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We present a mechanism for the stabilization of colloids in liquid mixtures without use of surfac-
tants or polymers. When a suitable salt is added to a solvent mixture, the coupling of the colloid’s
surface chemistry and the preferential solvation of ions leads to a repulsive force between colloids
that can overcome van der Waals attraction. This repulsive force is substantial in a large range of
temperatures, mixture composition, and salt concentrations. The increased repulsion due to addition
of salt occurs even for charged colloids. This mechanism may be useful in experimental situations
where steric stabilization with surfactants or polymers is undesired. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4851477]

The stability of colloidal dispersions is essential in ma-
terial science and technology. Steric stabilization of colloids
against the attractive van der Waals (vdW) forces can be
achieved using surfactant or polymer molecules that are phys-
ically or chemically attached to the colloid’s surface. Charged
colloids can also be stabilized via the screened Coulomb
repulsion, whose range depends on the Debye length κ−1.
In the celebrated Derjaguin, Landau, Verwey, and Overbeek
(DLVO) theory, addition of salt to the suspension decreases
the Debye length and the electrostatic repulsion leading even-
tually to coagulation and sedimentation of the colloids.1

In recent years, we began to better understand the differ-
ences between the electrostatics of pure solvents compared to
liquid mixtures. The preferential wetting of one liquid com-
ponent at the colloid surface2, 3 affects the density of the ions,
the electrostatics of the mixture, and the interaction between
the colloids.4–12 A key parameter is the selective solvation of
the ions in the liquids.13–22

In this paper, we present a new method for the stabiliza-
tion of electrically charged or neutral particles in solvent mix-
tures by addition of salt, without use of surfactants or poly-
mers. The stabilization relies on (i) selective adsorption of one
solvent on the colloids and (ii) a difference in the preferential
solubilities of the anion and the cation in the solvents, namely,
a difference between the Gibbs transfer energy of moving the
anion from one solvent to the other and the analogous Gibbs
energy of the cation. These energies are often larger than the
thermal energy23, 24 and therefore particles can be stabilized
even without other additives. In fact, requirements (i) and (ii)
above are generally met because any surface is hydrophilic or
hydrophobic to some extent and no two ions have identical
solvation energies.23, 24 The coupling of the colloid’s surface
chemistry and the preferential solvation of ions leads to a re-
pulsive force between colloids that can overcome the van der
Waals attraction. This repulsive force is large in an unexpect-
edly wide range of temperatures, mixture compositions, and
salt concentrations. This method preserves the chemical prop-
erties of the surface and therefore is advantageous in cases
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where surfactants, polymers, or a chemical modification of
the particle are undesired.

We consider relatively dilute mixtures in which ion-ion
correlations effects are small.25, 26 In order to isolate the ef-
fect of preferential solvation, we ignore specific ion-surface
interactions.27, 28 These short range interactions can either en-
hance or counteract the stabilization mechanism we discuss
and their magnitude is of specific nature.

We focus on a system composed of a binary aqueous mix-
ture containing a 1:1 monovalent salt and confined between
two identical flat plates. The plates are located at z = ±D/2
and their area is S. The mixture composition is given by the
water volume fraction φ (0 ≤ φ ≤ 1) while the cosolvent com-
position is given by 1 − φ. The number densities of the point-
like positive and negative ions are denoted by n±. The fluid
between the plates is in contact with an electroneutral matter
reservoir at composition φ0 and a salt concentration n0.

The mean-field free energy density of the system is given
by17

f = kBT

[
fm(φ) + 1

2
C|∇φ|2

]
− 1

2
ε0ε(φ)(∇ψ)2

+ e(n+−n−)ψ+kBT
∑
i=±

ni[(log(v0n
i) − 1) − �uiφ],

(1)

where kB is the Boltzmann constant, T is the temperature, ε0

is the vacuum permittivity, and v0 = a3 is the molecular vol-
ume. v0fm is the dimensionless mixing free energy density:
v0fm = φ log(φ) + (1 − φ) log(1 − φ) + χφ(1 − φ), where
the Flory parameter is χ ∼ 1/T. The mixture demixes for T
< Tc (χ > χ c = 2). The energetic cost of composition in-
homogeneities is accounted for by the square-gradient term,
where C is a positive constant with units of inverse length. In
the electrostatic energy in Eq. (1), ψ is the electric potential
and ε is the dielectric constant, assumed to depend linearly on
composition by ε(φ) = εc + (εw − εc)φ, where εw and εc are
the water and cosolvent dielectric constants, respectively. The
first term on the second line of Eq. (1) is the ions’ electrostatic
energy, where e is the elementary charge. The first term in
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the sum is the ideal-gas entropy of the ions and the second
term is the ion solvation energy. In our simple theory, the
solvation energy is proportional to the local solvent compo-
sition and its strength is measured by the parameters �ui.13, 14

Here, we are interested in salts where the asymmetry in the
cation and anion solvation parameters, defined as υ ≡ (�u+

− �u−)/2, is large. This is commonly satisfied in antagonistic
salts where one ion is hydrophilic and the other is hydropho-
bic: �u+�u− < 0.

