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Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields
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We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric
fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase
separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid
equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization
exhibits a strong field dependence due to the fluid condensation.
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I. INTRODUCTION

The application of external fields for manipulation of the
structure and phase behavior of dipolar fluids has attracted
growing interest in recent years [1,2]. Typically, both theoret-
ical and experimental studies consider uniform applied fields.
However, in complex systems, such as microfluidic devices,
field gradients occur naturally. Motivated by experimental
work on the demixing of binary mixtures in field gradients
[3], we have previously studied theoretically the application
of nonuniform electric fields to pure fluids [4] and simple
mixtures [5,6]. Another experimental realization of the ability
of field gradients to promote phase transitions is the field-
induced crystallization of colloidal suspensions promoted by
dielectrophoretic forces [7–9].

In particular, we examined the effect of nonuniform fields
on the vapor-liquid coexistence [4] by combining the simple
van der Waals mean-field theory with Onsager’s theory of
dielectrics to investigate polar and nonpolar fluids. Our main
finding was that above a critical field, in situations where
the fluid is unperturbed by a uniform field, a nucleation of
a gas bubble from the liquid phase or a liquid droplet from
the vapor phase is induced by a nonuniform field. This phase
separation transition is promoted by the dielectrophoretic force
which favors a higher permittivity (density) fluid in the region
of strong field. The resulting modification in the fluid phase
diagram is considerably larger compared to uniform fields.

A system which can be considered as an idealized mani-
festation of nonuniform fields is a grand canonical ensemble
where a uniform field, E = const., is applied within the system
volume but not in the material reservoir, where E = 0. An
example is a slit pore in equilibrium with a bulk fluid. The
field effect in this type of system has been studied for one
component fluids [10,11] where it was found to gradually
increase the fluid density within the pore moderately. A
stronger field effect was found by Brunet et al. [12,13] who
studied mixtures. They observed that if the mixture has a
demixing instability and one of the components is dipolar, the
coupling to the external field leads to a pore filling transition
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which allows a sensitive control of the pore composition.
However, in real systems there exists an interfacial region at
the pore edges where the field is nonuniform.

The goal of this paper is to study the structure of a dipolar
vapor confined in a slit pore and exposed to nonuniform electric
fields in the canonical ensemble via molecular simulation.
We compare our results with mean field theory and discuss
the consequences of the full description of the vapor-liquid
interface in finite systems. The paper is organized as follows.
Section II discusses the simulation methods and model system.
Section III A compares results for the fluid in a uniform field
with previous studies. The results for a nonuniform field are
compiled in Sec. III B. Conclusions are given in Sec. IV.

II. SIMULATION METHODS

We consider N spherical dipolar particles with a diameter
σ and a permanent dipole moment μ. The particles interact
via the Stockmayer pair potential:

Uij = 4ε

[(
σ

|r ij |
)12

−
(

σ

|r ij |
)6

]

+ 1

4πε0

(
μi · μj

|r ij |3 − 3(μi · r ij )(μj · r ij )

|r ij |5
)

, (1)

where r ij = r i − rj stands for the displacement vector of
particles i and j , ε denotes the Lennard-Jones (LJ) inter-
action parameter, and ε0 is the vacuum permittivity. In the
following we use reduced units; length: r∗ = r/σ , tempera-
ture: T ∗ = kBT /ε, density: ρ∗ = ρσ 3, dipole moment: μ∗ =
μ/

√
4πε0εσ 3, and external field: E∗ = E

√
4πε0εσ 3. Here,

kB is the Boltzmann constant and we take σ = ε = 4πε0 = 1.
For brevity we omit the asterisk superscript henceforth.

