of it in a FC CPAmessage to every
other agent whose assignments are not yet on the CPA (line 9).

The rest of the AFC algorithm deals with backward moving CPAs and
with propagation of the current assignment and is presented in Figure 2.

Function backtrack is called when the agent is holding the CPA in one
of two cases. Either the agent cannot find a consistent assignment for its
variables, or its AgentV iew is inconsistent and is found to be relevant with
the received CPA. In case the agent is the IA the search ends unsuccessfully
(lines 1-3). Other agents performing a backtrack operation, copy to the CPA
the shortest inconsistent partial assignment, from their AgentV iew (line 6),
and send it back to the agent which is the owner of the last variable in that
partial assignment. The AgentV iew of the sending agent retains the Nogood
that was sent back.

The next two functions in Figure 2 implement the asynchronous forward-
checking mechanism. Two types of messages can be received by an agent,
FC CPA and Not OK (lines 9, 10 of the main function in Figure 1).

Function forward check is called when an agent receives a FC CPA
message. Since a FC CPA message is relevant only if the message is an
update of partial assignments received in previous messages, the SC value is
checked to test the message relevance (line 1). ”Older” SCs represent partial
assignments that have already been checked within the partial assignment
of the current (larger) SC of the receiving agent. When the AgentV iew is
inconsistent, the agent checks if its AgentV iew is still relevant. If not, the
AgentV iew becomes consistent (lines 2-4). In case of a consistentAgentV iew,
the agent updates its AgentV iew and current-domains by calling the func-
tion update AgentV iew. If this causes an empty domain, the agent sends
Not OK messages to all agents which are unassigned in the inconsistent
partial assignment found and stored in the AgentView (lines 6-7).

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.7

8

backtrack:
1. if(IA)
2. send(stop, all other agents)
3. done← true
4. else
5. AgentView.consistent← false
5. backTo← last(AgentView)
6. CPA← AgentView
7. send(backtrack CPA, backTo)

forward check:
1. if(msg.SC > AgentView.SC)
2. if(not AgentView.consistent)
3. if(not contains(FC CPA, AgentView))
4. AgentView.consistent← true
5. if(AgentView.consistent)
6. if (not(update AgentView(FC CPA)))
7. send(Not OK, unassigned agents(AgentView))

process Not OK:
1. if(contains(AgentView, Not OK))
2. AgentView← Not OK
3. AgentView.consistent← false
4. else if(not-contains(Not OK,AgentView))
5. if(msg.SC > AgentView.SC)
6. AgentView← Not OK
7. AgentView.consistent← false

update AgentView(partial assignment):
1. adjust AgentView(partial assignment)
2. if(empty domain)
3. AgentView← shortest inconsistent partial assignment
4. return false
5. return true

Figure 2. AFC Algorithm - backtracking and forward-checking processing

Function process Not OK checks the relevance of the received inconsis-
tent partial assignment, with the AgentV iew. If the Not OK message is
relevant, it replaces the AgentV iew by the content of the Not OK mes-
sage(lines 2-3).

Function update AgentView(partial assignment) is called in case aCPA
moving forward is received or a relevant FC CPA. it sets the AgentV iew
and current domains to be consistent with the received partial assignment.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.8

9

In case of an empty domain, update AgentV iew returns false and sets the
AgentV iew to hold the shortest inconsistent partial assignment.

Function adjust AgentView(partial assignment) changes the content of
the AgentV iew to that of the received partial assignment. It also updates the
current domains of the variables to be consistent with the AgentV iew′s new
content.

The protocol of theAFC algorithm is designed so that only one backtrack
operation is triggered by any number ofNot OK messages. This can be seen
from the pseudo-code of the algorithm, in Figures 1, 2 as follows:

− If a single agent discovers an empty domain, all Not OK messages
carry the same inconsistent partial assignment (Nogood) and each agent
that receives such a Not OK message has a consistent AgentV iew. In
this case the CPA will finally reach an agent that holds an inconsistent
AgentV iew, which is a subset of the set of assignments on the CPA.
This CPA, at that step, will be sent back as a backtrack message.

