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Communication: Control of chemical reactions using electric field gradients
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We examine theoretically a new idea for spatial and temporal control of chemical reactions. When
chemical reactions take place in a mixture of solvents, an external electric field can alter the local
mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution
of electric field strength can be non-trivial and depends on the arrangement of the electrodes
producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes
place uniformly in the reactor volume. When an electric field is applied, the solvents separate and
the reactants are concentrated in the same phase or separate to different phases, depending on their
relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This
method could provide an alternative way to control runaway reactions and to increase the reaction
rate without using catalysts. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4951709]

Chemical reactions are conventionally controlled by
pressure, temperature, surface area, concentration, or by using
a catalyst.1,2 Attention has turned to active modification of
molecular collision processes3 and to the manipulation of
activation energy barriers.4,5 Lasers were used for selectively
making and breaking chemical bonds6 and current research
looks at ways to exploit ultrafast lasers for mode-selective
chemistry, stereodynamic, and quantum control of molecular
processes3,7,8 in cost effective ways. Electric9–11 and magnetic
fields and ultrasound are also used to control molecular
collisions and thereby the chemistry.12,13 Electric and magnetic
fields modify the orientation of molecules and may change
the ion and molecular transport rates, they can modify the
quantum states of molecules,12,13 and they may lead to Stark
and Zeeman shifts in the energy levels. In addition, large
electric fields at charged metal surfaces are important in the
chemisorption of atoms and molecules.14

Here we propose a new direction for spatial and temporal
control of chemical reactions. Our idea relies on the use of
a mixture of two or more solvents. Reactions taking place
in such a mixture are influenced by the composition of the
solvents. An external field can lead to “electro-prewetting”
transition of the solvents even when their initial state is
homogeneous.15,16 In this transition, the solvents separate from
each other and migrate to locations that minimize the total
free energy of the mixture and depend on the electrode design.
An interface thus appears separating the formed domains.

There are now two scenarios and for clarity we focus on a
binary mixture of solvents and two reactants. In the first, due
to their Gibbs transfer energy, the reactants are more miscible
in the same solvent. In that case field-induced demixing will
lead to concentration of the reactants in a small volume
and to accelerated reaction kinetics compared to the no-field,
homogeneous state. The product will be initially produced
in the same small volume. In the second scenario, the two
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reactants are preferentially miscible in different solvents. In
that case, the reaction will take place at the interface separating
liquid domains. This interfacial reaction is expected to be
slowed down compared to the no-field (homogeneous) state.
The product will initially be created at the interface between
coexisting domains. In both cases, switching off the field will
allow re-mixing of the solvents and return to the homogeneous
state and to “normal” kinetics.

Thermodynamics of liquid mixtures is underlying the
reactions in electric fields. Consider for simplicity a mixture
of two solvents. The total free energy of the mixture is given
on the mean-field level as

F =

Ω

[ fm(φ,T) + fe(φ,E) + f i(φ,T)] dΩ, (1)

where Ω is the volume occupied by the mixture. The
volume fraction of solvent 1 is given by φ and the
volume fraction of solvent 2 is 1 − φ, T is temperature,
and fm, fe, and f i are mixing, electrostatic, and interfacial
energies. The mixing free energy per unit volume is given
by fm = (kBT/v0) [φ log φ + (1 − φ) log(1 − φ) + χφ(1 − φ)],
where kB is the Boltzmann constant and v0 is a molecular
volume assumed here to be equal for the two solvents.17,18 χ
is the Flory parameter varying inversely with T : χ ∼ 1/T .
For positive values of χ, the phase diagram has upper
critical solution temperature19 and the critical point is
given by (φc, χc) = (1/2,2). For such symmetric free energy
expressions, the binodal curve Tb(φ) in the φ-T phase diagram
is given by ∂ f (φ,Tb)/∂φ = 0. Above this curve, the mixture
is stable in the homogeneous phase. A quench to temperatures
T below Tb leads to phase separation of two coexisting phases
with compositions given by the values of the binodal at T .

The interfacial free energy density is given by f i
= (kBT/2v0)χλ2|∇φ|2, where λ is a constant related to
interface width.18 The electrostatic free energy density is
given by fe = −(1/2)ϵ0ϵ(φ)|∇ψ |2, where ϵ0 is the permittivity
of free space, ϵ is the relative permittivity of the mixture
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depending on its relative composition, and ψ(r) is the local
electric potential.