The short range and electrostatic interactions between the
fluid and the solid surfaces are given by the surface free en-
ergy density fs

fs = kBT �γφ(rs) + eσψ(rs), (2)

where rs is a vector on the colloid surface and eσ is the surface
charge density of the plates. The surface wettability is given
by the parameter �γ that measures the difference between
the solid-water and solid-cosolvent surface tensions.

The equilibrium state of the system is found by extrem-
ization of the grand potential

� =
∫

[f − kBT (λ+
0 n+ + λ−

0 n− + μ0φ)]dr +
∫

fsdrs ,

where λ±
0 and μ0 are the chemical potentials imposed by the

species in the reservoir. This leads to the first Euler-Lagrange
(EL) equation δ�/δφ = 0

−C∇2φ + ∂fm

∂φ
−

∑
i=±

�uini − ε0
dε/dφ

2kBT
(∇ψ)2 = μ0, (3)

with the boundary condition n · ∇φ = �γ/C, where n is a
unit vector perpendicular to the surface. The EL equation
for the potential δ�/δψ = 0 naturally yields Gauss’ law:
−∇ · (ε0ε(φ)∇ψ) = e(n+ − n−) with the boundary condi-
tion −n · ∇ψ = eσ/ε0ε(φ). The densities n± from δ�/δn±

= 0 obey the Boltzmann distribution n± = v−1
0 exp(∓�

+ �u±φ + λ±
0 ), where � = eψ /kBT is the dimensionless

potential.
A solution of the EL equations in a planar geometry

yields the one-dimensional profiles φ(z), ψ(z), and n±(z). In
Fig. 1, we plot the resulting profiles for a salty mixture be-
tween two electrically neutral and hydrophobic plates with a
wettability �γ = 0.2/a2. The mixture has a bulk critical com-
position, φ0 = 1/2, and its temperature is far above Tc, �T
= T − Tc = 21.5 K. The bulk concentration of the antagonis-
tic salt is n0 = 20 mM and the solvation parameters are �u+

= −�u− = υ = 6.
The ionic profiles in Fig. 1(b) show that an electrostatic

diffuse layer (EDL) is realized near the plates, despite their
electric neutrality. The reason is the adsorption of the cosol-
vent on the hydrophobic plates shown by the profile of φ in
Fig. 1(a). The cosolvent “drags” the hydrophobic anions and
repels the hydrophilic cations. Hence, a net charge density de-
velops in the vicinity of the plates, giving rise to the electric
potential profile shown in Fig. 1(a).

The width of the adsorbed fluid layer is comparable to
the bulk correlation length ξ . Beyond this distance φ(z) de-
cays to its bulk value. However, electroneutrality dictates
that the ionic profiles must compensate for the deviation
from the bulk values near the plate. At surface separation of

FIG. 1. Profiles of the (a) composition, dimensionless potential, and
(b) scaled ion densities between two electrically neutral plates immersed in
a critical mixture (φ0 = 1/2) at a temperature �T = T − Tc = 21.5 K and
containing 20 mM of antagonistic salt (�u+ = −�u− = υ = 6). Here and in
other figures, the plates are hydrophobic with �γ = 0.2/a2, corresponding to
about 7 mN/m. As an approximation to water–2,6-lutidine mixtures, we used
Tc = 307.2 K, v0 = 39 Å3, C = χ /a,29 εlutidine = 6.9, and εwater = 79.5.

D = 20 nm (Fig. 1(b), solid curves), this means that the anion
(cation) concentration becomes smaller (larger) than the bulk
value n0 before it decays to n0 at the midplane (z = 0), leading
to a minimum (maximum) in the profile. On the other hand,
at a distance of D = 6 nm, the extremum is missing since
the EDLs from each plate overlap, such that n±(z = 0) �= n0.
Such an overlap implies a repulsive osmotic force between the
plates.