The phase diagram of bulk and confined Stockmayer fluids
in a uniform field was determined using a Gibbs Ensemble–
Hybrid Monte Carlo scheme (GE-HMC). The classical Gibbs
Ensemble Monte Carlo (GEMC) simulation [14] offers a
simple method to determine the vapor-liquid equilibrium
densities and pressures with a single simulation run. This is
achieved by equating the chemical potentials and pressures of
two simulation boxes using appropriate Monte Carlo particle
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FIG. 1. (Color online) The model capacitor: a wedge made of two
flat electrodes with a potential difference V across them and an angle
β between them. R1 (R2) is the distance of the inner (outer) insulating
wall from the imaginary meeting point of the electrodes (thick lines).
r is the radial distance from the inner wall. The resulting electric field
E is along the θ̂ direction. In the simulations we approximate a small
angular segment δθ as a slit.

and volume exchange moves, respectively [15]. The third type
of moves performed are particle translations, rotations, and
other conformational changes of single particles within the
two boxes. In the GE-HMC variation, single particle moves
are replaced by a collective Hybrid Monte Carlo (HMC)
move [16,17]. A single HMC cycle consists of three steps:
first, particles of the current configuration, o, are assigned new
momenta and angular velocities by sampling a Gaussian distri-
bution corresponding to the desired temperature. Second, the
new configuration, n, is generated from a short MD trajectory
in the microcanonial ensemble. Lastly, the new configuration
is accepted or rejected according to the Metropolis criterion:

min (1, exp(−
H/T )), (2)

where 
H = H (n) − H (o) is the resulting change in the
system Hamiltonian. Detailed balance is satisfied if the
integration algorithm used for the MD trajectory is time
reversible and area preserving [17], which is fulfilled by a
simple velocity-Verlet integrator. All MD trajectories were
produced with the ESPResSo package [18]. The collective
HMC moves allow to efficiently sample the high density liquid
phase and complex molecular configurations [19].

GE-HMC simulation cycles were conducted with 512
Stockmayer particles. The total simulation consisted of 104

cycles and observable sampling was done after 2500 equili-
bration cycles. A single cycle was composed of 100 MC moves
where the probability of the move type was as follows: 0.8 for
a particle exchange move, 0.15 for a HMC move, and 0.05
for a volume exchange move. The number of time steps in
a HMC move was 10. Both the time step and the attempted
volume change were adjusted during equilibration such that
approximately 50% of the moves were accepted.

Simulations in a nonuniform field and in the canonical
ensemble where performed in a simplified model system, see
Fig. 1. Consider the fluid confined in a closed wedge capacitor
at constant temperature. The capacitor is made up from two
flat electrodes with a potential difference V across them and
an angle β between them. In this geometry the field in the
azimuthal direction is perpendicular to the field gradient in
the radial direction. This simplifies the solution of Gauss’ law

since it implies ∇ε · E = 0 [4]. The resulting electric field is

E(r) = V/β

R1 + r
θ̂ , (3)

where R1 is the radius of the inner capacitor wall, R1 + r

the radial distance from the imaginary meeting point of the
electrodes and θ is the azimuthal angle. We focus on a small
angular section δθ far from the electrodes of the capacitor and
therefore rewrite Eq. (3) in terms of Cartesian coordinates:

E(z) = E0

1 + A0z
x̂, (4)

where E0 = V/(βR1) is the maximal field at z = 0 and A0 =
1/R1 is a constant characterizing the length scale of the field
gradient; for A0 = 0 the field is uniform.

In this paper we study the Stockmayer fluid under the
external field given in Eq. (4). The contribution of this field to
the potential energy of a single particle is given by

U ext
i = −μi · Ei = − μi,xE0

1 + A0zi

, (5)

where Ei is the field at the site of particle i which is a function
of the particle coordinate zi . Via the potential energy we
derive the additional force and torque on particle i due to the
field, i.e.,

Fext
i = − μi,xA0E0

(1 + A0zi)2
ẑ, (6)

T ext
i = μi,zE0

1 + A0zi

ŷ − μi,yE0

1 + A0zi

ẑ. (7)

Note that the force contribution, Eq. (6), vanishes in the case
of a uniform field. Moreover, Eq. (6) indicates that particles
are drawn to the strong field region and feel a stronger force
when aligned with the field. This may be thought of as the
microscopic origin of the dielectrophoretic force.

