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Spatially non-uniform electric fields can phase separate initially homogeneous mixtures of liquids.
Here, we investigate the dynamics of phase separation using a modified Cahn-Hilliard equation and
find three kinetically distinct regimes in the phase diagram: (1) discontinuous and (2) continuous
interface formation kinetics and (3) a metastable state. By considering all possible solutions of the
free energy density, we are able to map the time behavior in the vicinity of the interface as a series
of equilibrium interfaces “moving” in the parameter space of the equilibrium phase diagram. The
kinetic phase diagram, consequently, contains an “emergence line” that delineates the experimental
conditions where a non-equilibrium interface can be forbidden from forming close to a charged
surface. When the interface can form on the charged surface, an abrupt transition occurs that produces
electrical signatures which distinguish the discontinuous from the continuous transition region. The
third kinetic regime describes non-spontaneous phase separation and potential metastable states, and
is bounded by the “electrostatic spinodal” line. The equivalent kinetic regimes exist in closed systems
and can be found by considering an effective concentration in an open system. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4869113]

I. INTRODUCTION

The desire to control materials on the sub-micrometer
scale motivates basic and applied research and has led to an
abundance of works.1–4 Due to the ease and versatility of ap-
plying electric fields, the conductivity and polarizability dif-
ferences between substances have been exploited for a variety
of purposes that range from steering individual molecules or
objects5, 6 to creating droplet “microreactors”.7 In this spirit,
a significant body of work also includes establishing elec-
tric field induced phase separation.8–14 Research in this area
typically focuses on uniform electric fields; however, fluid
demixing with such fields usually requires excessively large
potentials.8–10

By contrast, recent work with spatially nonuniform elec-
tric fields shows that phase separation can readily occur with
much smaller surface charges or potentials.15–17 The spatial
non-uniformity of the field reversibly confines the two liquids
to well-defined regions of physical space and creates an in-
terface between them. In this “electroprewetting” transition,
the more polar liquid wets the electrode.18 The spatial depen-
dence of the demixing means that equilibrium cannot be de-
termined using the usual “common tangent” construction, and
a different formalism is consequently required. We recently
overcame this challenge by implementing local markers to
successfully construct the phase diagram.19

In this manuscript, we extend this formalism to phase
separation kinetics. Unlike standard nucleation processes and
spinodal decomposition, the properties of the interface in time
depend on its location in space. Interestingly, we find that the
kinetic behavior can be mapped as an equilibrium interface
moving in parameter space of the phase diagram. Specifically,
we demonstrate that an interface can be forbidden from form-
ing close to the electrode for certain conditions, and that this
forbidden zone affects how an interface emerges in time. The

“emergence line” separates these conditions in the phase dia-
gram. On one side of this line a forbidden zone exists and the
interface first appears far from the electrode and continuously
in time. Conversely on the other side of this line, an interface
forms abruptly on the electrode surface. Such discontinuous
behavior leads to changes in the current and capacitance that
can be detected experimentally. Finally, we also confirm pre-
dictions of an “electrostatic spinodal” and metastable states
for diffusion limited kinetics in the absence of fluctuations.
We also discuss similarities and differences in the kinetic be-
havior between open and closed systems.

II. THEORY

We begin with a mean-field coarse-grained description of
a binary mixture composed of liquids A and B. The total free
energy F for a volume V is the sum of mixing Fm, electro-
static Fe, and interfacial Fi free energies to give

F =
∫

V

(Fm + Fe + Fi) dV. (1)

The free energy of mixing is Fm = kTfm/v, where v is
molecular volume, k is Boltzmann constant, and T is tem-
perature. The dimensionless energy density fm should have
a “double well” shape, and here we use the following Lan-
dau expansion of a regular mixing energy around the critical
volume fraction φc,

fm ≈ (2 − Nχ ) (φ − φc)2 + 4

3
(φ − φc)4 + const., (2)

where φ is the volume fraction of component A (0 ≤ φ ≤ 1),
and χ ∼ 1/T is the Flory interaction parameter.20 We set φc

= 0.5 and χ = 2Tc/T, where Tc is the critical temperature.
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The electrostatic free energy Fe = kTfe/v is given by

Fe = ±1

2
ε0ε(φ)|∇ψ |2, (3)

where ε0 is the vacuum permittivity, and ψ is the electrostatic
potential (E = −∇ψ). The sign depends on the boundary
conditions, where the positive (negative) sign indicates con-
stant charge (potential). The constitutive relation ε(φ) defines
a nontrivial dependence of permittivity on composition. Here
we mainly consider a linear relation, ε(φ) = (εA − εB)φ + εB,
where εA and εB are the dielectric constants for pure liquids A
and B, respectively.

The interfacial free energy Fi = kTfi/v includes the en-
ergetic penalty associated with composition gradients and is
given by20

fi = 1

2
χλ2|∇φ|2, (4)

where λ is a constant related to interface width.
In equilibrium, the fields ψ and φ obey the following

Euler-Lagrange equations:

δF
δψ

= ∇ · [ε0ε(φ)∇ψ] = 0, (5)

δF
δφ

= F ′
m − 1

2
ε0ε

′(φ)|∇ψ |2 − ∇ ·
[
kT

v
χλ2∇φ

]
− μ̃ = 0,

(6)

where the “prime” represents a derivative with respect to φ,
and μ̃ = kT μ/v is the chemical potential. For closed systems
(canonical), μ is adjusted to satisfy the mass conservation
constraint, 〈φ〉 = φ0, where φ0 is the average composition.
For open systems (grand canonical) in contact with a large
reservoir at composition φ0, μ = ∂fm(φ0, T)/∂φ.