Using the profiles we calculate the osmotic pressure �

between the plates at a given distance D from �(D) = Pzz

− P0, where Pzz = φδf/δφ + n+δf/δn+ + n−δf/δn− − f
− ε0ε(∂ψ /∂z)2 is the zz component of the Maxwell pressure
tensor17 and P0 = Pzz(φ0, n

±
0 , ψ = 0) is the bulk pressure.

The interaction potential U(D) between the plates is obtained
from the osmotic pressure via U (D) = −S

∫ D

∞ �(D′)dD′.
The interaction potential for the parameters of Fig. 1 with

solvation asymmetry υ = 6 is plotted in Fig. 2 (red curve).
At close separations the potential is attractive due to adsorp-
tion of the cosolvent on the plates, but a repulsive barrier of
≈10kBT appears in U(D) at a distance denoted by Dmax of a
few nanometers. The barrier height Umax = U(Dmax) strongly
depends on υ. For an antagonistic salt with υ = 4 (blue curve),
the barrier is much smaller, while for a hydrophilic salt with
υ = 0 (green curve), the potential is purely attractive.

In order to better understand the physical origin of
the repulsion, we examine the components of the osmotic
pressure. For symmetric plates, � can be recast in term of the
mid-plane composition φm = φ(z = 0; D) and ion densities
n±

m = n±(z = 0; D) as �(D) = �ions(n±
m) − �mix(φm),

where

�ions = kBT
(
n+

m + n−
m − 2n0

)
, (4)

�mix = kBT (fm(φm) − fm(φ0) − μ0(φm − φ0)) . (5)

The inset of Fig. 2 shows �ions and �mix for the υ = 6 po-
tential curve. It is seen that �ions is repulsive at D � 4 nm;
when the EDLs overlap this leads to an increase of n±

m. −�mix

on the other hand is attractive. Since U is the cumulative
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FIG. 2. The interaction potential U(D) between electrically neutral and hy-
drophobic plates immersed in a mixture with φ0, T, and n0 as in Fig. 1. When
both ions are hydrophilic the interaction is purely attractive (�u± = 6, green
curve). A weak repulsive barrier Umax appears with antagonistic salts (�u+
= −�u− = 4, blue curve), and its height increases with increasing �u+
− �u− (�u+ = −�u− = 6, red curve). Full numerical solutions (solid
curves) are in good agreement with linear theory (dashed-dotted curves),
where we used κ−1 = 1.68 nm, ξ = 0.94 nm, and l = 1.78. Two crosses
are the approximation (Dmax, Umax) of Eq. (14). Inset: The two components
of the osmotic pressure (see text) for the red curve. Here and in Fig. 3, the
area of the hydrophobic plates is S = 0.01 μm2 and �γ = 0.2/a2.

integral of �ions − �mix, a repulsive barrier is created by
a range of D for which �ions > �mix, corresponding to D
� 6 nm in the figure.

To better characterize the repulsive potential, we solve
the governing equations in the limit where the perturbations
in the composition ϕ = φ − φ0 and ion densities δn± = n±

− n0 are small:18 δn± = n0(�u±ϕ ∓ �), κ−2∇2� = � − υϕ,
κ−2∇2ϕ = l2ϕ + ω2(�/υ − ϕ), where κ = (2lBn0)1/2 is the
Debye wavenumber and ω = |υ|/(lBC)1/2 is a scaled υ. Here,
lB = e2/(ε0ε(φ0)kBT) is the Bjerrum length at φ0 and l = 1/κξ

is the ratio of the Debye length and the modified correlation
length ξ : ξ = (C/τ )1/2, where τ = ∂2fm(φ0)/∂φ2 − n0(�u+

+ �u−)2/2.
The solution of the linear equations with the z → −z sym-

metry is

�(z) = a1 cosh(q1z) − a2 cosh(q2z), (6)

ϕ(z) = b1 cosh(q1z) − b2 cosh(q2z). (7)

The wavenumbers qi obey

(qi/κ)4 − (1 + l2 − ω2)(qi/κ)2 + l2 = 0. (8)

The amplitudes ai and bi are determined using the boundary
conditions; in the special case where the plates are electrically
neutral they are

ai = �γ

C

κ2υ

qi

(
q2

2 − q2
1

)
sinh(qiD/2)

, (9)

bi = �γ

C

q2
i − κ2

qi(q2
2 − q2

1 ) sinh(qiD/2)
. (10)

