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We investigate the dynamics of liquid-liquid phase separation confined in a charged concentric cylin-
drical geometry. Two main time scales characterize the non-equilibrium interface behavior: (1) the
lag time tL for forming an interface, and (2) the relaxation time to equilibrium. We find that tL in-
creases as parameters (temperature, bulk composition, and surface charge) approach the electrostatic
spinodal line in the phase diagram. Close to this line, tL is proportional to a renormalized bulk con-
centration with an exponent of −1.16 ± 0.03. The relaxation of the interface to equilibrium can be
divided into three phases: early, intermediate (power-law), and late (exponential). During power-law
relaxation, the location of the rescaled interface is proportional to time with an exponent of −0.94 ±
0.04. Exponential relaxation occurs as a consequence of finite-size effects, and the associated time
constant decreases with decreasing system size (with a power-law scaling), decreasing concentration,
and increasing surface charge. The time constant also decreases with increasing (decreasing) tem-
perature when the concentration is below (above) the critical concentration. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4902406]

I. INTRODUCTION

Research on how electric fields affect phase transitions
was motivated in recent decades by an interest in funda-
mental science, as well as by the potential for technologi-
cal uses.1–8 In non-conductive, non-polar liquids, however,
spatially uniform electric fields minimally alter the mixing-
demixing temperature. A uniform electric field E produces
such small changes because the electrostatic energy stored per
unit of molecular volume v of a liquid with dielectric constant
ε is ∼ vεE2. For fields smaller than the dielectric breakdown
threshold, this energy is much smaller than the thermal energy
kT, where k is the Boltzmann’s constant and T is the tempera-
ture.

Recently, the application of spatially non-uniform elec-
tric fields to fluid mixtures has shown great promise.4 The
spatial gradients created by these fields induce large changes
to the phase diagram in comparison to uniform electric
fields; moreover, new behaviors have been uncovered, such
as location-dependent interface properties and unusual kinetic
regimes.9–12 And as non-uniform fields always occur on small
scales and are actively used in many devices,13–15 the potential
for further technological development is immense.

While our understanding of liquid demixing with non-
uniform electric fields has grown, many open questions still
exist. For example, even though the kinetic behavior of the
non-equilibrium interface has been outlined,12 the actual tim-
ing of the process remains unknown. For regular (no-field)
phase separation, the relaxation to equilibrium depends on
the material properties and forces considered. When diffusion
is the only method of material transport, the average domain
size of the demixed material grows with time to the 1/3 power
(t1/3).16 In contrast, the inclusion of hydrodynamics produces
a richer domain growth process. The average domain size in-
creases in three different stages (all power-laws with different
exponents) when the liquid composition is close to the criti-

cal composition,17–19 but increases via a collision mechanism
when the composition is close to the coexistence curve.17, 20

The inclusion of an electric field is expected to alter
these growth mechanisms. Here, we use diffusion-driven ki-
netics with an electric field in a simple concentric cylinder
geometry. Unlike the regular (no-field) cases, we find a de-
lay time in the initiation of an interface that scales with a
certain normalization of the mixture composition. Once the
demixing process begins, we find that domain growth occurs
in multiple stages: early-time, power-law, and exponential.
The power-law regime progresses as a −0.94 exponent, rather
than the 1/3 exponent typical to no-field condition. We also
show that the late-stage exponential growth found in previous
investigations9 is a consequence of finite-size effects.

II. THEORY

We consider the total free energy F for two liquids (A
and B) in a volume V as the sum of mixing Fm, electrostatic
Fe, and interfacial Fi free energies

F =
∫

V

(Fm + Fe + Fi)dV. (1)

The free energy of mixing is Fm = kTfm/v. The dimen-
sionless energy density fm has a “double well” shape, and here
we use the following Landau expansion of a regular mixing
energy around the critical volume fraction φc:

fm ≈ (2 − χ )(φ − φc)2 + 4

3
(φ − φc)4 + const., (2)

where φ is the volume fraction of component A, and χ ∼
1/T is the Flory interaction parameter.21 We set φc = 0.5 and
χ = 2Tc/T, where Tc is the critical temperature.

