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Abstract The asynchronous backtracking algorithm with dynamic ordering
(ABT_DO), proposed in Zivan and Meisels (Constraints 11(2–3):179–197, 2006), al-
lows changing the order of agents during distributed asynchronous complete search.
In a later study (Zivan et al., Constraints 14(2):177–198, 2009), retroactive heuristics
which allowed more flexibility in the selection of new orders were introduced, result-
ing in the ABT_DO-Retro algorithm, and a relation between the success of heuristics
and the min-domain property was identified. Unfortunately, the description of the
time-stampping protocol used to compare orders in ABT_DO-Retro in Zivan et al.
(Constraints 14(2):177–198, 2009) is confusing and may lead to an implementation in
which ABT_DO-Retro may not terminate. In this corrigendum, we demonstrate the
possible undesired outcome and give a detailed and formal description of the correct
method for comparing time-stamps in ABT_DO-Retro.

1 Introduction

The ABT_DO algorithm allows the use of dynamic ordering heuristics in asynchro-
nous search algorithms for solving DisCSPs. This algorithm was the main theme of
two recent publications in the Constraints journal, [3, 4]. The algorithm proposed

The online version of the original article can be found at
http://dx.doi.org/10.1007/s10601-008-9046-z.

Y. Mechqrane · E. H. Bouyakhf
LIMIARF, University Mohammed VAgdal, Rabat, Morocco

M. Wahbi · C. Bessiere (B)
LIRMM, University of Montpellier, Montpellier, France
e-mail: bessiere@lirmm.fr

A. Meisels · R. Zivan
Ben-Gurion University, Beer-Sheva, Israel

http://dx.doi.org/10.1007/s10601-008-9046-z


Constraints (2012) 17:348–355 349

in the first among them [3] allows the use of heuristics where agents can propose
order changes when they replace the value assignment to their variables. This
change can include only agents that are ordered after (with lower priority) the agent
that replaced its assignment. In the second [4], more flexible heuristics that allow
changing the order of agents that come before the agent that replaces its assignment
(retroactive heuristics) are introduced to the algorithm.

The most successful ordering heuristic found in [3] was the nogood-triggered
heuristic in which an agent that receives a nogood moves the nogood generator to be
right after it in the order. The heuristic investigation in [4] demonstrates the relation
between the success of the nogood-triggered heuristic and the min-domain property.
This relation was exploited in the retroactive version of this heuristic by moving a
nogood generator to the highest position in the order that does not causes values
previously removed to be reentered into the variable’s current domain (and increase
its size).

Recent attempts to implement the ABT_DO-Retro algorithm proposed in [4]
have revealed a specific detail of the algorithm that was vaguely described and can
lead to an interpretation that affects the correctness of the algorithm. In this corri-
gendum we address this vague description by describing the undesired outcome and
propose an alternative deterministic description that ensures the outcome expected
in [4].

2 Background

The degree of flexibility of the retroactive heuristics mentioned above depends on
a parameter K. K defines the level of flexibility of the heuristic with respect to
the amount of information an agent can store in its memory. Agents that detect a
dead end move themselves to a higher priority position in the order. If the length of
the nogood created is not larger than K then the agent can move to any position it
desires (even to the highest priority position) and all agents that are included in the
nogood are required to add the nogood to their set of constraints and hold it until
the algorithm terminates. If the size of the created nogood is larger than K, the agent
that created the nogood can move up to the place that is right after the second last
agent in the nogood. Since agents must store nogoods that are smaller than or equal
to K, the space complexity of agents is exponential in K.

The best retroactive heuristic introduced in [4] is called ABT_DO-Retro-
MinDom. This heuristic does not require any additional storage (i.e., K = 0). In this
heuristic, the agent that generates a nogood is placed in the new order between the
last and the second last agents in the generated nogood. However, the generator
of the nogood moves to a higher priority position than the backtracking target (the
agent the nogood was sent to) only if its domain is smaller than that of the agents it
passes on the way up. Otherwise, the generator of the nogood is placed right after
the last agent with a smaller domain between the last and the second last agents in
the nogood.

