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Mixing-demixing phase diagram for simple liquids in nonuniform electric fields
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We deduce the mixing-demixing phase diagram for binary liquid mixtures in an electric field for various
electrode geometries and arbitrary constitutive relation for the dielectric constant. By focusing on the behavior of
the liquid-liquid interface, we produce simple analytic expressions for the dependence of the interface location on
experimental parameters. We also show that the phase diagram contains regions where liquid separation cannot
occur under any applied field. The analytic expression for the boundary “electrostatic binodal” line reveals that
the regions’ size and shape depend strongly on the dielectric relation between the liquids. Moreover, we predict
the existence of an “electrostatic spinodal” line that identifies conditions where the liquids are in a metastable
state. We finally construct the phase diagram for closed systems by mapping solutions onto those of an open
system via an effective liquid composition. For closed systems at a fixed temperature and mixture composition,
liquid separation occurs in a finite “window” of surface potential (or charge density). Higher potentials or charge
densities counterintuitively destroy the interface, leading to liquid mixing. These results give valuable guides for
experiments by providing easily testable predictions for how liquids behave in nonuniform electric fields.
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I. INTRODUCTION

Phase transitions describe fundamental transformations in
substances, where material properties, such as viscosity and
refractive index, often dramatically change. These changes
are mediated not only by intrinsic thermodynamic variables
(temperature, pressure, etc.), but also by external forces
(gravitational [1], magnetic [2], and electric [3] fields and shear
flows [4,5]). Scientific interest in using electric fields to alter
phase behavior spans over half a century and has resulted in
theories and experiments devoted to the application of uniform
fields in dielectric liquid mixtures [3,6–13]. Unfortunately, the
liquid-field coupling in uniform electric fields is very weak
since in such cases variations in the field strength occur as
a result of variations in the permittivity of the liquid. As a
consequence, theories predict that even minuscule changes to
the phase diagram require enormous applied voltages [3,6,9].

In contrast, recent theoretical and experimental results
reveal that nonuniform fields can effectuate large changes in
phase diagrams [14–16]. The externally produced spatial vari-
ations in field strength occur even in homogeneous materials
and lead to liquid rearrangement that can potentially induce
liquid-liquid separation. High-gradient fields readily emerge
from a modest potential or surface charge on misaligned
plate capacitors as well as from small objects with high surface
curvature, like nanowires and colloids [14–16]. Thus the
relative ease of creating nonuniform fields underscores the po-
tential to profoundly influence the behavior of complex liquids.

The challenge of nonuniform fields, however, resides in
distinguishing true liquid-liquid phase separation from mere
concentration gradients. In the more common case of uniform
fields, the free energy has a double-well form with two
coexisting minima. Since the system possesses translational
invariance, the two liquids can replace each other in space
without changing the total energy. This does not hold for

*galanis@bgu.ac.il
†tsori@bgu.ac.il

nonuniform fields where translational invariance is broken.
Here, the spatial location of the liquids is directly tied to the
free energy, and as a consequence, the total free energy can
have a single minimum even with two-phase coexistence. We
point out that not all spatially nonuniform fields display this
property, as, for example, in the case of random-field [17] and
periodic-field [18] Ising models.

To overcome the difficulty of determining a transition, we
defined phase separation by observing a local property—the
behavior of the interface. Using this perspective, we derived
analytic expressions for predicting the location of the interface
from experimental parameters. We additionally adapted the
standard methods used in creating phase diagrams and found
the electrostatic equivalent of binodal and spinodal lines as
well as critical points. The methods presented here can, in
principle, apply to any geometry, and we explicitly give results
for three basic electrode shapes: wedge, cylinder, and sphere.
Furthermore, these methods can incorporate an arbitrarily
complicated dielectric relation for the liquid composition,
provided that derivatives to the expression exist.

The article is arranged as follows. We describe the theory
for liquid mixtures with electric fields in Sec. II and briefly
review general properties of phase diagrams in the absence
of external fields in Sec. III. In Sec. IV, we introduce a
useful definition of phase separation in an electric field that
is essential for simplifying theoretical expressions. In Sec. V,
we assume that phase separation exists and derive simple
expressions for the location of the liquid-liquid interface. The
mixing-demixing regions of the phase diagram as well as the
dividing “electrostatic binodal” line are discussed in Sec. VI,
while the theoretical stable-metastable states and dividing
“electrostatic spinodal” line are presented in Sec. VII. Finally,
we discuss important differences between open and closed
systems in Sec. VIII.

II. THEORY

Using a mean-field approach, we consider a binary mixture
of two liquids, A and B, in an electric field E, and write the
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total free energy F for a volume V as

F =
∫

V

(Fm + Fe) dV, (1)

where Fm, and Fe are the free energy densities for mixing and
electrostatics, respectively.

The liquids, in the absence of an electric field, can mix or
demix due to a competition between entropy and enthalpy,
where the temperature T adjusts the relative balance. For
concreteness, we use the following Landau free energy of
mixing Fm = kTfm/Nv, where the expansion is performed
around the critical volume fraction φc,

fm ≈ (2 − Nχ ) (φ − φc)2 + 4
3 (φ − φc)4 + const, (2)

where k is Boltzmann’s constant, φ, such that 0 < φ < 1, is
the volume fraction of component A, and χ ∼ 1/T is the
Flory interaction parameter [19]. Without loss of generality,
we set φc = 0.5 and Nχ = 2Tc/T , where Tc is the critical
temperature. Simple liquids have N = 1, while polymers are
composed of N > 1 monomers with volume v. Here, we
consider the symmetric simple liquid N = NA = NB = 1.
Real interfaces consist of a gradual change in composition. In
contrast, fm generates an interface marked by a discontinuity in
composition. We find, however, that the discontinuity greatly
simplifies the analysis that follows.

For electrostatics, the free energy Fe = kTfe/Nv is given
by

Fe = ± 1
2ε0ε(φ)|∇ψ |2, (3)

where ε0 is the vacuum permittivity and ψ is the electrostatic
potential (E = −∇ψ). The positive (negative) sign corre-
sponds to constant charge (potential) boundary conditions.