In the linear case, it follows that

U

kBT
= S × (�γ )2

2C

[
�1

coth(q1D/2) − 1

q1

− �2
coth(q2D/2) − 1

q2

]
, (11)

where

�i = q2
i − κ2

q2
2 − q2

1

. (12)

One can see from Eq. (11) that the interaction is ∝ (�γ )2

and that the interplay between the two terms in brackets de-
termines the nature of U. In the limit of vanishing solvation
asymmetry ω → 0, we have from Eq. (8): q1 → κ and q2

→ ξ−1, leading to �1 → 0 and �2 →1. The resulting poten-
tial is attractive, as expected when ion solvation is absent due
to critical adsorption.30

For non-vanishing ω, we focus on the region above Tc for
which l > 1 + ω and hence both q1 and q2 are positive real
numbers. For sufficiently small ω, we find

q1
∼= κ

√
1 + ω2

l2 − 1
, q2

∼= ξ−1

√
1 − ω2

l2 − 1
. (13)

In this region, it is easy to show that q2 > q1 > κ and thus
�1 > 0 and �2 > 0. Therefore, the first term in brackets in
Eq. (11) is repulsive while the second is attractive, leading
to the existence of a maximum in the potential. The location
and magnitude of this repulsive barrier are found by solving
∂U/∂D = 0. In the limit D 
 q−1

1 , q−1
2 , we find for Dmax and

Umax

Dmax = log(�2/�1)

q2 − q1
,

(14)
Umax

kBT
= S × (�γ )2

C

[
�1

q1

(
�2

�1

) q1
q2−q1 − �2

q2

(
�2

�1

) q2
q2−q1

]
.

Whether Umax is significant depends on the ratio of ampli-
tudes �2/�1.

At large enough colloid separations D, the repulsive tail
of the interaction is U/kBT � S(�γ )2/(C/�1)exp (−q1D)/q1.
This expression is analogous to the regular Debye-Hückel re-
sult U/kBT � S(σ 2/ε0ε)exp (−κD)/κ for charged colloids.1 In
our theory, q1 is a modified Debye wavenumber, C/�1 is a
property of the medium, and �γ plays the role of an effective
surface charge, reflecting the properties of the surface.

The comparison between the full potential and the ana-
lytical approximation Eq. (11) is shown in Fig. 2. For both
υ = 6 (ω = 0.64) and υ = 4 (ω = 0.43), the linear theory
(dashed-dotted curves) agrees quite well with the numerical
solution (solid curves). Two circles in Fig. 2 show Dmax and
Umax evaluated using Eq. (14). Our analysis shows that q1 and
�1 must be large enough for significant repulsion to appear.
Hence, from Eq. (13) and Eq. (12) we conclude that ω should
not be too small and l not too large. The first requirement is
satisfied by choosing antagonistic salts while the second dic-
tates the temperature window given the salt concentration.

The two experimentally important quantities Umax and
Dmax are plotted in Figs. 3(a) and 3(b), respectively. For
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FIG. 3. (a) Barrier height and (b) location as a function of �T and n0 for υ

= 6 and �γ = 0.2/a2. Dashed curves are numerical results for φ0 = 0.5, n0
= 20 mM, and varying �T; a repulsive barrier appears at �T � 2 K. For the
solid curves, φ0 = 0.5, �T = 21.5 K, and n0 varies. Dashed-dotted curves
are Eq. (14) for varying n0 plotted in the validity range given by l > 1 + ω.

increasing �T (dashed curves), a repulsive barrier first ap-
pears at �T ≈ 2 K, and it has a maximal value. The solid
curves give results for varying n0, showing again a maximum
in Umax. Dashed-dotted lines are Umax and Dmax vs n0 from
Eq. (14) in the range l > 1 + ω. Fig. 3(a) shows that stabiliza-
tion can be achieved far above the critical temperature. Thus,
in principle the theory applies to experiments with completely
miscible mixtures, e.g., water and alcohol, which in our the-
ory is the χ → 0 limit of athermal mixtures.

The behavior of Umax is determined by the interplay be-
tween the attractive adsorption-related part of interaction and
the repulsive solvation-related part. An increase in �T or n0

increases ξ−1 or κ , respectively. The result in both cases is
an increase in the wavenumbers qi and therefore a decrease
in Dmax, see Fig. 3(b). Furthermore, the relative magnitudes
of the wavenumbers qi and the amplitudes �i change in a
non-trivial manner due to the coupling of the attractive and
repulsive contributions, given by the parameter l in the linear
theory.