In asynchronous backtracking algorithms with dynamic ordering, agents propose
new orders asynchronously. Hence, one must enable agents to coherently decide
which of two different orders is more up-to-date. To this end, as it has been explained
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in [3] and recalled in [4], each agent in ABT_DO holds a counter vector (one counter
attached to each position in the order). The counter vector and the indexes of the
agents currently in these positions form a time-stamp. Initially, all counters are set
to zero and all agents are aware of the initial order. Each agent that proposes a new
order increments the counter attached to its position in the current order and sets to
zero counters of all lower priority positions (the counters of higher priority positions
are not modified). The most up-to-date order is determined by a lexicographic
comparison of counter vectors combined with the agent indexes. However, the rules
for reordering agents in ABT_DO imply that the most up-to-date order is always the
one for which the first different counter is larger.

Regarding the procedure by which orders are compared in ABT_DO-Retro, the
description given by the authors was vague and was limited to two sentences: “The
most relevant order is determined lexicographically. Ties which could not have been
generated in standard ABT_DO, are broken using the agents indexes” (quoted from
[4], p. 190, Theorem 1).

The natural understanding of this description is that the most up-to-date order is
the one associated with the lexicographically greater counter vector, and when the
counter vectors are equal the lexicographic order on the indexes of agents breaks the
tie by preferring the one with smaller vector of indexes. We will refer to this inter-
pretation as method m1. Let us illustrate method m1 via an example. Consider two
orders o1 = [A1, A3, A2, A4, A5] and o2 = [A1, A2, A3, A4, A5] where the counter
vector associated with o1 equals [2, 4, 2, 2, 0] and the counter vector associated with
o2 equals [2, 4, 2, 1, 0]. Since in m1 the most up-to-date order is determined by
comparing lexicographically the counter vectors, in this example o1 is considered
more up-to-date than o2. In Section 3 of this corrigendum, we show that method m1

may lead ABT_DO-Retro to fall in an infinite loop when K = 0.
The right way to compare orders is to compare their counter vectors, one position

at a time from left to right, until they differ on a position (preferring the order with
greater counter) or they are equal on that position but the indexes of the agents in
that position differ (preferring the smaller index). We will refer to this method as
m2. Consider again the two orders o1 and o2 and associated counter vectors defined
above. The counter at the first position equals 2 on both counter vectors and the
index of the first agent in o1 (i.e., A1) is the same as in o2, the counter at the second
position equals 4 on both counter vectors, however the index of the second agent in
o2 (i.e., A2) is smaller than the index of the second agent in o1 (i.e., A3). Hence, in
this case o2 is considered more up-to-date than o1. (Note that according to m1, o1 is
more up-to-date than o2.) In Section 4 of this corrigendum, we give the proof that
method m2 for comparing orders is correct.

3 ABT_DO-Retro may not terminate

In this section we show that ABT_DO-Retro may not terminate when using m1

and when K = 0. We illustrate this on ABT_DO-Retro-MinDom as described in
[4] as it is an example of ABT_DO-Retro where K = 0. Consider a DisCSP with
5 agents {A1, A2, A3, A4, A5} and domains D(x1) = D(x5) = {1, 2, 3, 4, 5}, D(x2) =
D(x3) = D(x4) = {6, 7}. We assume that, initially, all agents store the same order
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o1 = [A1, A5, A4, A2, A3] with associated counter vector s1 = [0, 0, 0, 0, 0]. The con-
straints are:

c12 : (x1, x2) �∈ {(1, 6), (1, 7)};
c13 : (x1, x3) �∈ {(2, 6), (2, 7)};
c14 : (x1, x4) �∈ {(1, 6), (1, 7)};
c24 : (x2, x4) �∈ {(6, 6), (7, 7)}.
c35 : (x3, x5) �∈ {(7, 5)}.