The electrostatic free energy Fe = kTfe/v is given by

Fe = −1

2
ε0ε(φ)|∇ψ |2, (3)
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where ε0 is the vacuum permittivity, and ψ is the electrostatic
potential (E = −∇ψ). The negative sign in Eq. (3) refers to
constant potential boundary conditions; the sign should be
reversed if the surface charge on the bounding electrodes is
prescribed. The constitutive relation ε(φ) defines a nontriv-
ial dependence of permittivity on composition, but to under-
stand the basic behavior, we use a linear relation, ε(φ) = (εA
− εB)φ + εB, where εA and εB are the dielectric constants for
pure liquids A and B, respectively. We set εA = 5 and εB = 3.

The interfacial free energy Fi = kTfi/v includes the en-
ergetic penalty associated with composition gradients and is
given by21

fi = 1

2
χλ2|∇φ|2, (4)

where λ is a constant related to interface width.
The fields ψ and φ obey the following Euler-Lagrange

equations:

δF
δψ

= ∇ · [ε0ε(φ)∇ψ] = 0, (5)

δF
δφ

= F ′
m − 1

2
ε0ε

′(φ)|∇ψ |2 − ∇ ·
[
kT

v
χλ2∇φ

]
− μ̃ = 0,

(6)

where the “prime” represents a derivative with respect to φ,
μ̃ = kT μ/v is the scaled chemical potential, and ∇(δF/δφ) ·
n = 0 is the boundary condition for Eq. (6), where n is the
unit vector normal to the wall. For closed systems (canoni-
cal), μ is adjusted to satisfy the mass conservation constraint,
〈φ〉 = φ0, where φ0 is the average composition. For open sys-
tems (grand canonical), μ is set by the large reservoir with
composition φ0.

To study the dynamics of liquid demixing, we use
the “model H” theoretical framework22, 23 supplemented by
Laplace’s law to obtain

∂φ

∂t
+ v · ∇φ = D∇2 δF

δφ
, (7)

∇ · (ρv) = 0, (8)

ρ

[
∂v
∂t

+ (v · ∇)v
]

= η∇2v − ∇P − φ∇ δF
δφ

, (9)

∇ · [ε0ε(φ)∇ψ] = 0, (10)

where v is the fluid hydrodynamic velocity field, D is the dif-
fusivity constant, P is the pressure, ρ is the fluid density, and
η is fluid viscosity. The Cahn-Hilliard equation, Eq. (7), is the
continuity equation for the mixture composition.24 Equation
(8) is the continuity equation for the fluid, and Eq. (9) is the
Navier-Stokes equation.

We focus on a cylindrical geometry where F depends
only on the radial coordinate. In this geometry, symmetry dic-
tates that v = 0 and hence the problem is reduced to solving
Eq. (7) (“model B” dynamics), and Eq. (10). The inner and
outer boundaries for the cylindrical geometry are radii R1 and
R2, respectively, Fig. 1(a). And, the radially symmetric pro-
files are one-dimensional φ = φ(r) and ψ = ψ(r), where r is
the distance from the inner cylinder’s center. With a constant
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FIG. 1. Model system and stability diagram. (a) Cross section through the
diameter of concentric cylinders. Distance r is measured from the center of
the cylinder, and the boundaries are located at R1 and R2. Shading shows the
space occupied by the liquid mixture. (b) Mixing-demixing phase diagram in
the φ0 − T plane. Arrows link mathematically analogous structures between
no-field (dashed-dotted lines) and non-uniform electric field (solid lines) con-
ditions. Shading shows the demixed region for M ≈ 0.017. The emergence
line (dashed line) divides the continuous (c) and discontinuous (d) interface
kinetic regimes. m marks the metastable region.

charge density σ on R1, we obtain E(r) = σR1/(ε0ε(φ)r)r̂.
Combining this result with E = −∇ψ in Eq. (6), we get

δf

δφ
= f ′

m − χM

(
R1

r

)2
ε′(φ)

ε(φ)2
− ∇ · [χλ2∇φ] − μ, (11)

where M = σ 2v/(4kTcε0) is the dimensionless field squared.