The dielectric permittivity at zero frequency ε(φ) depends
on the relative liquid-liquid composition. For clarity in the
discussion, we mainly consider a linear relation, ε(φ) = (εA −
εB)φ + εB , where εA and εB are the dielectric constants for
pure liquids A and B, respectively. Excluding the possibility
of critical behavior in ε(φ) in the immediate vicinity of
the liquid’s critical point (φc,Tc) [20,21], the measured ε(φ)
often approximates a quadratic function for various liquid
combinations [9,10]. We, therefore, highlight some significant
changes in the results that occur with higher order ε(φ)
relations.

To determine the equilibrium state in the presence of a
field, we minimize F with respect to φ and ψ using calculus
of variations and obtain the Euler-Lagrange equations

δF
δψ

= ∇ · [ε0ε(φ)∇ψ] = 0, (4)

δF
δφ

= F ′
m − ε0

2
ε′(φ)|∇ψ |2 − μ̃ = 0, (5)

where the prime (′) represents the derivative with respect to
φ. The first equation is Laplace’s equation for the potential ψ ,
while the second equation gives the composition distribution
φ. Both ε(φ) and ψ couple the two equations.

The Lagrange multiplier μ̃ = kT μ/Nv in Eq. (5) dif-
ferentiates between open and closed systems. For a closed
system (canonical ensemble), μ is adjusted to satisfy the mass
conservation constraint, 〈φ〉 = φ0, where φ0 is the average
composition. When the system under consideration is coupled

FIG. 1. Model systems. (a) Cross section through the diameter of
concentric cylinders or spheres with surface charge density σ . The
distance r is measured from the center of the cylinder/sphere, and
the boundaries are located at R1 and R2. (b) Cross section of two
flat-plate electrodes with an opening angle θ and potential difference
V . Distance r is measured from the “intersection” of the two plates,
and the boundaries R1 and R2 mark the ends of the plates. Shading
shows the space occupied by the liquid mixture.

to an infinite reservoir at composition φ0, μ = μ0(φ0) is the
chemical potential of the reservoir.

We conduct detailed investigations of the phase transition
with three simple yet fundamental shapes—cylinder, sphere,
and wedge. A closed system with cylindrical geometry consists
of two concentric cylinders with radii R1 and R2, where
R2 → ∞ produces an open system [Fig. 1(a)]. We impose
cylindrical symmetry such that φ = φ(r) and ψ = ψ(r), where
r is the distance from the inner cylinder’s center. Furthermore,
the prescribed charge density σ on the inner cylinder allows
integration of Gauss’s law to obtain an explicit expression for
the electric field. By using a similar construction for spherical
geometry we find that the electric field for both cylindri-
cal and spherical configurations is E(r) = σRn

1/(ε0ε(φ)rn)r̂,
where n = 1 and 2 for cylinders and spheres, respec-
tively. Combining this result with E = −∇ψ in Eq. (5),
we obtain a single equation determining the composition
profile φ(r):

f ′
m − Nv

2kT ε0

(
σRn

1

rn

)2
ε′(φ)

ε(φ)2
− μ = 0. (6)

The wedge geometry consists of two “misaligned” flat
plates with an opening angle θ [Fig. 1(b)]. Using a constant
potential boundary condition, we obtain an electric field
E(r) = (V/rθ )ϑ̂ , where V is the potential difference across
the electrodes, r is the distance from the imaginary intersection
of the two plates, and ϑ is the azimuthal angle. Combining this
result with Eq. (5), we obtain

f ′
m − Nv

2kT

(
V

rθ

)2

ε0ε
′(φ) − μ = 0. (7)

In this article we mainly present results for cylindrical ge-
ometry. This geometry intrinsically presents a mathematically
unsavory dependence of fe on φ [via ε(φ)] and, therefore,
creates more complicated solutions than, for example, in the
wedge. Also, the difference in equational form between the
cylinder and the sphere does not present new information for
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discussion. The methods presented here can easily be adapted
to both wedge and sphere geometries.

As will become evident, the precise surface charge density
(surface potential) necessary to induce a transition depends
on experimental parameters like the size and relative concen-
tration of the liquid molecules, size of the charged material,
temperature, etc. We consider a wide range of surface charges
σ , from approximately 0 up to 2 × 10−3 C/m2 (equivalent
to 1.25 × 10−2e/nm2). For comparison, colloidal particles
immersed in the nonpolar phase of an inverse-micelle liquid
have been measured to have high surface potentials, with
an estimate of 200e to 900e charges [22]. This amount of
charge on a colloid could induce phase separation in a binary
mixture if its composition is close enough to the demixing
curve. The demixed liquid layer surrounding the colloid is
predicted to be several tens to hundreds of nanometers thick,
thereby altering the local environment of the colloid in an
otherwise mixed liquid suspension. Of course, having the
ability to externally apply a field, for example, via an electrode,
can be useful in some applications.

III. PHASE DIAGRAM WITHOUT AN ELECTRIC FIELD

We briefly discuss some features of the mixing-demixing
phase diagram in the absence of electric fields that are
essential in the derivations below. A “double-well” function
[for example Eq. (2) when T < Tc] possesses two local
minima, one local maximum, and two inflection points located
between the maximum and each minimum.

To ascertain the minimum of fm at constant T , we find
the solution to f ′

m = 0 [Fig. 2(c)] that also satisfies f (2)
m > 0

[Fig. 2(d)], where the derivatives are taken with respect to φ0.
The two solutions φb(T ) = 1/2 ± √

3(Tc − T )/4T ) for each
T < Tc create the binodal curve [thick solid line in Fig. 2(a)].
Fluids demix if the initial conditions (φ0,T ) are under the
binodal curve and mix if they are above this curve. There in
fact exists a third solution to f ′

m = 0 [Fig. 2(c)]—the local
maximum at concentration φu(T ) [dashed line in Fig. 2(a)].
Even though this solution is physically unstable [f (2)

m (φu) < 0;
Fig. 2(d)], it will be useful in subsequent sections. If the
local minima satisfy f (2)

m > 0 and the local maximum satisfies
f (2)

m < 0, then there must exist inflection points between the
extrema that satisfy f (2)

m = 0 [Fig. 2(d)]. These solutions
φs(T ) = 1/2 ± √

(Tc − T )/4T for each T < Tc create the
spinodal line [dash-dotted line in Fig. 2(a)] and describe
liquid behavior dynamically. If the initial point (φ0,T ) is
located below the spinodal curve, then the liquids demix
spontaneously. If, however, φ0 exists between φb and φs , then
the liquid can be “stuck” in a local minimum, resulting in a
metastable mixed state.