− If two agents discover an empty domain as a result of receiving an identi-
cal FC CPA and create Not OK messages with identical inconsistent
partial assignments. Other agents will receive two copies of the same
Not OK message. The second Not OK message will be ignored since
the Nogood it carries is the same as the one the receiving agent already
holds. The rest of the processing will be the same as in the single empty
domain case above.

− The general case is when two different agents send Not OK messages
that include two different inconsistent partial assignments. If one mes-
sage is included in the other (i.e. a shorter Nogood), then the order of
their arrival is irrelevant. If the shortest one arrives first, the long one is
ignored. If the longer one arrives first the shorter one will replace it. If
the two Not OK messages include a different assignment to a common
agent, then the receiving agent uses the SC on the messages to determine
the more recent one and ignores the other.

At least one of the agents, that must receive and process the CPA, holds
the Nogood (the creator of the nogood itself). This ensures that the backtrack
operation will take place.

4. Correctness of AFC

A central fact that can be established immediately is that agents send for-
ward only consistent partial assignments. This fact can be seen in lines 1, 2

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.9

10

and 8 of procedure assign CPA. This implies that agents process, in proce-
dures receive CPA and assign CPA, only consistent CPAs. Since the pro-
cessing of CPAs in these procedures is the only means for extending partial
assignments, the following lemma holds:

LEMMA 1. AFC extends only consistent partial assignments. The partial
assignments are received via a CPA and are extended and sent forward by
the receiving agent.

The correctness of AFC includes soundness and completeness. The sound-
ness of AFC follows immediately from the above Lemma. The only lines of
the algorithm that report a solution are lines 3, 4 of procedure assign CPA.
Solution is reported when a CPA includes a complete and consistent assign-
ment.

In order to prove the completeness and termination of AFC, one needs to
make a few changes to function assign CPA, in order to avoid stopping after
finding the first solution. Assume therefore that instead of stopping after the
first solution is found (line 5 of assign CPA) the agent simply records the
solution, removes its assignment and recalls function assign CPA. The sec-
ond needed change is to make the procedure of assigning values to variables
concrete. This enables to prove the exhaustiveness of the assignments pro-
duced byAFC and to show termination. Assume that the function add local assignments,
in line 1 of assign CPA scans all values of a variable in some predefined
order, until it finds a consistent assignment for the agent’s variable. For the
rest of the completeness proof it is assumed with no loss of generality that
each agent holds exactly one variable.

Backtrack steps of AFC remove a single value from the domain of the
agent that receives the backtrack message. This is easy to see in lines 8-10 of
function receive CPA in Figure 1. The only way that a value removed by
a backtrack step from agent Ai can be reassigned is after the CPA is sent
further back to some agent Aj (j < i) and returns. Since there are a finite
number of values in all agents domains, the following lemma is established.

LEMMA 2. AFC performs a finite number of backtrack steps.

The termination of AFC follows immediately. Any infinite loop of steps of
AFC must include an infinite number of backtrack steps and this contradicts
Lemma 2.

AFC can in principle avoid sending forward consistent partial assignments
through the mechanism of Not OK messages. An agent that fails to find a
value that is consistent with a received FC CPA message sends a Not OK
message. This message may stop a recipient from trying to extend a valid and
consistent assignment on a CPA. However, every Not OK message is gen-
erated by a failure of the function update AgentV iew (lines 6, 7 of function
forward check in Figure 2). The failure corresponds to a CPA that has no

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.10

11

consistent value in the agent that generates the Not OK message. Thus, the
rejected CPA (i.e. its partial assignment) cannot be part of a solution of the
DisCSP . This observation is stated by the next lemma.

LEMMA 3. Consistent CPAs that are not sent forward for extension be-
cause of a Not OK message, can not be extended to a solution (i.e. they are
Nogoods).

If AFC can be shown to process every consistent partial assignment (for a
given order of agents/variables), this would establish the completeness of the
algorithm. Completeness follows from this fact in analogy to the complete-
ness proof for centralized backtracking in (Kondrak and van Beek, 1997). By
Lemma 3, it is enough to prove completeness for the case where there are no
Not OK messages.