In order for the electric field to be effective in separating
the liquids, it must have large spatial gradients. We chose the
simple “wedge” geometry to illustrate the concept of chemical
reactions. The wedge is comprised of two flat and conducting
plates oriented with an opening angle β between them (β = 0◦

corresponds to a parallel-plate capacitor). In this effectively
two-dimensional system, the electric field depends only on
the distance r from the imaginary meeting point of the plates
and is oriented in the azimuthal θ̂ direction.20

In the wedge geometry chosen, all quantities depend on
r alone and the hydrodynamic flow velocity v vanishes. The
equations governing the demixing dynamics are then20,21

∂φ

∂t
= D∇2 δ f

δφ
, ∇ · [ϵ(φ)∇ψ] = 0, (2)

where f = fm + f i + fe is the total mixture free energy density
and D is an Onsager diffusivity constant taken here to be
independent of φ.

We consider a simple irreversible reaction A + B
k−→ 2C,

where molecules of compounds A and B react to give product
C and k is the rate constant. When the reaction takes place in
a mixture of two solvents, each molecule A, B, and C feels
a spatially dependent potential that depends on its relative
solubility denoted by ua, ub, and uc, respectively. For the
A molecule ua(r) = ua

1φ + ua
2 (1 − φ) and similar expressions

for ub(r) and uc(r). The parameters ua
1 ad ua

2 indicate the
solubilities of compound A in liquids 1 and 2, respectively.
The difference in the solubility parameters ∆ua = ua

2 − ua
1 is

related to the Gibbs transfer energy ∆Gt for transferring one A
molecule from a solvent with composition φ1 to a solvent with
composition φ2 via ∆Gt = ∆ua(φ2 − φ1). Experiments show
that Gt is on the order of 1 − 10kBT in aqueous mixtures22

and hence ∆ua ∼ 1 − 10.
The mass balance of compound A gives the modi-

fied reaction-diffusion equation: ∂Ca/∂t = Da∇2Ca + Da∇ ·
[Ca∇(ua/kBT)] − kCaCb. Here Da is the diffusion coefficient
of compound A in the mixture, assumed to be independent of
T and φ. This equation can be recast in dimensionless form

∂C̃a

∂t̃
= ∇̃2C̃a + ∇̃ ·

�
C̃aU ′a∇̃φ

�
− k̃C̃aC̃b, (3)

where C̃a = Ca/Ca0 is the concentration scaled by Ca0,
the initial (uniform) concentration of A molecules, k̃
= kCa0R2

1/Da is a scaled reaction rate, and U ′a = (ua
2 − ua

1 )/
kBT . The length is scaled using R1 (the minimal distance r
from the imaginary meeting point of the plates): r̃ = r/R1,
and time is scaled via t̃ = Da/R2

1t. When a potential difference
of magnitude V is applied across wedge electrodes, the ratio
of the electrostatic energy stored in a molecular volume
v0 to the thermal energy is given by the dimensionless
number23 Mw ≡ V 2v0ϵ0/(4β2kBTcR2

1), where Tc is the critical
temperature. Similar mass balance equation can be written for
compounds B and C,

∂C̃b

∂t̃
=

Db

Da

�
∇̃2C̃b + ∇̃ ·

�
C̃bU ′b∇̃φ

��
− k̃C̃aC̃b, (4)

∂C̃c

∂t̃
=

Dc

Da

�
∇̃2C̃c + ∇̃ ·

�
C̃cU ′c∇̃φ

��
+ 2k̃C̃aC̃b, (5)

with C̃b = Cb/Ca0, C̃c = Cc/Ca0, U ′
b
= (ub

2 − ub
1 )/kBT , and

U ′c = (uc
2 − uc

1)/kBT .
In this paper, we assume that the reaction is slow

compared to the kinetics of phase separation. If this condition
holds, the initially homogeneous mixture phase-separates on
a fast time scale to two coexisting domains with uniform
densities of the reactants. The composition φ(r) attains
its equilibrium profile, minimizing the sum of mixture,
interfacial, and electrostatic energies. On a much longer scale,
the chemical reaction then proceeds, with the compounds A,
B, and C experiencing a spatially dependent force derivable
from the u’s as is explained above. We further distinguish
between the two cases whether the molecules A and B prefer
the same phase or not.