At the critical point (φc,Tc) the shape of fm changes from
having a single minimum to double minima. As T increases
to Tc, the two minima φb, the two inflection points φs , and the
maximum φu converge and convert into a single minimum φc.
To meet these requirements the critical point must satisfy f ′

m =
f (2)

m = f (3)
m = 0 and f (4)

m > 0. Figures 2(c) and 2(d) display
two of the four requirements. Finally, the light solid line in
Fig. 2(a) shows the single solution φi(T ) to f ′

m = 0 above the
critical point.

FIG. 2. Free energy of mixing fm. (a) Phase diagram in the φ0-T
plane showing the zero-field binodal curve (φb; thick solid line),
spinodal curve (φs ; dash-dotted line), unstable solution (φu; dashed
line), critical point φc, and minimum of fm above Tc (φi ; thin solid
line). Symbols mark the location of data in Fig. 4(a), while horizontal
and vertical bars mark the location of data in Figs. 4(c) and 4(d),
respectively. (b)–(d) Plots of fm and its derivatives with respect to
φ versus φ0 for T less than (solid line), equal to (dashed line), and
greater than (dash-dotted line) Tc. In this and in all other figures
Tc = 298 K, εA = 5, εB = 3, R1 = 1 μm and Nv = 1 × 10−26 m3.

IV. DEFINING PHASE SEPARATION

Nonuniform electric fields impose a nonuniform “pull”
on the liquid mixture, manifesting as an r-dependent total
free energy density f (φ,r) = fm(φ) + fe(φ,r) − φμ. The
behavior of f can be conceptualized as a competition between
mixing and electrostatic energies. As r → ∞, the electric field
is weak, fe → 0, and f ≈ fm − φμ governs liquid behavior.
The solid line in Fig. 3(a) shows a typical example of f (φ,r)
at a large value of r using φ0 = 0.33, T/Tc = 0.98, and
σ = 1.428 × 10−3 C/m2 in an open cylinder system. The
minimum of f (φ,r), marked by a symbol, gives the value
of φ(r) as r → ∞, which in this case is 0.33. At the other
distance extreme, r = R1, the electric field is the strongest,
and the dashed line in Fig. 3(a) shows the resulting f (φ,r).
Note the dramatic difference in the value of φ(r) when the
value of r is small (R1) versus large.

By finding the minimum of f for all values of r , it is
possible to construct the full concentration profile φ(r), where
the solid line in Fig. 3(b) corresponds to the data from Fig. 3(a).
Whether or not a phase transition occurs in the equilibrium
solution resides in how the minimized f (φ,r) changes as r

varies between the two distance extremes. Specifically, if there
exists an r = ri where R1 � ri � R2 and f (φ,ri) contains
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FIG. 3. Free energy density f (φ,r) for an open cylinder system,
where (a), (c), and (d) show f , f ′, and f (2), respectively, versus φ

at distance r = R1 (dashed line), ri (dash-dotted line), and a large
value (solid line) for φ0 = 0.33, T/Tc = 0.98, and σ = 1.428 ×
10−3 C/m2. Symbols in (a) show the minima for each curve. (b)
φ(r) versus normalized distance r . The solid line shows data from
(a). The dash-dotted line has the same φ0 and T as in (a) but with
the smaller σ = 0.540 × 10−3 C/m2. The dashed line has the same
φ0 and σ as in (a) but with the larger T/Tc = 0.995.

two minima [see dash-dotted line in Fig. 3(a)], then ri is an
interface between the two liquids. Figure 3(b) illustrates how
the two minima in f (φ,ri) translate into a discontinuity at
φ(ri), thereby creating a distinct boundary between the two
phases.

A closer inspection of f (φ,r) at r = ri reveals important
mathematical features similar to those in fm(φ) discussed in
the previous section. The similarity is not surprising, since
fm(φ) is a component of f (φ,r). The dash-dotted lines in
Figs. 3(a), 3(c), and 3(d) show that f (φ,ri) possesses two
local minima that we call φiH and φiL, one local maximum
φu, and two inflection points that we call φsH and φsL. In
addition, f (φ,ri) can have critical behavior. We demonstrate
that all these features at ri behave analogously to those in
Fig. 2(a) and show how to use this information to construct the
mixing-demixing phase diagram with an electric field.

V. COMPOSITION PROFILES φ(r) AND LOCATION
OF THE INTERFACE

Not all applied fields induce liquid demixing, and based
on our definition of a phase transition, there are two possible
causes. First, ri exists in “virtual” (ri < R1 or ri > R2) rather
than “real” space [dash-dotted line in Fig. 3(b)]. Second, f

FIG. 4. Variation of concentration profiles φ(r) for an open
cylinder system. (a) φ(r) versus normalized distance r for constant
φ0 = 0.33, T/Tc = 0.985, and varying σ = 0.4 × 10−3 to 2.0 ×
10−3 C/m2 in 0.4 × 10−3 increments (lines, left to right). (b) Data in
(a) collapse when plotted versus a rescaled distance (r − ri)/(σR1).
(c) φ(r) versus r for constant T/Tc ≈ 0.994, σ = 1 × 10−3 C/m2,
and varying φ = 0.3 to 0.4 in 0.01 increments (lines, left to right).
(d) φ(r) versus r for constant φ = 0.36, σ = 1 × 10−3 C/m2, and
varying T/Tc ≈ 0.982 to 1 in 0.0016 increments (lines, right to left).

contains a single minimum for all r , including ri [dashed line
in Fig. 3(b)].

We begin with the first cause. For a constant φ0 and T ,
Fig. 3(b) shows that certain values of σ induce a transition,
whereas others do not. In fact, there exists a transition σt

that marks the lowest σ necessary for liquid-liquid separation.
Figure 4(a) also shows how increasing σ moves the interface
ri to larger r , using an open cylinder system as an example.
Noting that mathematical solutions exist for all r (including
those distances in nonphysical space), the vertical dashed line
in Fig. 4(a) at r = R1 marks the surface of the cylinder. To the
right of this line is real (physical) space, while to the left is the
virtual space inside the electrode [or not between the plates as
defined in Fig. 1(b) for wedge geometries]. This observation
inspires an alternative definition: the surface charge density σt

is the σ that places ri exactly at R1. We stress that profiles φ(r)
at constant φ0 and T in open systems with varying values of
σ all collapse to a single curve when plotted versus a scaled
distance (r − ri)/(σR1) [Fig. 4(b)].