After an electric field is applied, the initially homoge-
neous liquid changes its composition until a new equilibrium
(or long-time steady-state) is reached. For the dynamics we
therefore use the “model B” theoretical framework21, 22 sup-
plemented by Laplace’s law to obtain

∂φ

∂t
= ∇ ·

[
D∇ δF

δφ

]
, (7)

∇ · [ε0ε(φ)∇ψ] = 0, (8)

where D is the diffusivity constant. Equation (7), the Cahn-
Hilliard equation, is the continuity equation for the mixture
composition.23 And the boundary conditions for Eqs. (6) and
(7) are

∇ δF
δφ

· n = 0, (9)

∇φ · n = 0, (10)

respectively, where n is the unit vector normal to the wall.
To understand the fundamental dynamic behaviors, we

focus on three basic shapes (cylinder, sphere, and wedge),
where F depends only on the radial coordinate. The inner and
outer boundaries for the cylindrical geometry are radii R1 and

R1

R2

r
R1

R2

r

θ

(a) (b)

FIG. 1. Model systems. (a) Cross section through the diameter of concentric
cylinders or spheres. Distance r is measured from the center of the cylin-
der/sphere, and the boundaries are located at R1 and R2. (b) Cross section of
two flat-plate electrodes with an opening angle θ . Distance r is measured
from the “intersection” of the two plates, and the boundaries R1 and R2
mark the ends of the plates. Shading shows the space occupied by the liquid
mixture.

R2, respectively, Fig. 1(a). And, the radially symmetric pro-
files are one-dimensional φ = φ(r) and ψ = ψ(r), where r is
the distance from the inner cylinder’s center. With a constant
charge density σ on R1, we obtain E(r) = σRn

1/(ε0ε(φ)rn)r̂,
where n = 1. Using a similar construction for concentric
spheres, we obtain the same expression E(r) with n = 2. Com-
bining this result with E = −∇ψ in Eq. (6), we get

δf

δφ
= f ′

m − v

2kT ε0

(
σRn

1

rn

)2
ε′(φ)

ε(φ)2
− ∇ · [χλ2∇φ] − μ.

(11)
The wedge geometry consists of two “misaligned” plates with
an opening angle θ , Fig. 1(b). For a constant potential bound-
ary condition, E(r) = (V/rθ )ϑ̂ , where V is the potential dif-
ference across the electrodes, r is the distance from the imag-
inary intersection of the two plates, and ϑ is the azimuthal
angle. Combining this result with Eq. (6), we get

δf

δφ
= f ′

m − v

2kT

(
V

rθ

)2

ε0ε
′(φ) − ∇ · [χλ2∇φ] − μ. (12)

III. PHASE DIAGRAM AND FREE ENERGY

To understand the dynamics of phase separation we first
highlight the important aspects of the phase diagram. The
phase diagram contains three distinct equilibrium regions,19

which we call “global demixing,” “local demixing,” and
“mixing.” Figure 2(a) shows these regions in open cylinder
and open sphere geometries with a linear ε(φ), and in open
wedge geometries with a quadratic ε(φ), where the second
derivative ε′′ ≡ d2ε/ dφ2 = −2. In the “global demixing” re-
gion, which is below the zero-field binodal curve [dashed line
in Fig. 2(a)], phase separation can occur without an elec-
tric field. By contrast, liquid separation marked by a sharp
interface cannot occur under any applied electric field in
the “mixing” region of the phase diagram, Fig. 2(a). In-
stead, the electric field produces gradual changes in liquid
composition. In the “local demixing” region [gray area in
Fig. 2(a)], a sufficiently strong electric field can induce liquid

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.72.138.1 On: Tue, 25 Mar 2014 14:29:22



124505-3 J. Galanis and Y. Tsori J. Chem. Phys. 140, 124505 (2014)

0.3 0.4 0.5 0.6
0.97

0.98

0.99

1
T

/T
c

φ0

global
demixing

local
demixing

mixing

0.3 0.4 0.5
0.94

0.95

0.96

0.97

0.98

0.99

1

T
/T

c

φ0

D
emergence

line

electrostatic
spinodal

M

C

(a) (b)

FIG. 2. Mixing-demixing phase diagram with a non-uniform electric field
for open systems. (a) Phase diagram in the φ0 − T plane showing regions
where phase separation is possible without an electric field (“global demix-
ing”), is possible with an electric field (“local demixing”), and is not possi-
ble with any electric field (“mixing”). Dashed and solid lines are the regular
binodal curve and the electrostatic binodal, respectively. (b) The particular
demixing zone (solid line) for σ = 1 × 10−3 C/m2 within the local demixing
region (dotted lines) showing all kinetically important features in the φ0 − T
plane. “C” and “D” denote continuous and discontinuous interface formation
kinetics, while “M” denotes metastable region. The upper and lower red bars
mark φ0eq for data in Figs. 5(a) and 6(a), respectively (see text).

demixing. This region is bounded from below by the binodal
curve and from above by the “electrostatic binodal” curve,
solid line in Fig. 2(a).

A finite value of surface charge induces phase separation
within a limited zone of the local demixing region, marked
by solid lines in Fig. 2(b). In this zone, the location of the
interface between the two liquids ri can be approximated by19

(
σRn

1

rn
i

)2

≈ −2kT με0ε(φc)2

vε′(φc)
(13)

for cylindrical and spherical geometries, and by

(
V

θri

)2

≈ − 2kT μ

vε0ε′(φc)
(14)

for wedge geometries. The remainder of this paper focuses on
the kinetic behavior within the demixing zone.