MD simulations of the Stockmayer fluid in a nonuniform
field were performed using the suitably modified ESPResSo
package [18]. During the simulation the LJ potential was cut
off at rc = 3 and the long range dipolar potential was evaluated
using the dipolar P 3M algorithm [20] with metallic boundary
conditions.

When a nonuniform field is applied to the fluid its transla-
tional invariance in the direction of the field gradient is broken
and therefore periodic boundary conditions (PBC) cannot be
used in this direction. However, the implementation of the
P 3M method requires that we employ PBC in all directions.
Therefore, in the simulations we model the capacitor as an
infinite slab with the two confining walls placed at z = 0 and
z = D < L, where L is the cubic simulation box length. The
unwanted dipolar interactions between slabs replicated along
the z direction are corrected using the dipolar layer correction
method of Ref. [21]. This allows us to use a small gap of
empty space in the simulation box. In order to isolate the field
effect, we use for the fluid-wall interaction a purely repulsive
LJ potential shifted and cut off at rc = 21/6 (WCA potential).

Simulations of the dipolar fluid in the slab where initialized
from random particle configurations. In the simulations we
employ a Langevin thermostat. A time step of 
t = 0.004 was
used in all simulations. The simulations equilibration period
varied from 1 × 105–6 × 105 time steps, depending on the
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FIG. 2. (Color online) Vapor-liquid coexistence of the bulk
Stockmayer fluid with μ = 1.5. Squares: in the absence of an external
field. Circles: with a uniform field E0 = 4. Inset: in the absence of
an external field for μ = 2. Dashed curves are fits to the law of
rectilinear diameters using the Ising exponent β = 0.326. Critical
points are marked by hollow symbols.

field strength. The structural and dielectric properties of the
system were then sampled every 200 time steps for at least 4 ×
105 time steps. Time averaged quantities sampled are denoted
by 〈...〉.

III. RESULTS AND DISCUSSION

A. Phase behavior of the Stockmayer fluid in a uniform field

We first tested the applicability of our GE-HMC simulation
by comparing our results to available data on the Stockmayer
fluid with μ = 2. Here, the standard long-range correction is
applied to the LJ interaction [15]. The resulting coexistence
curve is shown in the inset of Fig. 2. The critical point (Tc,ρc) is
estimated by fitting the coexistence data to the law of rectilinear
diameters: ρl − ρg ∝ (Tc − T )β and ρl + ρg = 2ρc + C(Tc −
T ), where ρl and ρg are the liquid and vapor coexistence
densities, respectively, β = 0.326 is the three-dimensional
Ising exponent and C is a constant. For μ = 2 we obtain
a critical temperature Tc = 2.05 and density ρc = 0.301, in
good agreement with the results of van Leeuwen et al. [22]
(Tc = 2.06, ρc = 0.289) and Kiyohara et al. [23] (Tc = 2.05,
ρc = 0.306). The small differences in critical parameters are
probably due to fact that unlike the works above, the LJ
potential in this study is cut off at a fixed radius.

Henceforth, we will focus in this work on the Stockmayer
fluid with μ = 1.5. Vapor-liquid coexistence curves for such
a bulk Stockmayer fluid with and without an external field are
shown in Fig. 2. Here, no long-range correction is applied to
the LJ interaction since we intend to compare these results
with those obtained in the slab geometry. In the absence of an
external field we find Tc = 1.59 and ρc = 0.305. In accord with
previous studies, we find when a uniform field is applied the
unstable region in the phase plane is increased [24–29]. This is
due to the increased dipole-dipole interaction and correlation
as the dipoles get aligned by the field [24,29]. In particular,
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FIG. 3. (Color online) Density profiles 〈ρ(z)〉 in a nonuniform
field for a Stockmayer fluid with an average density ρ̄ = 0.05 and a
temperature T = 1.6. For the field we used a magnitude of E0 = 4 in
Eq. (4). The dashed curve shows results for N = 8192 particles using
A0 = 0.1 in Eq. (4). For the dash-dot curve N = 16384 and A0 =
0.0794; for the solid curve N = 48000 and A0 = 0.0555. Dotted
curve: same as the dashed curve but replacing the LJ part of the
potential by a WCA potential. Inset: density profiles in a uniform
field E = 4x̂ at T = 1.6. Two average densities, ρ̄ = 0.3 and 0.05
are presented corresponding to slab widths of D ≈ 25 and D ≈ 46,
respectively.