Varying φ0 (holding T and σ constant) and T (holding
φ0 and σ constant) reveals the second cause for no phase
separation, illustrated in Figs. 4(c) and 4(d), respectively. In
these cases, both the interface location ri and the size of the
discontinuity change. Importantly, the discontinuity can even
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FIG. 5. Controlling the location of the interface ri for an open
cylinder system. (a) Normalized ri versus σ [C/m2] for various
values of φ0, where T/Tc = 0.975. (b) Normalized ri versus φ0 for
various values of T/Tc, where σ ≈ 5.4 × 10−4 C/m2. (c) Normal-
ized ri versus T/Tc for various φ0, where σ ≈ 5.4 × 10−4 C/m2.
(d) Collapse of all data from (a)–(c) when ri is plotted against
Eq. (10). In (b) and (c), vertical dashed lines mark the binodal for the
given values of φ0 and T .

vanish as the high and low concentrations φiH and φiL at
the interface merge to the same value at certain φ0 or T .
Note the remarkable similarity between the behavior of the
discontinuity at ri [dash-dotted lines in Figs. 4(c) and 4(d) and
the binodal curve [Fig. 2(a)].

The location of the interface, once it exists, is controlled by
φ0, T , σ , and R2. In general, ri increases with increasing σ

[Figs. 4(a) and 5(a)], increasing φ0 [Figs. 4(c) and 5(b)], de-
creasing T [Figs. 4(d) and 5(c)], and increasing R2 [discussed
in Sec. VIII; Fig. 8(b)]. Besides solving the full φ(r) profile,
a quicker method for determining the location of the interface
ri consists of solving the three equations [16,23]

f ′
m(φiH ) − f ′

e (φiH ,ri) − μ = 0,

f ′
m(φiL) − f ′

e (φiL,ri) − μ = 0,

fm(φiH ) ± fe(φiH ,ri) − φiH μ =fm(φiL) ± fe(φiL,ri) − φiLμ

(8)

for three unknowns: ri and the high and low concentrations
φiH and φiL, respectively, at ri . The plus (minus) sign in
the third equation is for constant charge (potential) boundary
conditions. The first two equations find extremum points and
are simply Eq. (6) or (7), depending on the system geometry.
The third equation ensures that the free energy for the high
concentration φiH is as favorable as the low concentration φiL.

An even simpler method for finding ri consists of recalling
that there exists a third solution to f ′: the local maxima

φu [Fig. 3(c)]. For cylindrical (n = 1) and spherical (n = 2)
geometries, the explicit equation for f ′ = 0 is

0 = 4

(
1 − Tc

T

)
(φu − φc) + 16

3
(φu − φc)3

− Nv

2kT ε0

(
σRn

1

rn
i

)2
ε′(φu)

ε(φu)2
− μ. (9)

If φu is known, then ri can, in principle, be deduced from
experimental parameters (φ0, T , etc.). For now, we borrow
ideas from the binodal curve and make the assumption φu =
φc = 0.5, but we see later that φu indeed approximately equals
φc under many conditions. Rearranging Eq. (9), we now have
the useful relation(

σRn
1

rn
i

)2

= −μ
2kT ε0

Nv

ε(φc)2

ε′(φc)
. (10)

In open systems, this equation is further simplified by substi-
tuting μ = μ0(φ0) = f ′

m(φ0,T ). The lines in Figs. 5(a), 5(b),
and 5(c) use Eq. (10) to solve ri in an open cylinder system and
reveal an excellent agreement with the solutions from Eqs. (8)
(symbols). Figure 5(d) combines all data from Figs. 5(a), 5(b),
and 5(c), revealing that the agreement spans many orders of
magnitude.

The analogous equation for finding ri in a wedge geometry
is (

V

θri

)2

= − 2kT μ

Nvε0ε′(φc)
. (11)

VI. STABILITY DIAGRAM AND
ELECTROSTATIC BINODAL

If an electric field can cause phase separation in a region
of φ0-T space above the binodal curve, a natural question
arises: What is the new stability diagram for a particular
value of surface charge density σ? This can be constructed by
holding σ constant and probing φ0-T space for liquid-liquid
demixing. Since the electric field breaks the symmetry of
the free energy with respect to composition (φ0 → 1 − φ0),
the stability diagram is asymmetric with respect to φ0 − φc.
Figure 6(a) compares a typical stability curve for an open
cylindrical system (solid line) to the binodal curve (dashed
line). Clearly, nonuniform fields can produce large changes in
the phase diagram.

Figure 6(b) shows the superposition of stability diagrams
from a wide range of σ in an open cylindrical system, where
the color indicates the transition σt for each point (φ0,T ).
(Points beneath the binodal curve are omitted since phase
separation occurs there without an electric field.) Figure 6(b)
clearly illustrates two distinct regions in the φ0-T plane. In
the “demixed” region, there exists a σt for each (φ0,T ) such
that any σ � σt results in liquid demixing. In the “mixed”
region, no σ exists that results in liquid demixing. Note how
the mixed region extends well below Tc, indicating that simply
setting T < Tc is not sufficient to produce a phase transition
with an electric field. We call the curve that divides these two
regions the “electrostatic binodal.”