Assume by contradiction that there is a solution S = (< A1, V1 >,<
A2, V2 > . . . < An, Vn >) that is not found by AFC. This means that some
partial assignment of S is not sent forward by some agent. Let the longest
partial assignment of S that is not sent forward be S ′ = (< A1, V1 >,<
A2, V2 > . . . < Ak, Vk >) where k < n. S ′ is consistent, being a subset of
S. There is at least one such partial assignment (< A1, V1 >), performed by
the first agent, because of its exhaustive scan of values. But, by lines 2, 8, 9 of
function assign CPA, agent Ak sends the partial assignment S ′ to the next
agent because it is consistent. This contradicts the assumption of maximality
of S′. This completes the correctness proof of algorithm AFC, soundness,
termination and completeness.

5. Dynamic ordering heuristics

In centralized CSPs, dynamic variable ordering is known to be an effective
heuristic for gaining efficiency (Dechter, 2003). A recent study has shown
that the same is true for algorithms which perform synchronous (sequen-
tial) search on Distributed CSPs (Brito and Meseguer, 2004). Since the
assignments in the AFC algorithm are performed sequentially by agents, as
in the different versions of Synchronous Backtracking after each successful
assignment an agent can choose a different agent to send the CPA to. The
asynchronous forward-checking mechanism enables heuristics which are not
possible in simple synchronous algorithms.

The different ordering heuristics can be divided into two groups, heuris-
tics which can be performed without additional overhead in messages and
heuristics that need this overhead.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.11

12

5.1. HEURISTICS WITH NO ADDITIONAL MESSAGES

The heuristics which do not need additional messages are either heuristics
which can be performed in any synchronous backtrack algorithm or heuristics
for which the additional information needed can be carried by the messages
which are sent as part of the AFC algorithm. The following examples all fall
into one of these characteristics:

− Random: An agent which successfully assigned its variables on theCPA
chooses the next agent to send the CPA to randomly among all unas-
signed agents.

− Estimation of minimum domain size: Brito and Meseguer propose a
heuristic for synchronous backtracking (Brito and Meseguer, 2004). It
is assumed that agents hold all the constraints they are involved in and
know the initial size of the domains of other agents. In order to choose
the next agent to send the CPA, the agents maintain two bounds for the
size of the domain of each unassigned agent. Each agent that performs
an assignment updates these bounds according to the number of conflicts
its new assignment has with each of the unassigned agents. The lower
bound of agent Aj is calculated as by the following formula:
l boundj ←max(l boundJ ,conflicts num(< A i, vi >,Aj))
In words: the maximum between the former lower bound and the number
of conflicts the new assignment has. The upper bound of agent Aj is
calculated as follow:
u boundj ←min(|Dj |,u boundj + conflicts num(< A i, vi >,Aj))
In words: the minimum between the size of the initial domain and the
sum of the former upper bound and the number of conflicts.

After all bounds are updated, if there exist an unassigned agent whose
lower bound is the size of its domain or is higher than any other upper
bound of any unassigned agent, the CPA is sent to it. Otherwise, it is
sent to the agent with the highest upper bound among all unassigned
agents.

− Nogood triggered: A heuristic inspired by Dynamic Backtracking (Gins-
berg, 1993). The idea is to move forward the agent which initialized
the backtrack operation. In AFC, in order to implement this idea an
agent which receives a Not OK message stores the ID of the agent
it was received from. When the CPA is sent backwards the sending
agent records the ID of the sender of the Not OK message which
triggered this backtrack operation on the CPA. The agent that receives
the backtrack message, after replacing its assignment, sends the CPA
to the triggering agent.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.12

13

5.2. HEURISTICS WITH ADDITIONAL NETWORK OVERHEAD

The following heuristics require additional messages which are not sent by
the standard AFC algorithm:

− Actual current domain size: In their presentation of the estimated do-
main size heuristic, Brito and Meseguer report that it was found worth
while to perform sequential backtrack instead of backjumping directly
in order to enable agents to record their actual current domain size on the
CPA (Brito and Meseguer, 2004). InAFC this can be achieved without
delaying the CPA. Each agent that filters its domain after receiving
an FC CPA sends messages which include its current domain size to
each of the unassigned agents. Agents record the latest domain size they
received from each agent and choose the smallest as the next agent to
send the CPA to.