An intuitive understanding of liquid-liquid behavior with
non-uniform electric fields can be obtained by considering the
free energy. For a given set of parameters (φ0, T, σ , R2, etc.),
the set of all possible values of the free energy density f for
a range of local composition φ changes as a function of po-
sition r, Fig. 3, as well as time t. In other words, the set of
all possible values of f can be thought of as a “landscape” or
surface that changes in space and time. Without the constraint
of material conservation, the f-surface also remains constant
in time in open systems, which greatly simplifies the analysis
of kinetic behavior.

The curved surface in Fig. 4(a) presents a “zoomed in”
view of f ′ as a function of φ and r for the same parame-
ters as Fig. 3. The equilibrium solution resides in the inter-
section between the f ′ surface and the horizontal plane at f ′

= 0. This intersection gives the dashed curve in Fig. 4(b),
while the solid line marks the particular φ(r) profile that min-
imizes the total free energy. The dynamic solutions, however,
are not restricted to this plane, and liquid composition can re-
arrange in a complex manner, Fig. 4(c).

0 0.5 1
0

0.02

0.04

0.06

f

φ
1 1.5 2

0.4

0.45

0.5

0.55

0.6

r/R1

φ
(r

)

(a) (b)

0.4 0.5 0.6
−0.02

−0.01

0

0.01

f

φ
0.45 0.5 0.55

−0.01

0

0.01

0.02

f

φ

(c) (d)

FIG. 3. Free energy density f (φ, r) for an open cylinder system. (a), (c), and
(d) f, f ′, and f ′ ′, respectively, versus φ at distance r = R1 (thin solid line),
re (dashed line), ri (dashed-dotted line), and a large value (thick solid line)
for φ0 = 0.38, T/Tc = 0.9965, and σ = 1.1 × 10−3 C/m2. Symbols in (a)
mark minima for each curve. (b) φ(r) versus normalized distance r of the
minimized solution to f in (a). Dashed vertical lines from left to right show r
= R1, re, and ri. Shaded areas in all figures mark regions where f ′ is degen-
erate and f ′ ′ ≥ 0. In this and in all other figures Tc = 298 K, εA = 5, εB = 3,
R1 = 1 μm, and v = 1 × 10−26 m3.

From Figs. 4(b) and 4(c) it is clear that a one-to-one
correspondence between (f ′, r) and φ does not always hold.
We call this non-one-to-one correspondence a “degeneracy.”
Since interfaces can develop when there is a degeneracy, these
mathematical features play a significant role in interface dy-
namics (Secs. IV and V). For the special case of degenerate
solutions with f ′ = 0, we will show in Sec. VI how metastable
solutions emerge.

IV. THE INTERFACE AND THE EMERGENCE LINE

Previous work considered a simplified free energy f,
where λ → 0 so that fi → 0.15–17, 19 This limit typically ap-
plies to “large” systems when T is not too close to Tc. As
a consequence, the continuous concentration profile φ(r) ap-
pears discontinuous on relevant length scales. We find that
the inclusion of a non-zero fi does not qualitatively change
the liquid behavior for the range of λ and temperatures that
we have investigated. However, the equilibrium conditions
that define the appearance of an interface do not hold for
dynamics.15–17, 19 Moreover, even a small but non-zero value
of λ in fi destroys the discontinuity and leads to a diffuse in-
terface. These properties make the task of distinguishing an
interface from a concentration gradient challenging.

The presence of an interface coincides with a rapid
change in φ(r), Figs. 5(a) and 6(a). Figure 5(c), for
example, compares f ′(r) versus φ(r) at a particular r, dashed
line, with δf/δφ from dynamic calculations at various times,
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FIG. 4. The f ′(φ, r) surface and dynamics. (a) f ′ versus φ and r for the
same parameters as Fig. 3. Color shows the value of f ′. The horizontal plane,
where f ′ = 0, is shown as a dashed curve in (b). The solid line in (b) is the
φ(r) profile that minimizes the total free energy. The vertical plane in (a) is a
schematic for the type of view in (c), where r is constant. In (c), φ0 = 0.36,
T/Tc = 0.9824, σ = 1 × 10−3 C/m2, and r/R1 = 1.004. Dashed line shows
f ′, while symbols mark δf/δφ in time from the dynamic calculations. Arrows
indicate the direction of change in time. Dotted line marks the location of an
equilibrium interface with φ0eq = 0.322 (see text).

symbols, and arrows. And Fig. 5(d) displays the same data
as f(r) versus φ(r). The dashed line in Fig. 5(c) indicates that
multiple values of φ yield the same value of f ′. Precisely in
this degenerate region, the φ(r) from dynamic calculations
rapidly changes, signifying the presence of an interface at that
time. Both Figs. 5(c) and 5(d) clearly show that the interface
at this location is not part of the free energy minimum. We
therefore define a dynamic interface at r as a rapidly changing
φ(r) that coincides with a φ-degeneracy in f ′(r) [in particular
with a vertical section of the f ′ surface, Fig. 4(a)].