To derive the electrostatic binodal, we draw inspiration
from the “regular” binodal curve. The convergence of the
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FIG. 6. (Color online) Electrostatic binodal in open systems. (a)
Stability diagram (solid line) and electrostatic spinodal (dash-dotted
line) in the φ0-T plane for σ = 1 × 10−3 C/m2. The dashed line is
the binodal curve. The path of the arrow marks the location of data
in Fig. 4(d). (b) Overlay of many stability diagrams, where color
indicates transition σt (C/m2). The solid line is electrostatic binodal
from Eq. (14), where thick and thin marks show where values of
σt = σK are real and imaginary, respectively. (c) Solutions φi (solid
lines), φiC (symbols), and φu (dashed lines) to f (3) = 0 versus T ,
where σ = 0.5 × 10−3, 1 × 10−3, 2.5 × 10−3, and 5 × 10−3 C/m2

(lines, left to right). The dotted curve shows φiC for all σ . (d) Critical
σK [C/m2] along the electrostatic binodal versus TK . (e) Quadratic
forms of ε(φ) versus φ, where the second derivative ε(2)(φ) = −2,
−1, 0, 1, and 2 (arrow). (f) Solid lines show the electrostatic binodal
for an open wedge system using the ε(2)(φ) from (e) (arrow). The
dash-dotted line shows the electrostatic binodal using Flory-Huggins
theory for fm and ε(2)(φ) = −2. The dashed line is the binodal curve.

interface concentrations φiH and φiL in Figs. 4(c) and 4(d)
suggests the existence of a critical point at ri . If there exists
a critical point at ri , then the two minima φiH and φiL, the

local maximum φu, and the two inflection points φsH and φsL

converge to a single point φiC , resulting in f ′(ri) = f (2)(ri) =
f (3)(ri) = 0 and f (4)(ri) > 0. We call the coordinates in the
φ0-T plane that produce a critical point at ri the critical φK and
critical TK .

We now show one method for finding φK and TK , using
an open cylinder system as an example and beginning with
f (2) = 0:

2

(
1 − Tc

TK

)
+ 8(φiC − φc)2 + Nv

2kTKε0

[ε′(φiC)]2

ε(φiC)3

(
σR1

ri

)2

= 0. (12)

The derivation of Eq. (10) depends on finding a φ that
satisfies f ′ = 0 but does not specify φ as a local maximum
or minimum. In particular, φiC also satisfies Eq. (10). We
therefore substitute Eq. (10) for (σR1/ri)2 into Eq. (12), use
μ = μ0(φK ) = f ′

m(φK,TK ) for an open system, and rearrange
to obtain

TK

Tc

=
[

4 (φiC − φc)2 − 8
3 (φK − φc)3 ε′(φiC )

ε(φiC )

1 − 2 (φK − φc) ε′(φiC )
ε(φiC )

+ 1

]−1

open cylinder. (13)

Note that as ε′ → 0, we recover the solution to f (2)
m = 0, and

TK → Tc when φi equals the critical composition φc.
Proceeding, φiC must also satisfy f (3) = 0 at ri . Figure 6(c)

shows the solutions to f (3) = 0 for a wide range of T , where
the curves from left to right are low to high σ . The values of
φi (solid lines), φiC (symbols), and φu (dashed lines) form a
continuous variation with T [Fig. 6(c)], analogous to φi , φc,
and φu with fm [Fig. 2(a)]. Since φiC ≈ φc [Fig. 6(c)], we can
simplify Eq. (13) to obtain the expression for the electrostatic
binodal in an open cylinder system:

TK

Tc

≈
[ − 8

3 (φK − φc)3 ε′(φc)
ε(φc)

1 − 2 (φK − φc) ε′(φc)
ε(φc)

+ 1

]−1

open cylinder. (14)

Interestingly, this equation depends only on φK and the
functional form of ε(φ), and is independent of σ and ri . This
finding is a consequence of the self-similarity of solutions in
open systems for a constant φ0 and T , described in Sec. V and
shown in Fig. 4(b). Moreover, the geometry difference between
cylinders and spheres does not influence the electrostatic
binodal. Equation (14) is, in fact, the same equation for the
electrostatic binodal in an open sphere system, using the same
assumptions.

The thick solid line in Fig. 6(b) shows the results from
Eq. (14), as it accurately divides the φ0-T plane into mixed
and demixed regions. With each point (φK,TK ), there is an
associated critical σK : the σ that places ri exactly at R1. It
is important to recognize that σK is not constant along the
electrostatic binodal: σK is 0 at TK = Tc and increases as TK

[Fig. 6(d)] and/or φK decreases. Figure 6(d) compares σK from
calculations (symbols) versus σK derived from Eq. (10) using
φK , TK , and ri = R1 (line). Equation (14) predicts that the
electrostatic binodal also exists for φ0 > φc [thin solid line in
Fig. 6(b)]; however, the associated values of σK are imaginary
and not possible in real physical systems.
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The electrostatic binodal is a line of critical points, or
simply a “critical line.” This finding explains some curious
observations found previously [16]: If φ0 and/or T is changed
such that the stability diagram for a constant σ is crossed on the
boundary between the kink and (φc,Tc) [for example, the arrow
in Fig. 6(a)], then ri emerges at some distance greater than R1

[Fig. 4(d)]. The kink marks (φK,TK,σ = σK ). The boundary
of the stability diagram to the right of the kink is exactly the
electrostatic binodal. On this boundary, σ is now larger than
σK . In other words, σ is no longer the minimum surface charge
that induces the transition; therefore, ri necessarily emerges at
some distance greater than R1.

The open wedge system produces analogous results; how-
ever, we use the simplicity of the equations in this geometry to
demonstrate the effects of quadratic ε(φ) relations [Fig. 6(e)].
Following the same reasoning as for an open cylinder system,
we find the electrostatic binodal for an open wedge:

TK

Tc

=
⎡
⎣ 4

3 (φK − φc)3 ε(2)(φc)
ε′(φc)

1 + (φK − φc) ε(2)(φc)
ε′(φc)

+ 1

⎤
⎦

−1

open wedge. (15)

We add that φi , φiC , and φu exactly equal φc if ε(2)(φ)
and higher derivatives vanish. Note the similarity between
Eq. (14) and (15), where the main difference is that higher
derivatives of ε(φ) control the electrostatic binodal in the
wedge geometry. Figure 6(f) shows how the electrostatic
binodal for the wedge curves downwards to upwards as ε(2)(φc)
changes from negative to positive. And if ε(2)(φc) = 0, then TK

for the electrostatic binodal simply equals Tc for all φK . By
comparing Fig. 6(e) to the results in Fig. 6(f), it is evident that
small amounts of curvature in ε(φ) can create large changes
in the electrostatic binodal, in agreement with previous
findings [16].