III. THE INTERFACE IN TIME

When an electric field is applied to a homogeneous liquid
mixture in an open system, events typically first occur near the
surface of the electrode and progress outward. Specifically,
the material with the larger ε accumulates near the inner elec-
trode, resulting in an increase of the value of φ(r) at small
distances r. If the parameters (φ0, T, M) are within the dis-
continuous interface formation region of the kinetic phase di-
agram, Fig. 1(b), the interface first appears on the surface of
the electrode, Fig. 2(a). While for continuous interface forma-
tion kinetics, Fig. 1(b), the interface first emerges away from
the electrode at some distance greater than R1, Fig. 2(b).

Previous work12 demonstrated that the behavior of the
interface in time through real space can be mapped as a
“movement” in parameter space through the equilibrium
phase diagram. Here, we investigate in detail the timing of
these events and begin by tracking the interface. The loca-
tion ri of the dynamic interface corresponds to a rapid change
in φ(ri) and a double-well structure at f(ri).

12 The latter cri-
teria distinguishes interfaces from steep concentration gra-
dients and relies on a simplified form of f, which utilizes

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.72.9.200 On: Wed, 03 Dec 2014 14:08:20



214506-3 J. Galanis and Y. Tsori J. Chem. Phys. 141, 214506 (2014)

1 1.2 1.4

0.4

0.5

0.6

r/R1

φ
(r

)

(a)

1 1.5 2

0.4

0.5

0.6

r/R1

φ
(r

)
(b)

FIG. 2. Relaxation of the concentration profile φ(r) versus r for (a) discon-
tinuous (φ0 = 0.36, T/Tc = 0.992, M = 0.069) and (b) continuous (φ0 ≈ 0.4,
T/Tc = 0.997, M = 0.069) interface transition regimes. Each curve is a differ-
ent snapshot in time taken at regular intervals on a logarithmic scale. Arrows
indicate the direction of movement. Gray shows regions where an interface
can exist.

fi → 0. Usually, rapid changes in φ (largest values of |∂φ/∂r|)
roughly correspond to where φ(ri) ≈ 0.5, and for simplicity
we assume φ(ri) = 0.5.

Typical graphs of ri versus time t for a constant T and M
with various values of φ0 are shown for discontinuous, Fig.
3(a), and continuous, Fig. 4(a), interface formation kinetics.
The moment where the electric field is applied is defined as t
= 0, and solid lines track interface movement. For the contin-
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FIG. 3. Tracking the interface ri in the discontinuous interface formation ki-
netic regime. (a) Location of the interface ri versus normalized time t̃ for
various values of φ0, where φ0 → φs (see Fig. 1(b)). (b) Behavior of φ(r) at
r = R1 versus time t̃ for φ0 = 0.43 to ≈ 0.3956 (arrow). Symbols mark
the dimensionless lag time t̃

L
for the formation of the interface. (c) and

(d) �f = f(φ, r) − fmin(φ, r) and f ′ (or δf /δφ) at r = R1 versus φ for φ0= 0.43 (red) and 0.3956 (black). Arrow in (c) shows the precursor to an en-
ergetic barrier. In all figures, T/Tc = 0.995 and M ≈ 0.017.
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FIG. 4. Tracking the interface ri in the continuous interface formation ki-
netic regime. (a) Location of the interface ri versus normalized time t̃ for
various values of φ0, where φ0 → φi (see Fig. 1(b)). Symbols in (a) mark the
appearance of the interface, while solid lines track the movement of an inter-
face. Dashed lines track the movement of the steepest concentration gradient
(“largest” values of |∂φ/∂r|, but no true interface). (b) Behavior of φ(r) at r
= R1 versus time t̃ for φ0 ≈ 0.398 to ≈ 0.363 (arrow). Symbols in (c) and
(d) mark the time t̃

L
for the initiation of a gradient. (c) and (d) �f and f ′ (or

δf /δφ) at r = R1 versus φ for φ0 = 0.3981 (red) and 0.3473 (black). In all
figures, T/Tc = 0.997 and M ≈ 0.069.

uous interface formation kinetics, Fig. 4(a), we also monitor
the movement of the steepest concentration gradient (largest
values of |∂φ/∂r| for all r, dashed lines) before a true interface
emerges (symbols).