simulations of the Stockmayer fluid in an external field found
reasonable agreement with the Landau mean field theory [30]
for the field effect on the critical temperature [29]. For E0 = 4
we find that the critical temperature increases to Tc = 1.83 and
ρc = 0.301.

The value of μ = 1.5 for the dipole moment was chosen
since it is suited for description of both molecular fluids [31]
and dipolar colloidal suspension alike [2]. Furthermore, we
will from now on set T = 1.6 < Tc. Hence, the value of dipolar
coupling constant, λ = μ2/T , is λ = 1.41. This means that
the dipolar interaction at a distance σ is comparable to both
the thermal and LJ interactions. Note that a λ value close to
unity below the critical temperature can only be realized for
relatively small values of μ [32].

The effect of confinement on the coexistence curve of the
Stockmayer fluid is that of suppression of the unstable region
of the phase diagram. Studies conducted so far focused on
narrow slabs where this effect is large [33]. The finite-size
effects for wider slabs where not studied since they are quite
small and also computationally prohibitively expensive.

An estimate of finite-size effects is provided in the inset of
Fig. 3, which shows the density profiles, 〈ρ(z)〉, for N = 8192
confined particles at T = 1.6 and under an uniform field E =
4x̂, parallel to the slab walls. For an average fluid density ρ̄ =
0.3 (slab width of D ≈ 25), close to the critical density, the
density profile exhibits vapor-liquid coexistence. The dashed
horizontal line in the inset corresponds to the liquid phase
density ρl = 0.629 in the absence of confinement. This density
is only slightly higher than the average density of ≈0.59 for
the liquid in the slab and hence the effect of confinement on
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the phase coexistence is small. In contrast, slowly expanding
the slab such that a fluid average density of ρ̄ = 0.05 is finally
obtained (slab width of L ≈ 46) results in a homogeneous
vapor phase, see the dash-dot curve in the inset of Fig. 3. This
is expected since ρ̄ = 0.05 is smaller than the vapor phase
density of the unconfined fluid ρv = 0.053.

B. The Stockmayer fluid in a nonuniform field

The situation is markedly different when a nonuniform field
is applied. The dashed curve in Fig. 3 gives the density profile
for N = 8192 particles with an average density ρ̄ = 0.05
under the nonuniform field given by Eq. (4) with E0 = 4 and
A0 = 0.1. This profile shows the condensation of a liquid-like
layer from the homogeneous vapor phase in the strong field
region. The high density layer of width ≈2–3σ is followed by
a sharp interface and then a distinct vapor phase. The width
of the liquid-like layer grows as the fraction of energetically
costly interface molecules is reduced in larger systems. This
effect is shown in the dash-dot and solid curves in Fig. 3 where
we increase the number of particles while keeping the average
density the same. Here, since we scale the simulation box to
keep the average density constant we also adjust the field in
Eq. (4) through A0 such that E(z = D) is kept constant. In
addition, the liquid-like layer density also increases due to
the decreased energetic cost of the interface. The increase in
the width and density of the liquid-like domain with N and
D is a finite size effect which is expected to vanish in the
thermodynamic limit N,D → ∞.

We explain this condensation by the fact that the nonuni-
form field is large only in the vicinity of z = 0. Hence, particles
are drawn to this region where they gain energetically both by
aligning in the stronger field and also from the LJ interaction
which compensates for the loss in entropy. The attractive short
range part in the interaction is important for the formation of a
dense liquid layer. To show this we also performed a simulation
where we replace the LJ part of the interaction by the purely
repulsive WCA potential. The result for the dipolar WCA fluid
is shown in the dotted curve of Fig. 3; clearly, only a moderate
increase in the fluid density occurs and it follows the gradual
decay of the field.