We briefly discuss an alternate derivation presented in
Ref. [16] to emphasize that we have not exhausted all possible
relations between parameters. Beginning with f (2) = f (3) = 0
for ri = R1 and ε(3)(φ) = 0 in the wedge geometry, we obtain

TK

Tc

= 1 + Nvε0ε
(2)(φ)

8kTc

(
VK

θR1

)2

. (16)

Interestingly, using the Flory-Huggins approximation for fm

results in exactly the same relation [Eq. (16)] as the Landau
approximation. The differences between the two approxima-
tions instead arise when determining φK , where the biggest
discrepancies occur, as expected, for values of φK that are far
from φc [Fig. 6(f)].

VII. ELECTROSTATIC SPINODAL

We now turn the discussion to possible metastable states,
recalling the meaning of the spinodal curve in the mean-field
theory [24]. Earlier in the paper, we rationalized the existence
of inflection points φs at ri through the presence of a maximum
φu and minima φiH , φiL. Both high and low values, φsH and
φsL, satisfy f (2) = 0 and exist at all interfaces. Figure 7(a),
for example, explicitly shows the mathematical features [φiH ,
φiL (solid line), φsH , φsL (dash-dotted line), φu (dashed line),
and critical point] occurring at ri with changing T in an open

FIG. 7. (Color online) Electrostatic spinodal for an open cylinder
system. (a) Behavior of φ(ri) with T , showing φiH , φiL (solid line),
φsH , φsL (dash-dotted line), and φu (dashed line). Lines converge at the
critical point φiC . For all data, φ0 = 0.33 and σ ≈ 2.09 × 10−3 C/m2.
Dotted lines show φb. (b) All φ(r) solutions to f ′ = 0 versus
normalized r . Thin solid, dash-dotted, and dotted lines show lower,
upper, and unstable solutions, respectively, for φ0 = 0.33, T/Tc =
0.975, and σ = 8 × 10−4 C/m2. The thick line shows the solution
that minimizes f . Horizontal dashed lines show φsL and φsH . (c)
Location of the interface ri versus normalized T along the spinodal
line in Fig. 6(a) for σ = 1 × 10−3 C/m2. (d) Overlay of electrostatic
spinodals for many σ [color (C/m2)].

cylinder system. For comparison, the dotted lines display the
behavior of the binodal points φb with T .

Despite the ubiquitous presence of φsH and φsL, only φsL

carries physical meaning in open systems, and only in a limited
region of the stability diagram. To see how this occurs, we
return to the solutions of f ′ = 0. Thus far, we have focused on
ri , the location of the interface for the minimized f ; however,
there can be many r that possess the same mathematical
features. Figure 7(b) shows all possible solutions to f ′ = 0,
where the thin solid, dash-dotted, and dotted lines are the
“lower,” “upper,” and “unstable” solutions, respectively. The
thick solid line depicts the solution that actually minimizes f ,
and the two dashed lines denote φsH and φsL found at ri .

We start from a homogeneous mixture at composition
φ0 and perform the thought experiment of turning on an
electric field. Considering diffusive liquid movement in the
absence of other factors (e.g., liquid convection and noise),
this experimental setup implies that the profile φ(r) initially
develops along the free energy “well” created by the lower
solution. If the electric field can sufficiently “pull” the higher
dielectric material such that there is at least one distance r
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where φ(r) � φsL, then the liquid can escape the metastable
(mixed) state at the local free energy minimum to find the
global minimum (demixed). We call rs the distance where
φ(rs) = φsL and find rs by solving f ′ = 0 at φsL. For a
cylindrical geometry we have

rs

R1
=

√
Nv

2kT ε0

[
σ 2

f ′
m(φsL) − μ

]
ε′(φsL)

ε(φsL)2
. (17)

Knowing that the highest value of φ(r) occurs closest to
the electrode at R1, we seek the conditions where rs = R1.
These conditions, therefore, mark the electrostatic spinodal:
If rs � R1 at a particular (φ0,T ,σ ), then demixing occurs
spontaneously. If rs < R1 at a particular (φ0,T ,σ ) [for example
Fig. 7(b)], then the liquids can be metastably mixed. The
long-time solution for dynamics in these cases therefore
resides along the thin solid curve [Fig. 7(b)].

Figure 6(a) shows the location of the electrostatic spinodal
for a particular value of σ . The curve begins at the critical
point (φK,TK ) and travels down, on the right side of the
stability diagram boundary. Similarly to the regular spinodal
curve, demixing occurs spontaneously (nonspontaneously) for
(φ0,T ) to the right (left) of the electrostatic spinodal. Since
the electrostatic spinodal cuts inside the stability diagram, the
location of the interface ri emerges at distances greater than
R1, with ri = R1 only at (φK,TK ). Figure 7(c) displays the
behavior of ri along the spinodal in Fig. 6(a). Finally, the elec-
trostatic spinodal exists for all σ . Figure 7(d) shows the
superposition of the electrostatic spinodal curves, where the
color indicates the associated σ .

VIII. CLOSED SYSTEMS

So far, we have focused on liquid behavior in open systems,
where we consider the location of the second boundary as
R2 → ∞. A closed system with a finite R2 markedly alters the
phase diagram [16]; however, we show that these alterations
naturally arise from the solutions of open systems.

We begin as previously, with variations in the concentration
profiles φ(r), and identify interesting changes with two
parameters, σ and R2. Both Figs. 8(a) and 8(b) clearly
reveal that the discontinuity at the interface decreases and
vanishes with increasing σ and decreasing R2, respectively, in
closed cylinder systems. Intriguingly, the profiles in Fig. 8(a)
stand in sharp contrast to the self-similar solutions found
in open systems [Figs. 4(a) and 4(b)]. Closer inspection of
Fig. 8(a) also reveals that the parabolic-like shape in the dis-
continuity with various σ opens to the left, rather than to the
right as in Figs. 4(c), 4(d), and 8(b). An important consequence
is that for closed systems there are two transition surface charge
densities σt : the first σt1 is the σ that places ri exactly at R1,
while the second σt2 is the σ where the interface discontinuity
vanishes. Therefore, the interface between the liquids in closed
systems only exists when σ satisfies σt1 � σ � σt2 [shaded
region in Fig. 8(c)].