In the following we give a possible execution of ABT_DO-Retro-MinDom.
Figure 1 illustrates it.

t0: All agents assign the first value in their domains to their variables and send ok?
messages to their neighbors.

t1: A4 receives the first ok? (x1 = 1) message sent by A1 and generates a nogood
ng1 : ¬(x1 = 1). Then, it proposes a new order o2 = [A4, A1, A5, A2, A3] with
s2 = [1, 0, 0, 0, 0]. Afterwards, it assigns the value 6 to its variable and sends ok?
(x4 = 6) message to all its neighbors (including A2).

t2: A3 receives o2 = [A4, A1, A5, A2, A3] and deletes o1 since o2 is more up-to-
date; A1 receives the nogood sent by A4, it replaces its assignment to 2 and
sends an ok? (x1 = 2) message to all its neighbors.

t3: A2 has not yet received o2 and the new assignment of A1. A2 generates a new
nogood ng2 : ¬(x1 = 1) and proposes a new order o3 = [A2, A1, A5, A4, A3]
with s3 = [1, 0, 0, 0, 0]; Afterwards, it assigns the value 6 to its variable and
sends ok? (x2 = 6) message to all its neighbors (including A4).

o1 = [ A1 , A5 , A4 , A2 , A3 ] s1 = [ 0 , 0 , 0 , 0 , 0 ]

o2 = [ A4 , A1 , A5 , A2 , A3 ] s2 = [ 1 , 0 , 0 , 0 , 0 ]

o3 = [ A2 , A1 , A5 , A4 , A3 ] s3 = [ 1 , 0 , 0 , 0 , 0 ]

o4 = [ A4 , A3 , A1 , A5 , A2 ] s4 = [ 1 , 1 , 0 , 0 , 0 ]
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Fig. 1 The schema of exchanging order messages by ABT_DO-Retro
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t4: A4 receives the new assignment of A2 (i.e., x2 = 6) and o3 =
[A2, A1, A5, A4, A3]. Afterwards, it discards o2 since o3 is more up-to-
date; Then, A4 tries to satisfy c24 because A2 has a higher priority according to
o3. Hence, A4 replaces its current assignment (i.e., x4 = 6) by x4 = 7 and sends
an ok? (x4 = 7) message to all its neighbors (including A2).

t5: When receiving o2, A2 discards it because its current order is more up-to-date;
t6: After receiving the new assignment of A1 (i.e., x1 = 2) and before receiving

o3 = [A2, A1, A5, A4, A3], A3 generates a nogood ng3 : ¬(x1 = 2) and pro-
poses a new order o4 = [A4, A3, A1, A5, A2] with s4 = [1, 1, 0, 0, 0]; The order
o4 is more up-to-date according to m1 than o3. Since in ABT_DO, an agent
sends the new order only to lower priority agents, A3 will not send o4 to A4

because it is a higher priority agent.
t7: A3 receives o3 and then discards it because it is obsolete;
t8: A2 receives o4 but it has not yet received the new assignment of A4. Then,

it tries to satisfy c24 because A4 has a higher priority according to its current
order o4. Hence, A2 replaces its current assignment (i.e., x2 = 6) by x2 = 7 and
sends an ok? (x2 = 7) message to all its neighbors (including A4).

t9: A2 receives the ok? (x4 = 7) message sent by A4 in t4 and changes its current
value (i.e., x2 = 7) by x2 = 6. Then, A2 sends an ok? (x2 = 6) message to all its
neighbors (including A4). At the same time, A4 receives ok? (x2 = 7) sent by
A2 in t8. A4 changes its current value (i.e., x4 = 7) by x4 = 6. Then, A4 sends an
ok? (x4 = 6) message to all its neighbors (including A2).

t10: A2 receives the ok? (x4 = 6) message sent by A4 in t9 and changes its current
value (i.e., x2 = 6) by x2 = 7. Then, A2 sends an ok? (x2 = 7) message to all its
neighbors (including A4). At the same moment, A4 receives ok? (x2 = 6) sent
by A2 in t9. A4 changes its current value (i.e., x4 = 6) by x4 = 7. Then, A4 sends
an ok? (x4 = 7) message to all its neighbors (including A2).

t11: We come back to the situation we were facing at time t9, and therefore
ABT_DO-Retro-MinDom may fall in an infinite loop when using method m1.