The Stockmayer potential parameters for water [31] gives
μ = 1.56 for the fluid and the field magnitude of E0 = 4 thus
corresponds to a maximal local field of 4.1 V/nm. Although
the Stockmayer potential is not adequate for water, it is
instructive to use it here for the purpose of estimating whether
the fields we consider are realistic. Indeed, at least for water
confined at the molecular scale field of a few V/nm are not
unusual [10]. Nonetheless, this field magnitude is still 5–10
times larger than the fields required to induce condensation in
the mean-field treatment [4]. The high field is a consequence
of the costly interfacial region in the small system we simulate
and is expected to be reduced in the thermodynamic limit.

Figure 4 shows the density profiles obtained as a function
of the nonuniform field magnitude, E0. As E0 increases
the condensation occurs rapidly starting at E0 � 2.5 albeit
gradually as as our system is finite. The inset of Fig. 4 gives a
comparison between the field of Eq. (4) and a nonuniform field
of the same functional form and magnitude but perpendicular
to the slab walls. This type of field is obtained in the
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FIG. 4. (Color online) Density profiles 〈ρ(z)〉 in a nonuniform
field of different magnitudes. The fluid maximal density is in the
strong field region close to the wall (circle markers) and it increases
with the field magnitude. Inset: density profiles for a nonuniform field
perpendicular to the slab walls (see text). For all curves A0 = 0.1, the
fluid average density is ρ̄ = 0.05 and the temperature is T = 1.6.

zero curvature limit for a capacitor consisting of concentric
cylinders [4].

It is seen in Fig. 4 that for E0 = 4 the density profile shows
a clear condensate in the parallel case. However, for the same
value of E0 in the perpendicular case, 〈ρ(z)〉 exhibits only
a slight increase in the fluid density near the wall. Here, the
field introduces a competition between alignment of dipoles
parallel to the field, giving rise to the favored head-to-tail
configurations, and the creation of an interface parallel to
the field which disrupts these configurations [34]. This is in
accord with the mean field description in which the typical
field required to induce condensation is an order of magnitude
larger in the cylindrical capacitor compared to the wedge
capacitor [4].

Only upon further increase of E0 to large values of E0 � 8 a
significant increase in the density occurs. This is accompanied
by large oscillations of the density close to the wall in
which the distance between peaks is σ . This is typical when
fields perpendicular to the confining walls are applied to a
high density dipolar fluid [35]. The oscillatory domain is
followed by an interfacial region of width ≈10σ , which is
large compared to the thin interface of width ≈4σ for parallel
fields. Simulation snapshots of a small segment of the system,
shown in Fig. 5, illustrate how the orientational order leads to
a wider interface in the perpendicular case. We assume that
due to the large interfacial energetic penalty in perpendicular
fields one must simulate larger systems in order to observe
clearly field induced condensation in this case.

In Ref. [6] it was demonstrated that the electric field induced
condensation in nonuniform fields is a first order transition.
As a result, a discontinuity in the surface density occurs when
the field is increased above a critical value. The corresponding
quantity in the simulation ρmax = max(〈ρ(z)〉) naturally occurs
close to the wall where the field is large. In Fig. 6 we plot ρmax

as a function of the field magnitude. We find that ρmax(E0) has a
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FIG. 5. Snapshots of a thin cross section through the y axis,
focusing on the strong field region. Arrows indicate the dipole
moment’s x and z components scaled by a factor of 2. In (a) the
electric field is parallel to the wall and E0 = 6 while in (b) the field is
perpendicular to the wall and E0 = 12 is larger. The maximal density
near the wall is similar in both panels but the interface is much wider
in the perpendicular case due to favored head to tail configurations.

sigmoid like shape, similar to the mean field theory (see Fig. 10
in Ref. [6]). However, since the simulated system is finite
ρmax(E0) changes continuously. Nonetheless, ρmax(E0) grows
more rapidly when the number of particles is increased from
N = 8192 (squares) to N = 16384 (circles), suggesting that
in the thermodynamic limit a first order transition is realized.