The gray areas in Fig. 3 mark the location of all degen-
erate regions in f ′(r) that also satisfy f ′′(r) > 0 (the classical
metastable region in mixtures without an electric field). These
areas clearly illustrate two important kinetic phenomena:
(1) an interface can be forbidden from forming in certain re-
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FIG. 5. Profiles from dynamic calculations. (a) φ(r) versus r showing vari-
ous snapshots in time t at intervals regularly spaced on a logarithmic scale
for φ0 ≈ 0.398. Dashed curve shows equilibrium-like behavior of the inter-
face. Dotted lines show location of data in (c)–(f). (b) φ(r) versus r show-
ing steady-state solutions for φ0 ≈ 0.353–0.398 in 0.005 increments (left to
right). Dashed curve shows equilibrium behavior of the interface for all φ0.
(c) and (d) f ′ (or δf/δφ) and f versus φ at r/R1 ≈ 1.76 [middle dotted line
in (a)]. Dashed lines show f ′, while symbols mark δf/δφ in time from dy-
namic calculations. Arrows indicate the direction of change in time. Dotted
line in (c) marks location of an equilibrium interface with φ0eq ≈ 0.391. (e)
and (f) φ and f ′ (or δf/δφ) versus r for the interface locations marked by dot-
ted lines in (a). Solid lines show dynamic calculations, while dashed lines
show equilibrium solutions with different φ0eq. Arrows show the direction of
time or increasing φ0eq. Dashed-dotted line in (f) shows the location of the
equilibrium interface. In all figures, T/Tc = 0.997, σ = 1 × 10−3 C/m2.

gions of physical space, and (2) interface properties (e.g., the
magnitude of a discontinuity) can strongly depend on spatial
location. To determine where an interface can exist we note
that in Figs. 3(a) and 3(c) the degenerate region extends to
infinity but can “pinch off” and terminate somewhere close
to the inner electrode. For distances smaller than this termi-
nation, a one-to-one correspondence exists between (f ′, r)
and φ [both vertical and horizontal sections of the f ′ surface,
Fig. 4(a)]. The degeneracy originates from the double well in
fm, and its disappearance directly results from a spatially de-
pendent fe. That is, fe can become sufficiently strong at small
r’s to destroy the degeneracy.
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FIG. 6. Interface formation kinetics. (a) φ(r) versus normalized r showing various snapshots in time t at intervals spaced regularly on a logarithmic scale for
φ0 = 0.36. Dashed lines show equilibrium-like interface behavior. The interface that appears discontinuous is smooth but rapidly varying in the numerical
calculations. (b) φ(r) versus r showing equilibrium solutions for φ0 = 0.3–0.37 in 0.01 increments (left to right). Dashed curve shows equilibrium interface
behavior for all φ0. (c) φ(r) versus r for dimensionless time t̃ = DkT t/R2

1Nv ≈ 3.04–3.14 in 0.024 increments (blue to red). In (a)–(c), T/Tc = 0.992, σ = 1
× 10−3 C/m2. (d) Electric current density j = dσ / dt (A/m2) versus t̃ for similar conditions as (a), except with constant potential V ≈ 216 V that was chosen to
match the steady-state value of V in (a).

We can find the smallest distance re where a non-
equilibrium interface can emerge by looking at the form
of f ′(r), Figs. 3(c), 4(c), and 5(c), and noticing that
f ′′(r) also possesses negative values, Fig. 3(d). There-
fore, we can search for re by finding where the mini-
mum value of f ′′(φ, re) vanishes, that is, f (3)(φ, re) = 0
and f (4)(φ, re) > 0. The value of φ that coincides with
the minimum in f ′′ is approximately equal to φc.19 Be-
ginning with f ′′(φ, re) = 0 and setting φ ≈ φc = 0.5,
we obtain for cylindrical and spherical geometries

(
re

R1

)2n

= − v
(
ε′σ

)2

4k(T − Tc)ε0ε(φc)3
, (15)

and for wedge geometries

r2
e = vε0ε

′′V 2

8k(T − Tc)θ2
. (16)

Mathematically, the solutions of f exist for all r > 0, where
distances can be “real” (R1 ≤ r ≤ R2) or “virtual” [r < R1,
r > R2, “within the electrode” or not between the plates as
defined in Fig. 1(b)].19

The conditions where re = R1 in Eqs. (15) and (16) hold
special meaning. When re < R1, an interface can exist ev-
erywhere in real space. Conversely when re > R1, an inter-
face can only exist in restricted regions of real space, namely,
for any r ≥ re. Setting re = R1 in Eq. (15), we obtain the
equation for the emergence line for spherical and cylindrical

geometries

Te

Tc

= 1 − v(σε′)2

4kTcε0ε(φc)3
, (17)

and with Eq. (16) for wedge geometries

Te

Tc

= 1 + vε0ε
′′

8kTc

(
V

R1θ

)2

. (18)

Figure 2(b) shows the emergence line for the stability diagram
with a cylindrical geometry.

Both Eqs. (17) and (16) resemble the equations that de-
scribe the electrostatic binodal.19 Below, we further develop
the link between kinetic and equilibrium behavior.

V. DISCONTINUOUS AND CONTINUOUS INTERFACE
FORMATION KINETICS

We showed in Sec. IV where a non-equilibrium interface
could exist in physical space (i.e., anywhere within the de-
generate region, gray areas in Fig. 3). In this section, we dis-
cuss the specific behavior of the interface for diffusion-limited
kinetics.