Material conservation drives all differences between closed
and open systems, thus, the key to understanding these
differences resides in understanding μ. Recall that μ = μ0 =
f ′

m(φ0,T ) in open systems, while μ is adjusted to account for
material conservation in closed systems. Mathematically, the

FIG. 8. Variation of concentration profiles φ(r) in a closed
cylinder system. (a) φ(r) versus a normalized distance r for a constant
φ0 = 0.4, T/Tc ≈ 0.996, R2/R1 = 5 and varying σ = 0.25 × 10−3

to 3 × 10−3 C/m2 in 0.25 × 10−3 increments (arrows). (b) φ(r) versus
a normalized distance r for a constant φ0 = 0.36, T/Tc ≈ 0.995,
σ = 1.5 × 10−3 C/m2 for an open system (thick line) and closed
systems (thin lines) with decreasing R2/R1 = 20, 12, 8, 6, 4, 2
(arrow). (c) σt1 (×), σt2 (◦), and σK (filled squares) versus φ0 for
T/Tc = 0.996 and R2/R1 = 5. Dashed lines show the binodal φb at
same T . Phase separation occurs in the shaded region.

adjusted μ for a closed system at (φ0,T ) exactly matches the μ0

for an open system with a different “effective” concentration
φE in the bath. Consequently, the φ(r) profile between R1 and
R2 at (φ0,T ) in a closed system exactly matches the φ(r) profile
at (φE,T ) in an open system. In other words, the behavior of a
closed system maps onto that of an open system via φE .

We can explain the variation of φ(r) with σ in closed
systems using this construct. Intuitively, the higher dielectric
material is pulled closer to the electrode as the value of σ

increases. In order to conserve material in a closed system,
φ(r) necessarily decreases near R2 [Fig. 8(a)]. This shift in
liquid concentration translates as a decrease in φE , hence
an increasing σ in a closed system maps as an increasing
σ and a decreasing φE in an open system. Recall that the
interface discontinuity becomes smaller with lower φE in an
open cylinder system [Fig 4(c)] and eventually vanishes when
φE crosses the electrostatic binodal. The same principles apply
to closed systems, where the second transition σt2 marks this
crossing.

Now that we understand how experimental parameters
change φ(r), we focus on how these changes affect the stability
diagram. Figure 9(a) shows a typical stability diagram for
a constant σ = 1 × 10−3 C/m2 and R2/R1 = 5 in a closed
cylinder system. One striking difference between open
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FIG. 9. (Color online) Electrostatic binodal in a closed cylinder
system. (a) Stability curve (solid line) in φ0-T space for a constant
σ = 1 × 10−3 C/m2 and R2/R1 = 5. The dash-dotted line shows the
mapping of the stability diagram boundaries to an open system via
φE (see text). The dashed line shows the binodal curve. (b) φ(r)
versus normalized r for points marked by symbols in (a). Dashed
lines mark the boundaries of the container. (c), (d) Overlay of many
stability diagrams, where color indicates transition σt1 and σt2 (C/m2),
respectively. Dotted lines show the location of data in Fig. 8(c).
(e) Critical surface charge density σK on the electrostatic binodal for
φK � φc (solid line) and φK � φc (dash-dotted lines) for R2 = 20,
10, 5, and 2.5 μm (arrow). (f) Electrostatic binodal for open (solid
line) and closed (dash-dotted lines) systems for the same R2 as in (e).
Curves are not symmetric around φ0 = 0.5. The dashed line shows
the binodal curve.

[Fig. 6(a)] and closed [Fig. 9(a)] systems is that liquid
separation can now occur for φ0 > φc. Experimentally, this
manifests as an interface emerging close to R2, rather than R1.
The second, more subtle difference is that the stability diagram
for closed systems occupies a slightly smaller region of φ0-T

space for φ0 � φc compared to open systems with the same
σ . Finally, the upper boundary for the closed-system stability
curve travels below Tc to exclude a portion of the binodal curve.
Closed systems, therefore, provide the interesting possibility
of an electric field mixing liquids that normally demix.

We can use the mapping construct not only to comprehend
these changes but also to produce the stability diagram of
a closed system. Open systems link to closed systems via
integration. Specifically, integrating φ(r) between R1 and R2

in an open system at (φE,T ) gives the corresponding (φ0,T )
for the closed system. We begin with the left boundary of
the stability diagram for an open system [a in Fig. 9(a)] and
integrate φ(r) between R1 and R2 to determine the location
of the left boundary in a closed system [a′ in Fig. 9(a)]. The
difference between φE and φ0 along this boundary is small. If
we look at an example φ(r) profile [Fig. 9(b)], we see that the
interface location ri equals R1 and that the electric field for
r > R1 produces only small variations in φ(r). Truncating the
integration at R2, therefore, only minimally alters the liquid
concentration.

Next, we consider the upper boundary of the open-system
stability diagram [b in Fig. 9(a)], and integrate from R1 to R2

to obtain the upper boundary for the closed-system stability
diagram [b′ in Fig. 9(a)]. Here, large differences between φE

and φ0 can occur. This boundary for open systems is the
electrostatic binodal. As described in Sec. VI, σ > σK , which
causes the location of the interface ri to emerge at distances
greater than R1. The inclusion of high-dielectric material from
R1 to ri can substantially increase φ0 when integration stops
at R2.

The upper boundary of the stability diagram for a closed
system ends when ri = R2. And to form the right boundary in
a closed system, we must find the conditions where σ places
ri at R2 in an open system. There are two methods by which to
proceed. First, we present the simple straightforward approach.
We use Eq. (10) with σ , ri = R2, and various T to determine
the appropriate φE [c in Fig. 9(a)] and then integrate φ(r)
profiles from R1 to R2 to create the right boundary for the
closed system [c′ in Fig. 9(a)]. The second method relies on the
self-similarity of the solutions in open systems. We recognize
that line c in Fig. 9(a) is the stability line (where ri = R1)
for a rescaled surface charge, namely, σR1/R2 for cylindrical
geometry. The ability to shift the interface and rescale the
solution with a modified σ will prove useful in creating the
closed-system electrostatic binodal.

The superposition of the stability diagrams from many σ

produces Figs. 9(c) and 9(d), where color indicates σt1 and
σt2, respectively, for R2/R1 = 5. These figures reveal striking
asymmetry with respect to φc in the values of both σt1 and
σt2. Notably, higher σ are necessary both to create (σt1) and
eventually to destroy (σt2) the interface when φ0 > φc. The
outer bounding line in Figs. 9(c) and 9(d) represents the
electrostatic binodal for a closed system. This line is also
asymmetric with respect to φc. And due to the structure of the
stability diagram in closed systems, σK is both σt1 and σt2 for
all (φK,TK ) [see Fig. 8(c)].