Figure 6 also shows that increasing the average density to
ρ̄ = 0.07 (diamonds) results in a larger condensate density.
Although ρ̄ = 0.07 is inside the binodal for the bulk system,
this curve shows that one can utilize the nonuniform field to
modify the density profile in a dilute enough finite system,
such as a colloidal suspension.

Results for the average dipole moment in the direction of
the field 〈μx(z)〉 are shown in the solid curves of Fig. 7. These
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FIG. 6. (Color online) Maximal density as a function of the
nonuniform field magnitude. A0 = 0.1 in all curves while the average
density or number of particles is varied.
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FIG. 7. (Color online) Solid curves: profiles of the scaled x

component of the dipole moment μx/ |μ| for several nonuniform
field strengths. dashed curves: Debye theory prediction [Eq. (8)].

results are contrasted with the Debye theory [36] for an ideal
gas shown in the dash-dot curves of Fig. 7. In the Debye theory,

〈μx(z)〉 = μL(α), (8)

where L(α) = coth(α) − 1/α is the Langevin function and
α = μ |E(z)| /T . The simulation results agree with the Debye
theory in the dilute vapor region but deviate to higher values
in the dense liquid region. The deviation stems from the
oversimplified treatment of the dipoles orientation correlation
in the Debye theory [37,38] as well as the unaccounted effect of
the short range LJ interaction on the orientational correlation.

Further insight to the effect of the nonuniform field is gained
by examining the polarization of the system. 〈P〉 = 〈∑i μi 〉.
Since in our case Ez = Ey = 0, it follows from Eq. (8) that
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FIG. 8. (Color online) Scaled polarization 〈P 〉/Psat as a function
of the average field Ē. Bulk and slab systems in a uniform field
exhibit a Langevin type polarization while in a nonuniform field the
polarization is larger starting at Ē ≈ 1.
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for Ex = const.:

〈P 〉 = PsatL(α), (9)

where Psat = Nμ is the saturation polarization of the system.
We compare the polarization for a uniform field in the bulk
and in the slab in Fig. 8. Simulation results in both cases
are almost identical and agreement with the Debye theory
is very good. This indicates that the bulk and slab system’s
response to a uniform field is essentially the same here because
we consider a large enough slab, where the wall effects are
negligible.

In order to compare results for a uniform field with those
of a nonuniform field we plot in the latter case the polarization
as a function the average field

Ē = 1

D

∫ D

0
E(z)dz. (10)

The solid curve in Fig. 8 shows that the polarization for the
averaged nonuniform field is similar to that of the uniform
field up to Ē ≈ 1. This value corresponds to E0 ≈ 2.5 which
in Fig. 4 is where the fluid density near the wall starts to
increase. For Ē � 1 the polarization rapidly increases as the
fluid condensates until it saturates at large fields. Hence,
the field induced condensation can be utilized to amplify
the electric response of a dilute dipolar system that will
otherwise follow the Langevin type response.

IV. CONCLUSIONS

We studied the effect of a nonuniform field on a Stockmayer
fluid via molecular dynamics simulations. We find that a

homogeneous vapor phase in the canonical ensemble, unper-
turbed by a uniform field, undergoes a significant structural
change in a nonuniform field of the same magnitude. This
results in a sharp interface separating a liquid like region
in the strong field region and a dilute vapor where the field
is weaker. We attribute this change to the nonuniform field
pulling the dipoles towards the strong field region combined
with the attractive short range part of the potential.

Our results indicate that a nonuniform field can be used
to quite sensitively control the density profile and hence the
fluid properties also in small closed systems. The mechanism
we describe should be applicable for a broad class of one-
component systems, including molecular fluids and colloidal
suspensions. In fact, a nonuniform field should promote phase
separation in any dipolar system with an inherent bistable
nature [5,6,12,13]. We therefore believe that the study of
fluids in nonuniform fields merits further experimental and
theoretical attention.
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