Reactants A and B prefer the same phase. Figures 1(a)-
1(c) show concentration profiles at various times when the
reactants and product prefer the more polar phase (high value
of φ). At t̃ = 0 the mixture has two coexisting domains with
an interface at r/R1 ≃ 2.5. As time progresses, the A and B
molecules diffuse towards the more polar region (r/R1 < 2.5,
large φ) and sharp gradient occurs at the interface between the
coexisting phases. The concentrations of A and B molecules
are the same because we took U ′a = U ′

b
. As time increases,

A and B continue to diffuse to the polar solvent but on the
same time are consumed due to the reaction and the creation
of C. At long times C̃a and C̃b become very small; the
concentration of C obeys the Boltzmann’s distribution and
is found preferentially in the polar phase where it is more
soluble.

In Figure 1(d), we calculate the spatially averaged product
amount C̄c ≡ Ω−1


C̃cdΩ vs time. We compare the case with

electric field and two coexisting domains (lines) with the zero-
field case and a homogeneous mixture (lines with symbols),
for constant electric field and varying reaction rates k̃. As can
be seen, the electric field increases the effective rate of the
reaction. It does so more effectively for the slow reactions
(small values of k̃) and less effectively for the fast reactions
(large values of k̃). Irrespective of k̃, material conservation
dictates that C̄c → 2 when t̃ → ∞.

Fig. 2 examines how the effective reaction rate depends
on the magnitude of the external potential. A phase-separation
transition occurs when the applied voltage in the wedge is
larger than the critical value, which depends on the temperature
and mixture composition. When the voltage increases past
this threshold, the “contrast” between the phases increases
(φ increases at small values of r and decreases for large values
of r) and the interface displaces to larger values of r . Three
profiles of φ for different values of the potential are shown
in the inset. As can be seen, C̄c is larger with increasing
potential. However, an increase of Mw from 0.036 to 0.144
has only a modest effect on C̄c. Indeed, even a hypothetical
infinite potential would lead to a finite effective reaction rate.

The preferential solubility of the reactants in the solvents
is an important factor determining the rate of the reaction.
In Fig. 3, we plot C̄c for different solubility values at a
fixed value of Mw. While the asymptotic behavior at long
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FIG. 1. Concentration profiles C̃a, C̃b, and C̃c vs time
when both A and B molecules are soluble in the po-
lar phase. (a)-(c) Temporal progression obtained from a
numerical solution of Eqs. (3)–(5). (d) Volume-average
product C̄c vs time for varying values of k̃ . Solid,
dashed, dashed-dotted, and dotted lines correspond to
k̃ = 0.01, 0.1, 1, 10, respectively. Circles are the same
but without field. The solubility potentials are U ′a =U

′
b

=U ′c = 10, the diffusion constants are Da =Db = 100
×Dc, the average mixture composition is φ0= 0.33, the
dimensionless electric potential is Mw = 0.144, and the
dimensionless reaction rate is k̃ = 1.

times dictates C̄c → 2 clearly, the dynamics are faster as the
solubility difference increases.

Reactants A and B prefer different phases. We turn to
the interesting case where the reactants are “antagonistic” in
the sense that they prefer different solvents. Figure 4 shows
the concentration profiles vs time and should be compared to
Fig. 1. As before, C̃a and C̃b start from a uniform distribution
at t̃ = 0. But here they diffuse in opposite directions—A to
the polar solvent at small r’s and B to the less polar solvent
at large r’s. At early times the gradients in C̃a and C̃b occur
at the interface between the solvents. The profiles evolve in
time; as the reactants migrate according to their solubility,
they are consumed and C is created. In this calculation, we
assumed that the product is equally soluble in both solvents
and thus at long times C̃c is uniform. Far from the interface,
in the bulk liquid, the transport of A and B is mainly due to
diffusion (first term in the right-hand side of Equations (3) and
(4)). Near an interface the high gradient in φ leads to a large
force from the solubility potential and transport is dominated

FIG. 2. Dependence of the average product concentration C̄c on the applied
electric potential Mw. Inset shows the mixture profiles for the same Mw’s.
U ′a =U

′
b
= 10, φ0= 0.33, and k̃ = 0.1.

by the solubility difference (second term in the right-hand side
of Equations (3) and (4)).

In Fig. 4(d), we plot the average product C̄c vs time for
different values of the potential. In contrast to Fig. 1(d) here
the effective reaction is slower with field (lines) as compared
to the no-field case (lines with symbols). As in Fig. 1(d), fast
reactions are less affected by the field (large values of k̃). The
total product C̃c tends to 2 due to mass conservation.