By focusing on the discontinuous interface kinetics,
Fig. 3(a), two general events appear to characterize liquid be-
havior in time: (1) the lag time before an interface emerges,
and (2) the relaxation of the interface to equilibrium (long-
time steady-state). These two behaviors can also occur in con-
tinuous interface kinetics when steep concentration gradients,
in addition to interfaces, are included in the analysis.

IV. INTERFACE LAG TIME

For discontinuous interface formation kinetics, the time
t for an interface to emerge increases as φ0 decreases, red to
blue in Fig. 3(a). To better visualize this effect, we use the fact
that the interface begins at R1 and show the behavior of φ(R1)
versus a dimensionless time t̃ = DkT t/R2

1v, Fig. 3(b). The
time t̃L when φ(R1) = 0.5 (Fig. 3(b), symbols) marks the time
when the interface first emerges, or the lag time. The divergent
increase in t̃L for decreasing φ0 is shown in Fig. 5(a).

The limiting concentration for the increase in t̃L is the
concentration φs(T, M), dashed line in Fig. 5(a), associ-
ated with the electrostatic spinodal line, Fig. 1(b). This line
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FIG. 5. Lag time for the initiation of either an interface or steep concentra-
tion gradient (large |∂φ/∂r|) at r = R1. (a) Dimensionless lag time t̃

L
versus

bulk concentration φ0 for T/Tc = 0.995 and M ≈ 0.017. t̃ diverges as φ0 ap-
proaches φs (dashed vertical line). (b) t̃

L
versus rescaled bulk concentration

φ∗
0 (see text) for various values of φ0, T, and M. Black dashed line shows least

squares fit to Eq. (12) of the data to the left of the dotted line. Solid colored
lines show the fits to Eq. (13). (c) Symbols show data used in (b) in the φ0− T plane, where M ≈ 0.005 (blue, ×), 0.017 (green, ©), and 0.069 (red, +).
Solid black line shows the electrostatic line of critical points, while dashed
line shows the regular (no-field) binodal. Colored solid and dashed-dotted
lines mark the electrostatic binodal and electrostatic spinodal, respectively,
for each value of M. (d) Using Eq. (13), extrapolation of the behavior of the
lag time on the φ0 − T plane for M ≈ 0.017.

separates spontaneous transitions from metastable states in
the φ0 − T plane, and is characterized by the functional form
of f(φ, r) on the surface (r = R1) of the electrode.12 Specif-
ically, if f has a “double-well” form as a function of φ at r
= R1, an energetic barrier exists that prevents spontaneous
transitions. In contrast, a single-well f at this distance enables
spontaneous transitions.

Therefore, an understanding for the existence of t̃L can be
found by inspecting the shape of f(φ, r = R1) for conditions
(φ0, T, M) near the electrostatic spinodal. As φ0 approaches φs
from within the discontinuous interface formation region, the
single-well form of f(R1) gradually approaches a double-well
form as the precursor of a barrier enlarges. Figures 3(c) and
3(d) compare f and its derivatives, respectively, for φ0 close
to (black, ×) and far away from (red, +) φs. The arrow marks
the precursor to a barrier.