Since φ0, which enters f through μ, disappears past the
first derivative, the equations describing the kinetic properties
of re [Eqs. (15) and (16)] and the emergence line [Eqs. (17)
and (18)] do not depend on the composition in the bath. Inter-
estingly, however, similarities in the interface exist between
the time snapshots of the dynamic solution for a particular
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φ0, Figs. 5(a) and 6(a), and the steady-state/equilibrium so-
lutions from varying values of φ0, Figs. 5(b) and 6(b). The
kinetic relaxation of the interface occurs as if an effective φ0

changes in time.
The value of φ0 strongly affects equilibrium φ(r) profiles

by altering both the location and size of the discontinuity.19

The solid lines in Figs. 5(b) and 6(b) show steady-state dy-
namic and equilibrium solutions, respectively, of φ(r) for var-
ious values of φ0, while the dashed curves mark the equilib-
rium behavior of the interface for all φ0. A change in φ0 is
equivalent to a change in the chemical potential. We again
return to observing the time behavior of φ(r) on f ′(r) at a par-
ticular distance r, Fig. 5(c). Using T, σ , and setting ri = r in
Eq. (13), we can obtain the μeq necessary for forming an equi-
librium interface at r. The dotted line in Fig. 5(c) indicates
where the zero value of f ′(r) would be located with this μeq.
Interestingly, the time-dependent solution forms an interface
along this dotted line, symbols in Figs. 4(c) and 5(c).

Recalling that μ = f ′
m(φ0, T ) for open systems in equi-

librium, we can find the corresponding equilibrium value of
φ0eq for μeq. Figure 5(e) directly compares three different pro-
files in time for the dynamic calculations (solid lines) with a
constant φ0 ≈ 0.398 versus the corresponding equilibrium so-
lutions (dashed lines) with various φ0 = φ0eq. As the differ-
ences between the dynamic and equilibrium profiles can be
small, we also include f ′(r) and δf/δφ as a measure of how
well the two profiles coincide with each other. The solid lines
in Fig. 5(f) show the dynamic δf/δφ profiles, while the dashed
lines indicate where the zero value of f ′(r) would be with each
φ0eq. It is clearly evident that in the vicinity of the interface,
the dynamic φ(r) profile at a particular time and φ0 behaves
similar to an equilibrium φ(r) profile with a potentially differ-
ent φ0eq bath.

With the previously described method for obtaining φ0eq

[setting ri = r in Eq. (13) and using μeq = f ′
m(φ0eq, T )], we

find that each value of r yields a different value of φ0eq. The
dashed-dotted line in Fig. 5(f) shows the location of the zero
value of f ′ with φ0eq as a function of r, and the correspond-
ing range of values for φ0eq is marked by the upper red bar in
Fig. 2(b). Similarly, the lower red bar in Fig. 2(b) shows the
progression of φ0eq for the dynamic data in Fig. 6(a). Specif-
ically, as the non-equilibrium interface moves from low to
higher values of r with time, φ0eq begins at some low value
and increases to φ0 with time. The non-equilibrium interface
therefore changes in time as if the φ0 bath is changing in time.
The dashed lines in Figs. 5(a) and 6(a) mark the equilibrium-
like behavior of the interface discontinuity.

Visual inspection between Figs. 5(a) and 6(a) shows dif-
ferences in how the interface emerges in time. The values of
φ0, T, and σ place the data in Fig. 5(a) above the emergence
line (re > R1), while those in Fig. 6(a) are located below
this line (re < R1). Consider the case where the parameters
are above the emergence line (re > R1) in the φ − T plane,
Fig. 2(b). As the electric field is turned on, the more polar
material accumulates first near the electrode at small values
of r, Fig. 5(a). This accumulation creates a steep concentra-
tion gradient that progresses to larger values of r as time in-
creases. When this gradient crosses re, an interface gradually
emerges, where the “discontinuity” begins from a vanishingly

small value and grows until reaching its steady-state value.
We call this phenomena continuous interface formation ki-
netics. This behavior is the dynamic analogue to a series of
equilibrium experiments with an increasing bath concentra-
tion – the bath concentration begins in the mixing region of
the phase diagram and increases such that the demixing zone
is entered by crossing the electrostatic binodal.

Consider the opposite case, where the experimental con-
ditions are below the emergence line (re < R1) in the φ − T
plane, Fig. 2(b). Again, as the electric field is turned on, the
high dielectric material accumulates first at small values of r,
except now, the interface abruptly emerges on the surface of
the electrode, Fig. 6(a). Figure 6(c) highlights how φ(r) dra-
matically changes the moment an interface forms. We call this
phenomena discontinuous interface formation kinetics. This
behavior is the dynamic analogue to a series of equilibrium
experiments with an increasing bath concentration, where the
demixing zone in the phase diagram is entered from the lo-
cal demixing region. An experimentally more relevant quan-
tity is the electric current. Switching to the boundary condi-
tion of constant V and matching the steady-state conditions in
Fig. 6(a), we observe that the electric current density j
= dσ / dt rapidly changes precisely when the interface first
forms, Fig. 6(d).

VI. ELECTROSTATIC SPINODAL LINE
AND METASTABILITY

The left boundary of the demixing zone can in princi-
ple be found experimentally with standard electrical tech-
niques, e.g., by measuring the current mentioned above or the
electrical capacitance. Changes in φ0 affect the equilibrium
(or steady-state) capacitance per unit area C = σ/V much
stronger than changes in T. By using various values of T, the
“baseline” behavior between φ0 and C can therefore be deter-
mined, Fig. 7(a). However, for a particular value of T, colored
lines in Fig. 7(a), strong deviations from this baseline behav-
ior coincide with the appearance of a thin layer of more polar
material that is separated from the bulk solution by an inter-
face. Since both the thickness of the more polar layer [ri in
Eq. (13)] and the magnitude of the interface discontinuity de-
creases with increasing T,19 the deviation from the baseline
capacitance behavior as a function of φ0 also decreases with
increasing T, Fig. 7(a).