− A heuristic for variable and value ordering was presented in (Nguyen
et al., 2004) for the direct backtracking version of AFC. Each agent
holds a counter for each of the values in its domain and for each of the
other agents. The counters are incremented as a result of a backtrack
operation. When an agent encounters an empty domain it decreases the
counter of the culprit agent it backtracks to. The agent that receives the
backtrack message increments the counter of the sending agent. The
sender of the backtrack message also checks for each value removed
from its domain, which agent’s assignment was the first to conflict with
it. The counter of each of these agents is incremented and a message
is sent to them which indicates a possible conflict between the sending
agent and the current value of the receiving agent. An agent that receives
such a possible conflict message increases the counter of the sending
agent and the counter of its current value. When agents assign their
variables they choose the value with the lower counter in their domain.
When an agent successfully assigns its variable, it chooses the agent with
the highest counter among the unassigned agents to send the CPA to.

6. Improved backtrack method for AFC

In (Nguyen et al., 2004), an elegant method for initializing the backtrack
operation in AFC was proposed. Instead of sending Not OK messages to
all unassigned agents in the inconsistent partial assignment, the agent whose
domain emptied and triggers a backtrack operation, sends a Backtrack mes-
sage to the last agent assigned in the inconsistent partial assignment (Nogood).
All other agents receive a Nogood message which indicate that the former

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.13

14

CPA is inconsistent. The receiver of the Nogood generates a new CPA and
continues the search. The old CPA is detected as obsolete and discarded
using the following method for time-stamping CPAs:

− The time-stamp is an array of counters, a single counter for each agent.

− An agent increments its counter when it performs an assignment.

− When two CPAs are compared, the more updated is the one whose
time-stamp is larger lexicographically (i.e. the first different counter is
larger).

Using this method agents which receive a Not OK method that reveals
the inconsistency of the former CPA and then receive the CPA itself simply
terminate the old CPA. The only CPA which will not be terminated is the
most updated according to the lexicographic time-stamp.

The improvement in performance of AFC with this method, is presented
in Section 8.

7. Privacy in AFC

Privacy is the basic motivation for using a distributed algorithm for solving
distributed problems (Yokoo, 2000b). However, the level of privacy required
is not constant. Recent studies on privacy have shown that DisCSPs can be
solved with complete privacy, i.e. no data loss by agents besides the result of
the search (Yokoo et al., 2005; Silaghi, 2002; Nissim and Zivan, 2005). How-
ever, this level of privacy requires the use of cryptographic and encryption
tools which result in a substantial loss in efficiency. Thus different studies
attempted to address this tradeoff between efficiency and privacy by trying
to achieve lower levels of privacy using standard DisCSP methods (Brito and
Meseguer, 2003; Zivan and Meisels, 2005).

In the AFC algorithm as presented in this paper, agents reveal their as-
signments to their neighbors via the CPA and the FC CPA messages. The
assignments of agents are revealed to non neighboring agents when they
receive the CPA which includes assignments of all previous agents.
AFC can be adjusted to higher requirements of privacy if necessary. The

most extreme way would be using the method presented in (Nissim and Zivan,
2005) which generates a fully secured protocol for any distributed algorithm
in which agents hold a small state (AFC of course falls into this category).
For lower requirements of privacy, such as not revealing assignments to non
neighboring agents, AFC can be adjusted in a number of ways. The simplest
way would be to supply each pair of neighboring agents with an encryp-
tion key. Agents place their encrypted assignments on the CPA and their

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.14

15

assignment is revealed only to their neighbors. If encryption methods cannot
be used, agents in AFC can avoid placing their assignments on the CPA.
Instead the assignments can be sent directly to the neighboring agents and the
CPA will serve only as a token for the next assignment and for determining
the order of the search. This adjustment however would require that in case
of possible delays of messages, agents which receive the CPA wait for all
the assignments of previous neighboring agents to arrive before they make an
attempt to assign their variable and send the CPA forward.

8. Experimental Evaluation

To evaluate the performance of AFC, two sets of experiments were performed.
The first investigates the difference between the variant versions of AFC,
using different heuristics for ordering and performing different backtrack
methods. In the second set of experiments, AFC is compared to one of the
best performing DisCSP algorithms, Asynchronous Backtracking (ABT)
(Yokoo, 2000a; Bessiere et al., 2005).