4 The right way to compare orders

Let us formally define the second method, m2, for comparing orders in which we
compare the indexes of agents as soon as the counters in a position are equal on both
counter vectors associated with the orders being compared. Given any order o, we
denote by o(i) the index of the agent located in the ith position in o and by s(i) the
counter in the ith position in the counter vector s. An order o1 with counter vector s1

is more up-to-date than an order o2 with counter vector s2 if and only if there exists
a position i, 1 ≤ i ≤ n, such that for all 1 ≤ j < i, s1( j) = s2( j) and o1( j) = o2( j), and
s1(i) > s2(i) or s1(i) = s2(i) and o1(i) < o2(i).

In our correctness proof for the use of m2 in ABT_DO-Retro we use the following
notations: When an agent proposes a new order where the position of the highest
priority agent has been changed, the new order will be denoted by a capital O.
The initial order known by all agents is denoted by O0. Each agent stores a current
order with an associated counter vector. Each counter vector consists of n counters
ct1, . . . , ctn. We denote by ct1(o) the value of the first counter of the counter vector
associated with o. In a similar way, we denote by ct1(Ai) the value of the first
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counter in the counter vector stored by the agent Ai. We define ctmax to be equal to
max(ct1(Ai) | i ∈ 1..n). The value of ctmax evolves during the search so that it always
corresponds to the value of the largest counter among all the first counters stored by
agents.

Let K be the parameter defining the degree of flexibility of the retroactive
heuristics (see Section 1). Next we show that the ABT_DO-Retro algorithm is
correct when using m2 and with K = 0. The proof that the algorithm is correct when
K �= 0 can be found in [4].

To prove the correctness of ABT_DO-Retro we use induction on the number
of agents. For a single agent the order is static therefore the correctness of standard
ABT implies the correctness of ABT_DO-Retro. Assume ABT_DO-Retro is correct
for every DisCSP with n − 1 agents. We show in the following that ABT_DO-Retro
is correct for every DisCSP with n agents. To this end we first prove the following
lemmas.

Lemma 1 Given enough time, if the value of ctmax does not change, the highest priority
agent in all orders stored by all agents will be the same.

Proof Assume the system reaches a state σ where the value of ctmax no longer
increases. Let h be the value of ctmax. Let O1 be the order that, when generated,
caused the system to enter state σ . Inevitably, we have ct1(O1) = h. Assume that
O1 �= O0 and let Ai be the agent that generated O1. The agent Ai is necessarily
the highest priority agent in the new order O1 because, the only possibility for the
generator of a new order to change the position of the highest priority agent is to
put itself in the first position in the new order. Thus, O1 is sent by Ai to all other
agents because Ai must send O1 to all agents that have a lower priority than itself.
So after a finite time all agents will be aware of O1. This is also true if O1 = O0.
Now, by assumption the value of ctmax no longer increases. As a result, the only way
for another agent to generate an order O′ such that the highest priority agents in O1

and O′ are different (i.e., O′(1) �= O1(1)) is to put itself in first position in O′ and
to do that before it has received O1 (otherwise O′ would increase ctmax). Therefore,
the time passed from the moment the system entered state σ until a new order O′
was generated is finite. Let O2 be the most up-to-date such order and let A j be the
agent that generated O2. That is, A j is the agent with smallest index among those
who generated such an order O′. The agent A j will send O2 to all other agents and
O2 will be accepted by all other agents after a finite amount of time. Once an agent
has accepted O2, all orders that may be generated by this agent do not reorder the
highest priority agent otherwise ctmax would increase. ��

Lemma 2 If the algorithm is correct for n − 1 agents then it terminates for n agents.