The results from diffusion limited dynamics, however,
differ from the above description. Figure 7(a) compares
steady-state (closed symbols, solid lines) with equilibrium
(open symbols, dashed lines) capacitance measurements. The
two measurements coincide everywhere except when (φ0, T)
is “just inside” the left boundary of the demixing zone. More-
over, a “jump” in the capacitance occurs as a function of φ0

for various T, Figs. 7(a) and 7(b). The location of the ca-
pacitance jump in the φ0 − T plane does not coincide with
the left boundary of the demixing zone, Fig. 7(c), but instead
forms another line within the demixing zone. This line, called
the “electrostatic spinodal,” has been previously predicted
for diffusion-limited dynamics and divides spontaneous ver-
sus non-spontaneous electric field induced phase separation.19

The predicted mechanism for this metastable behavior
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FIG. 7. (a) Steady-state capacitance C = σ/V (F/m2) versus φ0 for equilib-
rium (open symbols, dashed lines) and steady-state dynamics (closed sym-
bols, solid lines) for T/Tc = 0.98, 0.985, 0.99, 0.995, and 0.9989 (color blue
to red) and R1/R2 = 1280. The discontinuity in C with the steady-state dy-
namics is highlighted by a black dashed-dotted line in (a) and plotted as �C
versus T in (b). The location of the discontinuity in φ0 − T plane coincides
with symbols in (c). (c) Demixing zone (solid line), electrostatic spinodal
(dashed-dotted line), and the binodal curve (dashed line) in the φ0 − T plane.
Symbols mark the spontaneous transition boundary for steady-state dynamic
calculations. (d) The value of ri on the electrostatic spinodal versus normal-
ized T. Solid line is from Eq. (13), while symbols are from steady-state dy-
namic calculations. In all figures, σ = 0.5 × 10−3 C/m2.

pertained to the inflection points in f ′(ri) associated with the
equilibrium interface distance ri.19 The actual mechanism de-
termined via dynamic calculations, Eqs. (7) and (8), does not
depend on ri and will be described in detail below. The two
mechanisms yield similar results, provided that the value of ri

is close enough to R1.
Consider the planar section in Fig. 4(a), where f ′ = 0.

Two such “cuts” in the f ′ surface for different values of
(φ0, T, σ ) are shown as dashed-dotted lines in Figs. 8(a) and
8(b). These combinations of φ(r) and r yield all the local ex-
trema in f as a function of r, and the particular profile φ(r)
that minimizes the total free energy is shown as solid lines. In
the region resembling a rotated letter “S”, f(r) has a double-
well shape with two minima. The maximum and minima in
f(r) for two distances are indirectly shown as f ′(r) versus φ in
Figs. 8(c) and 8(d) [vertical sections through f ′ surface,
Fig. 4(a)]. Correspondingly, the part of the rotated S curve
located in the gray region of Figs. 8(a) and 8(b) shows the lo-
cation of the local maximum, and the extent of the gray area
shows where f ′′ is also negative.

The points labeled with “©” symbols in Figs. 8(a) and
8(b) are given by the condition f ′(r) = f ′′(r) = 0. We will fo-
cus on the location of the left-most “©” symbol in Figs. 8(a)
and 8(b) [beginning of the lower-φ well in f(φ)], and call its
location in physical space rs. Suppose we applied an elec-
tric field to a homogeneously mixed liquid such that rs < R1,

1 1.2 1.4 1.6
0.4

0.5

0.6

r/R1

φ
(r

)

1 1.2 1.4 1.6
0.4

0.5

0.6

r/R1

φ
(r

)

0.4 0.45 0.5 0.55 0.6

−2

−1

0

1

x 10
−3

f
,
δf

/δ
φ

φ

r = ri

r = R1

0.4 0.45 0.5 0.55 0.6

−2

−1

0

1

x 10
−3

f
,
δf

/δ
φ

φ

r = ri

r = R1

(a) (b)

(d)(c)

FIG. 8. Electrostatic spinodal and metastability. Profiles φ(r) versus distance
r for T/Tc = 0.99 with φ0 = 0.385 (a) and 0.3875 (b). Dashed-dotted line
shows all solutions to f ′ = 0, while solid line indicates equilibrium solu-
tion. Symbols “×” show steady-state solutions from dynamics. Symbols “©”
mark the points where f ′ ′(φ) = 0 and gray rectangle is the area enclosed. (c)
and (d) Same data as (a)and (b), respectively, now showing f ′ (or δf/δφ) ver-
sus φ for distances r = R1 and ri. Dashed lines show f ′, while symbols mark
δf/δφ from dynamic calculations. Arrow in (c) marks the local maximum in
f (R1). In these figures, σ = 0.5 × 10−3 C/m2.

Fig. 8(a). Then an energetic barrier separates the upper- and
lower-φ solution wells. This barrier cannot be crossed for
diffusion-limited kinetics in the absence of fluctuations, and
gives rise to metastable states. The “×” symbols in Fig. 8(a)
show the steady-state metastable φ(r) profile from dynamics,
while the “×” symbols in Fig. 8(c) show δf/δφ versus φ for
all times with the same data. The arrow marks the local max-
imum at r = R1.