The description thus far contains arguments reminiscent
to the kinetics of relaxation near the regular (no-field) spin-
odal line. But unlike the no-field counterpart, a lag time also
appears to occur with the initial formation of steep concen-
tration gradients, Fig. 4(a), even in the regions of the φ0
− T plane where no true demixing occurs (non-shaded areas
in Fig. 1(b)). Figure 4(b) shows φ(R1) versus t̃ for the data in

Fig. 4(a). Above the emergence line, Fig. 1(a), the lag time t̃L
to form a steep concentration gradient on the electrode surface
increases (Fig. 4(b), symbols) when φ0 approaches the limit-
ing concentration φi, as defined in Fig. 1(b). Figures 4(c) and
4(d) compare f and its derivatives, respectively, for φ0 close to
(black, ×) and far away from (red, +) φi. As no double well
exists in f at r = R1, the increase in t̃L results instead from
a widening of the single-well basin of f(φ, r = R1). As this
widening in f is in part due to T ≈ Tc, we expect t̃L to vanish
when T � Tc.

Figure 1(b) details the relation of mathematically analo-
gous structures between the non-uniform electric field and no-
field phase diagrams.11, 12 Given these analogies, we borrow
ideas from critical behavior25 and plot t̃L versus a rescaled
concentration φ∗

0 , where φ∗
0 = (φ0 − φs)/φs below and

φ∗
0 = (φ0 − φi)/φi above the emergence line, Fig 1(b).

Figure 5(b) shows how the lag time from a wide range of data
in the φ0 − T plane, Fig. 5(c), collapses when rescaled with
φ∗

0 . Interestingly, the data with or without a true interface,
Fig. 5(c), behave indistinguishably, Fig. 5(b).

For a region of φ∗
0 that spans many decades on a log-log

plot, tL is linear, Fig. 5(b). Performing a least squares fit of the
data to a power-law function, we find

tL = A
(
φ∗

0

)α
, (12)

where α = −1.16 ± 0.03 and the constant A = 0.56 ± 0.07.
Typically, a simple power-law like Eq. (12) cannot fit an en-
tire dataset, especially when parameters are far from a critical
point.25 Since analogous nonlinearity is observed in Fig. 5(b)
for larger φ∗

0 , we used an upper-bound cutoff of φ∗
0 ≈ 0.009

(right vertical dotted line) when performing the fit.
While the linear behavior occurs for “small” values of

φ∗
0 , the general collapse of the data (especially for a partic-

ular value of M) continues further. We remove the upper-
bound cutoff in the data and include a correction term25 so that
Eq. (12) becomes

tL = A
(
φ∗

0

)α[
1 + B

(
φ∗

0

)β]
, (13)

where β = 0.44 ± 0.16, B = −2.7 ± 1 for M ≈ 0.005,
β = 0.46 ± 0.11, B = −2.5 ± 0.7 for M ≈ 0.017, and
β = 0.58 ± 0.08, B = −2.4 ± 0.4 for M ≈ 0.069. Using
Eq. (13), we show the general behavior of tL in the φ0 − T
plane for M ≈ 0.017, Fig. 5(d).

V. INTERFACE RELAXATION: POWER-LAW SCALING

After the interface forms, the relaxation to equilibrium
occurs via a complex manner in time. Figure 6(a) shows simi-
lar data as Fig. 3(a) plotted as ri versus a rescaled time, t̃ − t̃L,
and focuses on the early time behavior. Additionally, Fig. 3(b)
shows an extended view of the interface behavior in time by
using a standard normalization for interface location r̃i given
by

r̃i = ri(t̃) − ri(t̃ → ∞)

ri(t̃ = t̃L) − ri(t̃ → ∞)
. (14)

Despite the complicated dynamics, three general time regimes
for interface relaxation become apparent: (1) “early-time”
relaxation, (2) power-law relaxation, and (3) exponential
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FIG. 6. Movement of the interface ri with time. (a) Normalized interface
location ri versus time t̃ for T/Tc = 0.995, M ≈ 0.017, and various values of
φ0. (b) Same data as (a) with a rescaled interface location r̃

i
from Eq. (14).

(c) Rescaled interface location r̃
i

versus time t̃ for φ0 = 0.37, T/Tc = 0.995,
and various values of M. Black dashed lines in (b) and (c) show a power-law
with an exponent of −0.94.

relaxation. Since the early-time behavior continues for longer
time periods for φ0 “close to” φs (Fig. 6(b)), Fig. 6(c)
more clearly shows these regimes with data far enough away
from φs.