8.1. EXPERIMENTAL SETUP

All experiments use an asynchronous simulator in which agents are simulated
by threads which communicate only through message passing. The network
of constraints, in each of the experiments, is generated randomly by selecting
the probability p1 of a constraint among any pair of variables and the proba-
bility p2, for the occurrence of a violation among two assignments of values
to a constrained pair of variables. Such uniform random constraints networks
of n variables, k values in each domain, a constraints density of p1 and tight-
ness p2 are commonly used in experimental evaluations of CSP algorithms
(cf. (Prosser, 1996; Smith, 1996)) and DisCSP algorithms (cf.(Zivan and
Meisels, 2004; Brito and Meseguer, 2004)).

The experimental setup included problems generated with 20 variables
(n = 20) and 10 values (k = 10). The experiments include DisCSPs with
two different network density values p1 = 0.4 and p1 = 0.7. The value of
p2 was varied between 0.1 and 0.9, to cover all ranges of problem difficulty
(Prosser, 1996).

In order to evaluate the performance of distributed algorithms, two inde-
pendent measures of performance are commonly used - run time in the form
of steps of computation (Lynch, 1997; Yokoo, 2000a) and communication
load in the form of the total number of messages sent (Lynch, 1997). To
take into account the local computation performed by agents in each step,
computational cost can be evaluated in terms of non concurrent constraints
checks. The evaluation of the computational effort of distributed algorithms

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.15

16

Figure 3. Non-concurrent constraints with different ordering heuristics (p1=0.4)

has to take concurrency into account. Non-concurrent constraint checks, in
systems with no message delay, are counted by a method similar to that of
Lamport (Lamport, 1978; Meisels et al., 2002). Every agent holds a counter
of constraint checks. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest
value between its own counter and the counter value carried by the message.
By reporting the cost of the search as the largest counter held by some agent
at the end of the search, a concurrent search effort that is close to Lamport’s
logical time (Lamport, 1978) is achieved.

The NCCCs measure is independent of the type or the implementation of
the algorithms since it counts logic steps (CCs), it does not count logic steps
which were performed concurrently, and it measures the cost of the algorithm
step which would reveal the difference between different type of algorithms.

The total number of messages sent during the run of the algorithm is a
common measure of network load for distributed algorithms (Lynch, 1997).

8.2. EVALUATION OF ORDERING HEURISTICS

Figure 3 presents the number of non-concurrent constraints checks performed
by the AFC algorithm using different ordering heuristics on low density
DisCSPs (p1 = 0.4). All three ordering heuristics improve the performance
of the static order AFC. Figure 4 presents a closer look at the difference be-
tween the different heuristics, removing th static AFC. The best performing
heuristic is the minimal domain size (Min Domain) heuristic. AFC using
the Min Domain heuristic performs half the NCCCs of AFC with the
possible conflict (PC) heuristic and a third of the AFC using the Nogood

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.16

17

Figure 4. Three ordering heuristics (p1=0.4)

Figure 5. Total number of messages sent by AFC with different ordering heuristics (p1 = 0.4)

triggered (NG) heuristic. Figure 5 presents similar results for the measure of
network load.

Figures 6 and 7 present the results of the same experiments, onDisCSPs
with higher constraint density (p1 = 0.7). Although the results are similar, the
improvement gained by using ordering heuristics is less pronounced than for
low density DisCSPs.

In order to evaluate theAFC algorithm with direct backjumping (AFC DBJ)
as presented in (Nguyen et al., 2004), it is compared to ’standard’ AFC.
Figures 8 and 9 compareAFC performing standard conflict based backjump-
ing using the best ordering heuristic (Min Domain) and AFC performing

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.17

18

Figure 6. Non-concurrent constraints checks for different ordering heuristics solving high
density DisCSPs (p1 = 0.7)

Figure 7. Total number of messages for different ordering heuristics (p1 = 0.7)

direct backjumping with the heuristic of (Nguyen et al., 2004). AFC with
direct backjumping performs better than standard AFC. The improvement
more pronounced for higher density DisCSPs (p1 = 0.7).