On the other hand, suppose rs > R1. The lower-φ solution
well does not exist for r < rs, so no energetic barriers prevent
access the upper-φ solution well. The φ(r) profile associated
with the total free energy minimum is therefore accessible,
and phase separation spontaneously occurs, as shown by the
dynamic calculations, “×” symbols in Figs. 8(b) and 8(d).

All the combinations of (φ0, T) in the stability diagram
that give rs = R1 produce the “electrostatic spinodal” line, or
the boundary between spontaneous transitions and metastable
states. To find the electrostatic spinodal, we first hold T con-
stant, set rs = R1, and find the value φs = φ(rs) associ-
ated with the lower-φ solution well by solving f ′′(rs) = 0.
We can then determine the value of φ0 (via μ) that satisfies
f ′(φs, rs) = 0.

Figure 7(c) shows that the electrostatic spinodal begins
at the kink in the stability diagram and travels down to inter-
sect the binodal curve. To the “right” of this line (larger val-
ues of φ0), demixing occurs spontaneously, while to the “left”
(smaller values of φ0) demixing occurs non-spontaneously.
The electrostatic spinodal line, dashed-dotted line in
Fig. 7(c), also coincides nicely with the steady-state dynamic
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FIG. 9. Demixing zone for closed systems. The particular demixing zone
(solid lines) for σ = 1.5 × 10−3 C/m2 in (a) open and (b) closed systems with
R2/R1 = 5. Dotted lines show the regular and electrostatic binodal curves.
Shaded region in the open system (a) is a map of the effective φ0 for the
closed system demixing zone (b).19 Black circles show the location of data
in Fig. 10. Lower and upper red bars in (a) mark φ0eq for data in Figs. 10(a)
and 10(b), respectively, while arrows show how φ0eq progresses in time.

calculations, symbols. The location of the interface ri appears
at distances greater than R1, with ri = R1 only at the kink.
Using Eq. (13) to approximate the location of ri along the
electrostatic spinodal, line in Fig. 7(d), we find an excellent
agreement with steady-state dynamics (symbols).

VII. CLOSED SYSTEMS

The idea of an effective φ0 has been used to map the
equilibrium φ(r) profile of closed systems onto that of open
systems.19 We will now extend the language of an effective
φ0 to the kinetics of closed systems by using the methods de-
veloped in Secs. III–VI.

Figure 9 compares the demixing zones for a particular
σ in open systems versus closed systems with R2/R1 = 5.
The gray region in Fig. 9(a) marks the effective φ0 that maps
into the closed system demixing zone in Fig. 9(b) (see Ref.
19 for details). Unlike the demixing zone for open systems,
the demixing zone for closed systems, solid line in Fig. 9(b),
extends across both sides of the regular binodal curve. (For
the remainder of the manuscript, we consider only the re-
gions outside the regular binodal curve.) Kinetic differences
occur when the bath concentration in the closed system is ei-
ther above or below below φc. For φ0 < φc, Fig. 10(a), the
change in φ(r) with time is analogous to that of open systems,
Fig. 5(a). However, for φ0 > φc, Fig. 10(b), the more po-
lar material accumulates near R1 while the interface emerges
first at R2 and progresses to smaller values of r. The arrow in
Fig. 10(b) illustrates how the interface moves in time, as the
least polar phase separates near the electrode.

Regardless of which direction the liquid moves in time,
similarities in the interface exist between the time snapshots
of the dynamic solution in closed systems for a particular φ0,
Figs. 10(a) and 10(b), and open system equilibrium solutions
from varying values of φ0. The surface f ′ of closed systems
now changes in time as a consequence of material conserva-
tion and is difficult to produce; however, the regular behavior
of the interface in diffusion limited kinetics still makes analy-
sis possible. In Secs. IV and V, we defined a non-equilibrium
interface without referencing where f ′ vanishes; moreover, we
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FIG. 10. Dynamic profiles for closed systems, where R2/R1 = 5 and σ =
1.5 × 10−3 C/m2. φ(r) versus r showing various snapshots in time t at inter-
vals regularly spaced on a logarithmic scale for (a) φ0 = 0.39, T/Tc = 0.9925
and (b) φ0 = 0.55, T/Tc = 0.9975. Dashed curves show the equilibrium-like
behavior of the interface, and arrows indicate the direction of movement of
the interface in time. Dotted line in (b) shows the location of data in (c).
(c) f ∗′ (or δf ∗/δφ) versus φ at r/R1 ≈ 4.88. Dashed lines show f ∗′, while
symbols mark δf ∗/δφ from dynamic calculations. Arrows indicate the direc-
tion of change in time. Dotted line in (c) marks location of an equilibrium
interface with φ0eq ≈ 0.422. (d) φ(r) versus r for dynamic calculations (solid
line) in (b) and equilibrium (dashed line) with φ0eq ≈ 0.42.

found φ0eq by leaving μ as a free parameter in Eq. (13). So
rather than using the time dependent μ in Eq. (6), we can
set μ as an arbitrary constant [here we choose the open sys-
tem μ = f ′

m(φ0, T )] to produce an effective δf ∗/δφ and f ∗′.
Figure 10(c) compares f ∗′ versus φ(r) at a particular r, dashed
line, with δf ∗/δφ from dynamic calculations at various times,
symbols, and arrows. The dotted line in Fig. 10(c) shows the
corresponding φ0eq. Similar to the kinetics in open systems,
the time dependent solution in a closed system forms an inter-
face along this line, symbols in Fig. 10(c). The entire φ(r) pro-
files, Fig. 10(d), reveal the similarity in the vicinity of the in-
terface between the closed system dynamic calculations with
a constant φ0 ≈ 0.55 (solid line) and the corresponding open
system equilibrium solution (dashed lines) with φ0 = φ0eq

≈ 0.42. The non-equilibrium interface in a closed system
therefore behaves similar to an interface in equilibrium in an
open system, and the dashed curves in Figs. 10(a) and 10(b)
mark the equilibrium-like behavior of the interface disconti-
nuity. We plot how φ0eq changes in time in Figs. 10(a) and
10(b) as lower and upper red bars, respectively, with associ-
ated arrows in Fig. 9(a).