After the early-time relaxation, the power-law relaxation
follows

r̃i = C(t̃ − t̃L)γ , (15)

where, to a first approximation, interface relaxation behaves
independently of the parameters (φ0, T, M), yielding γ

= −0.94 ± 0.04. For comparison, dashed lines in Figs. 6(b)
and 6(c) show power-law behavior with γ = −0.94. Finally,
the third time regime, exponential relaxation, is fully ad-
dressed in Sec. VI.

VI. FINITE SIZE EFFECTS: EXPONENTIAL
RELAXATION

For liquid-liquid demixing under non-uniform electric
fields, the constraint of material conservation in closed sys-
tems produces different equilibrium (long-time) concentra-
tion profiles φ(r) in comparison to open systems with the
same parameters (φ0, T, M).10, 11 These differences, how-
ever, can be explained by considering an alternative “effective
bulk” concentration acting on the closed system.11 In contrast,
recent investigations12 demonstrate that the dynamics of the
non-equilibrium interface are equivalent for open and closed
systems for the same parameters (φ0 < φc, T, M) during early
times. Therefore, at some “intermediate” time, the presence of
a second boundary at R2 influences the behavior of the inter-
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FIG. 7. Finite size effects in the φ(r) profiles with time. φ(r) versus normal-
ized distance r at t̃ = 10 (a) and 10 000 (b) for φ0 = 0.42, T/Tc = 0.995,
M ≈ 0.017, and various ratios R2/R1.

face in a closed system such that the dynamics diverge from
that of an open system.

To investigate these finite-size effects, we compare the
time evolution of the liquid under various confinements.
Figure 7 shows typical examples of φ(r) versus r, where the
color from red to blue signifies decreasing ratios R2/R1 while
all other parameters (φ0, T, M) are held constant. Indeed, the
φ(r) profiles between various values of R2 match during early
times, Fig. 7(a), but differ during later times, Fig. 7(b).

To better visualize the relaxation process, we track the
location ri of the interface through time, Fig. 8(a). While ini-
tially the interface forms and moves in a manner that is inde-
pendent of confinement, the interface location systematically
diverges from that of open systems at later times. Specifically,
as R2 decreases (color from red to blue), the interface move-
ment slows and eventually stalls at earlier times.

Rather than the standard normalization of distance r̃i

(Eq. (14)), the systematic and progressive deviation of the
closed system ri from the open system suggests an alterna-
tive normalized distance r̃∗

i ,

r̃∗
i (t̃) = ri(t̃) − r∗

i (t̃ → ∞)

ri(t̃ = 0) − r∗
i (t̃ → ∞)

, (16)

where the open system equilibrium interface location r∗
i (t̃ →

∞) serves as the reference. Analogous methods for determin-
ing finite size effects have been used elsewhere.26

We approximate r∗
i (t̃ → ∞) by using data from

the largest system size, R2/R1 = 5120, such that r∗
i (∞)

= ri(t̃ → ∞, R2 → ∞) ≈ ri(t̃ → ∞, R2 = 5120R1). Re-
sults are shown in Fig. 8(b). The red curve in Fig. 8(b)
indicates the reference curve, where the three time regimes
(introduced in Sec. V) are easily observed. Decreasing values
of R2/R1 are shown in color from orange progressing to blue.

The normalization r̃∗
i offers a convenient and standard-

ized way to determine the time t̃d when the interface behavior
of a closed system diverges from that of an open system.
Specifically, we obtain �r̃∗

i (R2) = r̃∗
i (R2) − r̃∗

i (R2 → ∞)
and apply a threshold value cutoff for �r̃∗

i (R2) to estimate
t̃d , black symbols in Fig. 8(b). The variation t̃d versus R2/R1,
Fig. 8(d), suggests a power-law relation

t̃d ∝ (R2/R1)δ, (17)

where δ = 2 ± 0.06.
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FIG. 8. Finite size effect in interface movement. (a) Location of the interface
ri versus time t̃ for φ0 = 0.42, T/Tc = 0.995, M ≈ 0.017, and increasing ratios
R2/R1 (colors blue to red). (b) Same data as (a), plotted as normalized distance
r̃∗ (Eq. (16)) versus t̃ . Filled symbols mark t̃

d
. The open symbol estimates t̃

d

using Eq. (17). (c) Color shows the same data as (a), plotted as normalized
distance r̃ (Eq. (14)) versus t̃ . Black lines show the fits to Eq. (18) for data
t̃ ≥ t̃

d
(black symbols). (d) Time t̃

d
versus R2/R1 for various values of φ0.