In order to find this electrostatic binodal, we follow the
same methods we used to find the stability diagram of the
closed system. We begin with the open-system solutions at
(φE = φK,T = TK,σ = σK ) and integrate φ(r) between R1
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FIG. 10. Electrostatic spinodal in closed systems. (a) φ(r) versus
normalized r for φ0 ≈ 0.34, T/Tc ≈ 0.973, σ = 8 × 10−4 C/m2,
and R2/R1 = 5 for the minimized solution to f (thick solid line)
and lower metastable solution (thin solid line). The horizontal
dashed line shows φsL. The thick solid line also shows the minimized
open-system solution for φE = 0.33, while the dotted line shows
the corresponding lower solution. (b) φ(r) versus normalized r for
φ0 ≈ 0.59, T/Tc = 0.99, σ = 1.46 × 10−3 C/m2, and R2/R1 = 5 for
the minimized solution to f (thick solid line) and upper metastable
solution (thin solid line). The horizontal dashed line shows φsH .
The thick solid line also shows the minimized open-system solution
for φE ≈ 0.40, while the dotted line shows the corresponding upper
solution. (c) Stability diagram (solid curve) with spinodal lines
(dash-dotted curves) for σ = 8 × 10−4 C/m2 and R2/R1 = 5. The
dashed line is the binodal curve.

and R2 to determine φ0 (the φK for the closed system). Note
that this procedure accounts for interfaces emerging at R1;
however, closed systems can also have interfaces emerging
from R2. Therefore, we rescale the open-system solutions by
increasing σ so that ri = R2 [precisely (φE = φK , T = TK ,
σ = σKR2/R1) for cylindrical geometry] and integrate φ(r).
This rescaling links σ and R2, as is evident in Fig. 9(e). Con-
sequently, phase separation for concentrations higher than φc

technically exists for open systems and requires infinitely large
σ to produce an interface at R2 → ∞. Practically speaking,
however, even closed systems with a “large enough” R2 would
need unreasonably high values of σ to induce a transition
in this region of φ0-T space. Under these conditions, other
events, such as heating, liquid ionization, bubble formation,
and electrical breakdown of the liquids, would need to be
considered [25–27].

Figure 9(f) shows how the electrostatic binodal changes
with R2, where the curve surrounds a smaller region of φ0-T

space as R2 decreases. This change, however, is relatively
minor, unless R2/R1 becomes sufficiently “small.”

Material conservation produces two spinodal lines in a
closed system—one line associated with each boundary.
Finding the spinodal line associated with R1 consists of finding
φ(rs) = φsL on the lower solution of f and ensuring rs = R1,
similarly to open systems. However, the lower solution from
φE in an open system does not fulfill the material conservation
requirement. Instead, the lower solution from yet another
open-system concentration φE must be used. Figure 10(a)
shows example φ(r) profiles associated with R1. The thick
line corresponds to the profile φ(r) that satisfies the free energy
minimum of f , the dotted line is the lower solution for the open
system, and the thin line is the lower solution for the closed
system with R2/R1 = 5. In Fig. 10(a), the open system could
be in a metastable state (compare thick solid and dotted lines),
while the closed system would not be metastable (compare
thick and thin solid lines). Similar behavior applies for the
location of the spinodal line at R2; however, this line consists
of finding φ(rs) = φsH on the upper solution of f . The line
styles in Fig. 10(b) are as those in Fig. 10(a). In Fig. 10(b),
the closed system could be metastable, while the open system
would not be metastable (recall that the upper solutions have
no meaning in open systems).

Finally, Fig 10(c) shows the location of the electrostatic
spinodal lines in a closed system for particular values of σ and
R2/R1. Each line begins at the critical points (φK,TK ) on either
side of φc and travels down “inside” the stability diagram.

IX. CONCLUSION

In summary, we have described the mixing-demixing phase
diagram for two dielectric liquids in an electric field. By
focusing on the liquid-liquid interface and adapting standard
methods for determining phase diagrams, we have found
the electrostatic equivalent of binodal lines, spinodal lines,
and critical points. Given this new perspective, the dynamics
of phase separation with nonuniform electric fields requires
reinvestigation, with an emphasis on validating predicted
metastable states and uncovering critical dynamic behavior.
Perhaps similar adaptations of existing theory for dynamics
will uncover new features in the electric-field modified liquid-
liquid phase diagram.

In addition, we have restricted our analysis to solutions
with radial symmetry, enforcing one-dimensional solutions
that depend only on the distance r . This constraint, however,
might not satisfactorily apply to all experimental conditions,
and allowing for full two- or three-dimensional theoretical
investigations could uncover non–radially symmetric solu-
tions. For example, interfacial energies, both liquid-liquid
and liquid-surface energies, dominate the liquid patterning
for phase separation beneath the regular binodal curve in the
absence of a field. And in the case where both liquids have
an equal preference for the surface, liquid-liquid interfaces
emerge normal to a surface. This configuration, however,
can be electrostatically unfavorable since the low-dielectric
material is adjacent to the charge. It will be interesting to
determine if, when, and how instabilities in the interface
develop and whether these instabilities modify the phase
diagram.
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Also, highly confined cylindrical geometries do not show
a true liquid-liquid phase transition [28]. Here, the system
can be approximated as one-dimensional, with the expectation
that correlations diverge as the length of the cylinder goes to
infinity. It is unknown whether the addition of a nonuniform
electric field is sufficient to induce a true transition in
this case. An appropriate investigation on this topic would,
of course, require theories that go beyond the mean-field
approach.

Finally, we have not considered the fluid wetting behavior
on the electrode surfaces. In the wedge geometry, for example,
these phenomena include wedge filling, where a liquid
transitions between partial and complete filling [29–31]. This
transition can be either first or second order and depends on

factors like the wedge opening angle, liquid contact angle, and
temperature. Since our results show that the interface location
directly ties with the electric field, it currently remains unclear
whether the electric field enhances or diminishes the effects
of wetting, or possibly both (depending on the experimental
conditions).
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