The same basic kinetic regions (continuous, discontin-
uous, and metastable) of the demixing zone also occur in
closed systems, with some differences that pertain to the ex-
istence of a second boundary R2. The equation for finding
the emergence line is the same for open and closed sys-
tems, and this line divides the continuous and discontinuous
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FIG. 11. Electrostatic spinodal and metastability in closed systems, where
R2/R1 = 5 and σ = 0.8 × 10−3 C/m2. Profiles φ(r) versus distance r for
T/Tc = 0.995 with φ0 = 0.5625 (a) and 0.5635 (b). Dashed-dotted lines show
the metastable solutions, while solid lines indicate the equilibrium solutions.
Symbols “×” show steady-state solutions from dynamics. (c) Demixing zone
(solid line), emergence line (dashed line), electrostatic spinodal (dashed-
dotted lines), and the binodal curve (dotted line) in the φ0 − T plane. Symbols
mark the transition boundary for steady-state calculations. “C” and “D” de-
note continuous and discontinuous interface formation kinetics, while “M”
denotes metastable region.

interface formation kinetic regions when φ0 < φc. However,
for φ0 > φc, the continuous transition region does not exist as
a consequence of the following: the equilibrium-like interface
“opens” in the direction of R2, dashed curves in Fig. 10(b),
while the interface first emerges from R2 and moves in the
opposite direction (smaller values of r), arrow in Fig. 10(b).

The metastable region occurs on both sides of φc,
Fig. 11(c). For φ0 < φc, the spinodal line is found using anal-
ogous methods as an open system. However for φ0 > φc, R2

is now the relevant physical boundary, rs = R2 divides spon-
taneous transitions from metastable states, and the metastable
states lie along the upper-φ solution well. Figures 11(a) and
11(b) show the φ(r) profiles for rs < R2 and rs > R2, re-
spectively, for the equilibrium solution (solid line), metastable
state (dashed-dotted line), and dynamic calculations (sym-
bols). Due to material conservation, the upper- and lower-φ
solution wells for closed systems, Figs. 11(a) and 11(b), are
different from open systems, Figs. 8(a) and 8(b).

VIII. CONCLUSION

Non-uniform electric fields significantly alter the kinet-
ics of liquid-liquid demixing, and in this manuscript we
demonstrate how the free energy can be used to predict
non-equilibrium interface behavior. The properties of the
time-dependent interface depend on where the interface is
located in space, in addition to bulk parameters, such as
the composition of the reservoir and temperature. These
location-dependent changes in the interface that occur during

diffusion-limited kinetics can be approximated as a series of
equilibrium interfaces with varying reservoir compositions.

Future work still remains. With the release of the radial
symmetry constraint, significant patterns could emerge. For
example, partial wetting with cap-like domains is predicted
to occur in colloids when theories include salt in polar liq-
uid mixtures with preferential surface adsorption.24 This case
highlights the strong influence of the local environment on the
resulting wetting layer. In the much simpler theory presented
in this manuscript, the possible cause for non-radial patterns
is the energetic penalty that exists when dielectric interfaces
are perpendicular to the field.18 This penalty would compete
with the energetic penalty of placing the less polar material
in the low-field region. We predict that such an interfacial in-
stability will develop for certain values of the field, mixture
composition, and geometry.

Finally, and related to the above point, the azimuthal
symmetry led to diffusive kinetics; however, better models are
required when this symmetry is broken.22 Rather than just a
single interface moving outward, rapid fluid movement could
create additional interfaces that lead to droplet formation and
coarsening dynamics. Viscosity-related effects could compete
against electric field, and on the other hand, inertial effects
could help to overcome the barriers that prevent phase sepa-
ration in the metastable region of the phase diagram.
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APPENDIX: SPECIAL CASE FOR WEDGE
GEOMETRIES

Differencesfrom the above discussion concerning the
emergence line can occur in wedge geometries when ε′′ > 0.
Figure 12(a) shows that the degenerate region of the φ(r)
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FIG. 12. Interface properties for open wedge geometries with ε′ ′ = 2.
(a) φ(r) versus normalized distance r for φ0 = 0.375, T/Tc = 1.002, and
V/θ = 2.5 V. Dashed vertical lines from left to right show r = R1, ri, and re.
Shaded areas mark regions where f ′ is degenerate and f ′ ′ ≥ 0. (b) Stability
diagram (solid line) within the local demixing region (dotted lines) show-
ing all kinetically important features in the φ0 − T plane for V/θ = 1 V.
“D” denotes discontinuous interface formation kinetics, while “M” denotes
metastable region.
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profile for the wedge with ε′′ = 2 “opens” in the reverse di-
rection when compared with Fig. 3(b). In these cases, the in-
terface can exist anywhere in real space for T/Tc < 1, and only
in restricted regions of real space for T/Tc > 1. But since re is
now the largest distance where the interface can emerge, there
is no change in kinetic behavior above versus below T/Tc = 1
for the diffusion-limited dynamics discussed here.
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