Dashed line shows a power-law with an exponent of 2.

The trend of the curves in Fig. 8(b) as a function of R2 is
consistent with the idea that the long-time interface in open
systems relaxes as a power law, while finite-sized systems
eventually display exponential relaxation.27–29 The exponen-
tial relaxation in the data is more readily viewed in a semi-log
plot, Fig. 8(c), of r̃i versus t̃ . Black lines in Fig. 8(c) show
the fit of the data (with a lower bound cutoff of t̃ ≥ t̃d [black
symbols]) to

r̃i(t̃) = exp[−(t̃ − t̃L)/τ ], (18)

where τ is the relaxation constant. The values of τ as a func-
tion of the ratio R2/R1 are shown in Fig. 9(a). And similar to
t̃d , the variation of τ versus R2/R1, Fig. 9(a), also suggests a
power-law relation

τ ∝ (R2/R1)ζ , (19)

where ζ = 1.93 ± 0.05. Finally, we show τ as a function of φ0
and M for R2/R1 = 5 (Figs. 9(b)– 9(d)). In general, τ decreases
with decreasing φ0, and increasing M. The variation of τ on
T, however, depends on whether or not φ0 is above or below
φc. For φ0 < φc, τ decreases with increasing T (Figs. 9(b) and
9(c)). In contrast, τ decreases with decreasing T for φ0 > φc
(Figs. 9(b) and 9(c)).
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FIG. 9. Interface relaxation time τ in finite-sized systems. (a) Relaxation
time τ versus R2/R1 for various values of φ0. Dashed line shows a power-law
with an exponent of 1.925. (b) τ versus φ0 for various values of T/Tc for M
≈ 0.044, R2/R1 = 5. Dashed line marks φc. (c) Color shows τ in the φ0 − T
plane for M ≈ 0.044, R2/R1 = 5. Solid lines mark the boundary of the closed
system stability diagram. (d) τ versus M for φ0 = 0.4, T/Tc = 0.9957.

VII. CONCLUSION

Using a simple model system, we find that spatially non-
uniform electric fields generate a rich array of dynamic behav-
ior. A lag-time exists before an interface appears between the
two liquids. This time delay increases as parameters (temper-
ature, bulk concentration, and surface charge) approach the
electrostatic spinodal line, and scales as a simple power-law
when considering a renormalized bulk concentration. Once
an interface forms, it relaxes to the equilibrium state via three
time regimes (early, intermediate, and late). The middle phase
is governed by a power-law relaxation, while the late phase is
a consequence of finite size effects and follows an exponential
decay.

A concise characterization of the early-time behavior still
remains an open question. It is clear from the theory that
the rate of domain growth during these early times both de-
creases and increases by a currently unknown mechanism.
For no-field liquid-liquid demixing (with hydrodynamics), the
crossover of domain growth to different time regimes occurs
when different forces compete, for example, surface tension
versus gravity during late relaxation times.17

Similarly, the dynamic behavior of phase transitions
in electric field gradients is dictated by the delicate bal-
ance between interfacial forces (scaling as area) and electro-
static forces (scaling as volume). In non-polar liquids, where
screening is absent, the electrostatic forces are governed by
the specific boundary conditions at remote surfaces, which
may produce these rich and fascinating dynamics.
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Finally, in this paper we have also focused on radial sym-
metry, where the solutions are strictly r-dependent. It is possi-
ble that the removal of this constraint will produce non-radial
instabilities that will modify the timing of events.
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