8.3. COMPARISON TO ASYNCHRONOUS BACKTRACKING

The performance of Asynchronous Forward-checking (AFC) can be com-
pared to Asynchronous Backtracking (ABT) (Yokoo, 2000a).ABT is a com-
plete asynchronous search algorithm, for which assignments are performed
asynchronously. In the ABT algorithm agents assign their variables asyn-

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.18

19

Figure 8. Non-concurrent constraints checks performed by AFC using different backtracking
methods solving low density DisCSPs (p1=0.4)

Figure 9. Non-concurrent constraints checks performed by AFC using different backtracking
methods solving high density DisCSPs (p1=0.7)

chronously, and send their assignments in ok? messages to other agents to
check against constraints. A fixed priority order among agents is used to
break conflicts. Agents inform higher priority agents of their inconsistent
assignment by sending them the inconsistent partial assignment in a Nogood
message. In our implementation of ABT , the Nogoods are resolved and
stored according to the method of dynamic backtracking (DB), presented
in (Ginsberg, 1993; Bessiere et al., 2001). Based on Yokoo’s suggestions
(Yokoo, 2000a) and the results of recent studies of ABT (Zivan and Meisels,
2003; Bessiere et al., 2005), the agents read, in every step, all the messages in

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.19

20

Figure 10. Non-concurrent constraint checks performed by AFC and ABT solving low
density DisCSPs (p1 = 0.4)

Figure 11. Total number of messages sent by AFC and ABT solving low density DisCSPs
(p1 = 0.4)

their mailbox before performing computation. However, since the simulator
used is asynchronous in our experiments, the agents read in the beginning of
every step the messages which their mail-box contain but can’t wait for addi-
tional messages before they begin the computation phase. The performance
of ABT is compared to AFC, which uses the best performing heuristic
according to the experiments above, Min Domain.

Figures 10 and 11 present the results in run-time and in network load of
AFC and ABT for low density DisCSPs. AFC outperforms ABT by a
factor of 10 in number of NCCCs and by a factor of 3 in the total number

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.20

21

Figure 12. Non-concurrent constraint checks performed by AFC and ABT (p1 = 0.7)

Figure 13. Total number of messages sent by AFC and ABT (p1 = 0.7)

of messages. Figures 12 and 13 present the results of the same comparison
for higher density DisCSPs. For higher density networks, the factor of im-
provement of AFC over ABT in run-time is only 7. In network-load the
results are slightly in favor of ABT .

9. Discussion

In asynchronous backtrack algorithms agents attempt to speed up the search
by assigning their variables concurrently. Recent studies have shown that
versions of synchronous backtracking that perform backjumping according

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.21

22

to conflict sets and order the assignments according to intelligent heuristics
achieve equal or even better performance than that of asynchronous back-
tracking (Zivan and Meisels, 2003; Brito and Meseguer, 2004). In AFC
agents are informed of the consistent partial assignments of other agents
and asynchronously filter their domains accordingly. Domain filtering trig-
gers early backtracking operations. In contrast, local data structures in asyn-
chronous backtracking often holds an inconsistent partial assignment.

The use of a synchronous assignment procedure, enables an easy im-
plementation of different ordering heuristics for AFC. The results in Fig-
ures 3 to 7 present a strong improvement in two independent measures of
performance that is achieved by the use of these ordering heuristics.

The fact that the ratio of improvement of AFC over ABT grows with
problem difficulty can be explained intuitively. Problem difficulty is known
to be correlated with the number of solutions on random constraint networks
(Smith, 1996). Fewer solutions mean that a larger fraction of all partial as-
signments will fail. In asynchronous backtracking, each such “due to fail”
assignment generates messages to multiple agents and triggers their further
assignments and message passing. The reported experiments demonstrate that
when there are fewer solutions it is more efficient to generate consistent
partial assignments, as does the AFC algorithm.