Proof If during the search ctmax continues to increase, this means that some of the
agents continue to send new orders in which they put themselves in first position.
Hence, the nogoods they generate when proposing the new orders are necessarily
unary (i.e., they have an empty left-hand side) because in ABT_DO-Retro, when the
parameter K is zero the nogood sender cannot put itself in a higher priority position
than the second last in the nogood. Suppose ng0 = ¬(xi = vi) is one of these nogoods,
sent by an agent A j. After a finite amount of time, agent Ai, the owner of xi, will
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receive ng0. Three cases can occur. First case, Ai still has value vi in its domain. So
the value vi is pruned once and for all from D(xi) thanks to ng0. Second case, Ai has
already received a nogood equivalent to ng0 from another agent. Here, vi no longer
belongs to D(xi). When changing its value, Ai has sent an ok? message with its new
value v′

i . If Ai and A j were neighbors, this ok? message has been sent to A j. If Ai

and A j were not neighbors when Ai changed its value to v′
i , this ok? message was

sent by Ai to A j after A j requested to add a link between them at the moment it
generated ng0. Thanks to the assumption that messages are always delivered in a
finite amount of time, we know that A j will receive the ok? message containing v′

i
a finite amount of time after it sent ng0. Thus, A j will not be able to send forever
nogoods about a value vi pruned from D(xi). Third case, Ai already stores a nogood
with a non empty left-hand side discarding vi. Notice that although A j moves to the
highest priority position, Ai may be of lower priority, i.e., there can be agents with
higher priority than Ai according to the current order that are not included in ng0.
Thanks to the standard highest possible lowest variable involved [1, 2] heuristic for
selecting nogoods in ABT algorithms, we are guaranteed that the nogood with empty
left-hand side ng0 will replace the other existing nogood and vi will be permanently
pruned from D(xi). Thus, in all three cases, every time ctmax increases, we know that
an agent has moved to the first position in the order, and a value was definitively
pruned a finite amount of time before or after. There is a bounded number of values
in the network. Thus, ctmax cannot increase forever. Now, if ctmax stops increasing,
then after a finite amount of time the highest priority agent in all orders stored by all
agents will be the same (Lemma 1). Since the algorithm is correct for n − 1 agents,
after each assignment of the highest priority agent, the rest of the agents will either
reach an idle state,1 generate an empty nogood indicating that there is no solution,
or generate a unary nogood, which is sent to the highest priority agent. Since the
number of values in the system is finite, the third option, which is the only one that
does not imply immediate termination, cannot occur forever. ��

Lemma 3 If the algorithm is correct for n − 1 agents then it is sound for n agents.

Proof Let o be the most up-to-date order generated before reaching the state of
quiescence and let O be the most-up-to-date order generated such that ct1(O) =
ct1(o) (and such that O has changed the position of the first agent –assuming O �=
O0). Given the rules for reordering agents, the agent that generated O has necessarily
put himself first because it has modified ct1 and thus also the position of the highest
agent. So it has sent O to all other agents. When reaching the state of quiescence, we
know that no order O2 with O2(1) �= O(1) has been generated because this would
break the assumption that O is the most-up-to-date order where the position of the
first agent has been changed. Hence, at the state of quiescence, every agent Ai stores
an order oi such that oi(1) = O(1). (This is also true if O = O0.) Let us consider the
DisCSP P composed of the n − 1 lower priority agents according to O. Since the
algorithm is correct for n − 1 agents, the state of quiescence means that a solution
was found for P. Also, since all agents in P are aware that O(1) is the agent with the
highest priority, the state of quiescence also implies that all constraints that involve

1As proved in Lemma 3, this indicates that a solution was found.
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O(1) have been successfully tested by agents in P, otherwise at least one agent in P
would try to change its value and send an ok? or nogood message. Therefore, the
state of quiescence implies that a solution was found. ��

Lemma 4 The algorithm is complete.

Proof All nogoods are generated by logical inferences from existing constraints.
Thus, an empty nogood cannot be inferred if a solution exists. ��

Following Lemmas 2–4 we obtain the correctness of the main theorem in this
corrigendum.

Theorem 1 The ABT_DO-Retro algorithm with K = 0 is correct when using the m2

method for selecting the most up-to-date order.
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