The effective slowing-down of the reaction saturates with
the magnitude of the applied potential, see Fig. 5. As Mw

increases (Mw ∝ V 2), the more polar solvent is pulled to the
region with higher electric field, thereby raising the value
of φ at small r’s and reducing it at large r’s (low electric
field region). Curves show C̃c vs time for different values
of Mw. All curves increase from C̃c = 0 at t̃ = 0 to C̃c = 2
at infinity. Curves exhibit an early increase on a small time
scale dictated by diffusion over the mesoscopic width of the
interface between coexisting phases. After the rapid increase,
the curves increase slowly on a time scale dictated by diffusion
over the macroscopic size of the wedge.

FIG. 3. Dependence of the average product concentration C̄c on the solubil-
ity parameters. φ0= 0.33, Mw = 0.144, and k̃ = 0.1.
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FIG. 4. Concentration profiles C̃a, C̃b, and C̃c and
average product C̄c for the same conditions as in Fig. 1
except that molecule A is soluble in the polar phase and
B in the less polar phase: U ′a = 10 and U ′

b
=−10.

The overall reaction rate is slowed down when the
reactants are preferentially soluble in different solvents, as
can be seen in Fig. 6. Clearly the electric potential is crucial
here because in its absence the mixture is homogeneous and
with it two domains exist. All curves in the figure start from
zero and increase to 2 at long times. Here again there are
two time scales – a fast transient corresponding to diffusion
over the interface, accompanied by a slow relaxation dictated
by diffusion over macroscopic lengths. The stronger the
incompatibility between the reactants the larger the difference
in concentration of A and B molecules in the two domains
and the slower is the overall relaxation.

In Fig. 7, we show the non-trivial dependence of the rate
of reaction on the average mixture composition φ0. At a fixed
temperature and electric potential and for values of φ0 smaller
than the critical value, an increase in φ0 to values closer
to the binodal curve leads to an increase in the location of
the interface between the polar and less polar phases (inset).

FIG. 5. The influence of the electric potential Mw on the average product
concentration C̄c. Larger values of Mw decrease the effective reaction rate.
Inset shows the equilibrium profiles φ(r ) for the same Mw’s. U ′a = 10,
U ′

b
=−10, φ0= 0.33, and k̃ = 1.

However, at the same time, the “contrast” between the phases
diminishes and the thickness of the interface increases. As
a result, for the values presented in this calculation, at long
times the reaction which is slowest is the one with intermediate
value, φ0 = 0.2, and not one of the extreme values φ0 = 0.1 or
φ0 = 0.4.

In summary, electric field gradients can control the
effective reaction rate in reactions taking place in mixtures
of solvents. Whether the reaction in the “on” state is faster
or slower than in the “off” state depends on whether the
reactants are miscible in the same solvent or in different ones.
The effective reaction rate depends sensitively on the electric
potential, mixture composition, and distance from the binodal
curve of the mixture and is independent of the preferential
solvation of the product C. We believe that this method could
provide an alternative way to control runaway reactions and
to increase the reaction rate without using catalysts.

In the current study, we assumed that the liquid flow
due to phase separation is very fast compared to the reaction

FIG. 6. The influence of the preferential solubility of A and B molecules on
the average total product C̄c. The reaction is considerably slowed down as
|U ′a | and |U ′

b
| increase. φ0= 0.33, Mw = 0.144, and k̃ = 1.
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FIG. 7. Influence of the average mixture composition φ0 on the average total
product C̄c at a fixed electric potential given by Mw = 0.144, solubilities
U ′a =−U ′b = 10 and k̃ = 0.1. Inset is the equilibrium profiles φ(r ) for the
same values of φ0.

kinetics but it may be interesting to relax this assumption.
Electric fields are especially suited for use in microfluidic
devices where they have been used to transport liquids in
small channels. Such systems pose great promise for field-
induced chemical reactions. Indeed, the challenge is to better
understand how reactions are coupled with flow, either from
pressure gradients in the channel or from the phase-separation
itself. Future work will also consider ionic reagents, mixtures
that have a lower critical solution temperature (e.g., water
and 2,6 lutidine),24 and reversible reactions. In such reactions,
the preferential solubility of C is important and the effective
reaction rate can increase or decrease depending on whether
C is soluble in the same solvent as A and B or not.
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