10. Conclusions

A new distributed search algorithm on DisCSP s has been presented. The
asynchronous forward-checking (AFC) algorithm keeps a unique partial as-
signment at all times and sends it to all agents to perform forward checking. A
current partial assignment - CPA - is passed among all agents and is always
consistent. Agents add their consistent assignments to the CPA, if such an
assignment can be found. The concurrency of AFC springs from the fact
that forward-checking messages are processed concurrently. In other words,
copies of every valid CPA are sent forward, to unassigned agents, to perform
forward-checking. When an inconsistency is discovered by an agent that is
still not on the CPA (i.e. an unassigned agent), a Not OK message is sent
to all unassigned agents. The Not OK messages trigger a single backtrack
operation.

The main conclusion of the present study is that coordination of the assign-
ments performed in distributed search enhances the efficiency of the search
process. The performance of asynchronous forward-checking generates a more
efficient search than asynchronous backtracking. One major advantage of
DisCSP algorithms that perform sequential assignments is the ability to
use ordering heuristics. Three ordering heuristics were used in the evalua-
tion of AFC. All three heuristics improve the performance of AFC. The

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.22

23

best heuristic, Min Domain, that is proposed here for the first time enables
AFC to outperform ABT by almost an order of magnitude. It turns out that
the advantages of dynamic variable ordering are enough to overcome the price
of coordination that is needed for forward checking (Meisels and Razgon,
2002).

References

C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking. In Proc.
Workshop on Distributed Constraint of IJCAI01, 2001.

C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking without adding
links: a new member in the abt family. Artificial Intelligence, 161:1-2:7–24, January 2005.

I. Brito and P. Meseguer. Distributed forward checking. In Proc. CP-2003, pages 801–806,
September, Ireland, 2003.

I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September
2004.

Rina Dechter. Constraints Processing. Morgan Kaufman, 2003.
M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:25–46, 1993.
G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algorithms.

Artificial Intelligence, 21:365–387, 1997.
L. Lamport. Time, clocks, and the ordering of events in distributed system. Communication

of the ACM, 2:95–114, April 1978.
N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
A. Meisels and I. Razgon. Distributed forward-checking with conflict-based backjumping and

dynamic ordering. In Proc. CoSolv workshop, CP02, Ithaca, NY, 2002.
A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed

constraints processing algorithms. In Proc. AAMAS-2002 Workshop on Distributed
Constraint Reasoning DCR, pages 86–93, Bologna, July 2002.

P. Meseguer and M. A. Jimenez. Distributed forward checking. In Proc. CP-2000 Workshop
on Distributed Constraint Satisfaction, Singapore, September 2000.

T. Nguyen, D. Sam-Hroud, and B. Faltings. Dynamic distributed backjumping. In Proc. 5th
workshop on distributed constraints reasoning DCR-04, Toronto, September 2004.

K. Nissim and R. Zivan. Secure discsp protocols - from centralized towards distributed solu-
tions. In Proc. 6th workshop on Distributed Constraints Reasoning, DCR-05, Edinburgh,
2005.

P. Prosser. An empirical study of phase transitions in binary constraint satisfaction problems.
Artificial Intelligence, 81:81–109, 1996.

M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction. Artificial Intelligence, 161:1-2:25–54, January 2005.

M. C. Silaghi. Asynchronously Solving Problems with Privacy Requirements. PhD thesis,
Swiss Federal Institute of Technology (EPFL), 2002.

B. M. Smith. Locating the phase transition in binary constraint satisfaction problems. Artificial
Intelligence, 81:155 – 181, 1996.

G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint sat-
isfaction problems (dcsps). In Constraint Processing-96, pages 561–2, New Hamphshire,
October 1996.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.23

24

M. Yokoo, K.Suzuki, and K. Hirayama. Secure distributed constraints satisfaction: Reaching
agreement without revealing private information. Artificial Intelligence, 161:1-2:229–246,
January 2005.

M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review. Autonomous
Agents & Multi-Agent Sys., 3:198–212, 2000.

M. Yokoo. Distributed Constraint Satisfaction Problems. Springer Verlag, 2000.
R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. In Proc. 1st

European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.
R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csps. In CP-2004,

pages 782–7, Toronto, 2004.
R. Zivan and A. Meisels. Asynchronous backtracking for asymmetric discsps. In Proc. 6th

workshop on Distributed Constraints Reasoning, DCR-05, Edinburgh, 2005.

AFC_Constraints_3.tex; 28/02/2006; 10:45; p.24