In the spirit of the DLVO theory, the more realistic case
of spherical colloids of radius R is evaluated by applying Der-
jaguin’s approximation to the potential U and adding the vdW
interaction between the spheres: UT = πR

∫ ∞
D

U (D′)dD′

− AHR/(12D), where AH is the Hamaker constant. Contours
of the maximum of UT, UT, max, are shown in Fig. 4(a) in
the φ0–T plane. Notice that UT, max increases significantly for
water-rich compositions (φ0 > 0.5). The reason for this is
twofold: (i) the adsorption force is weaker at off-critical com-
positions and (ii) relative to the bulk composition, the water-
poor layer on the surface is more attractive for hydrophobic
ions. For hydrophilic colloids (�γ < 0), UT,max would be
larger at compositions φ0 < 0.5. While the absolute values of
UT,max do not depend on the sign of �γ , the hydrophobicity
or hydrophilicity of the colloids determines the ideal work-
ing region in the φ0–T plane. The contour lines of UT, max

= 3kBT are shown in Fig. 4 (b) for different values of the
Hamaker constant. The area enclosed by this contour defines
approximately the working conditions for a stable dispersion.
Indeed, even for large values of the Hamaker constant a sta-
ble region exists for water-rich compositions and closer to the
binodal curve. Hence, one could add only a small amount of
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FIG. 4. The maximum of the interaction potential, UT, max(φ0, T), in the φ0–
T plane including vdW attraction and using Derjaguin’s approximation for a
colloid radius R = 1 μm. (a) Contours of UT, max for a Hamaker constant AH

= 0.2 × 10−20 J. (b) The contour lines corresponding to UT, max = 3kBT for
different Hamaker constants. The values of Hamaker’s constant are indicated
by the labels in units of 10−20 J. Here, υ = 6, n0 = 20 mM, and �γ = 0.2/a2.

co-solvent to an unstable dispersion of charge-free colloids to
obtain a stable dispersion.

The linear solvation model adopted by us for its sim-
plicity is a first-order approximation, and the study of more
complex and realistic solvation models is an active area of
research.22 Nonetheless, the large repulsive barriers we pre-
dict are not restricted to a linear solvation model.31 In ad-
dition, a significant barrier can also be obtained for weakly
antagonistic salts (υ � 1) if the plates are made more hy-
drophobic or hydrophilic (Eq. (11)), or if the bulk composi-
tion is changed (Fig. 4(a)).

In Fig. 5, we show that addition of antagonistic salts can
enhance the stability of charged colloids as well. When the
colloids’ surface and the ions are indifferent to the solvents,
�γ = 0 and �u± = 0, as in the regular Poisson-Boltzmann
theory, the effect of the mixture on the interaction is via the
dependence of the dielectric constant on φ. The result for
UT(D), shown by the solid curve in Fig. 5, is a marginally
stable potential. For hydrophobic colloids (�γ > 0), UT be-
comes attractive if the salt is hydrophilic (dashed curve), indi-
cating a destabilization of the suspension. However, for hy-
drophobic colloids and an antagonistic salt (dashed-dotted
curve) the repulsive barrier increases significantly, indicating
a stabilization of the suspension. Here, the hydrophobic and
positively charged colloids draw a larger amount of hydropho-
bic anions towards their surface, leading to an increase in the
repulsive osmotic pressure of ions.
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FIG. 5. UT(D) for two charged colloids with a surface charge density
σ = 0.1 nm−2. When �γ = 0 and �u± = 0 (solid curve), the potential
is marginally stable. For a hydrophobic surface, �γ = 0.2/a2, the poten-
tial is unstable for a hydrophilic salt (�u± = 6, dashed curve) while it has
a large barrier for an antagonistic salt (�u+ = −�u− = 6, dashed-dotted
curve). Here, n0 = 20 mM, φ0 = 0.5, �T = 21.5 K, R = 1 μm, and
AH = 1 × 10−20 J.

In conclusion, the theory predicts that significant poten-
tial barriers exist in a wide temperature and composition range
and shows that neutral and charged colloids can be effectively
suspended in a binary mixture by addition of antagonistic
salts. It is worth noting that the specific adsorption of ions
to the surface not discussed here will typically enhance the
stabilization. The ion affinity to the wetting liquid will usu-
ally come hand in hand with a similar surface affinity thus
enhancing the electrostatic repulsion.

The mechanism we describe is of potential use in nu-
merous colloidal systems where currently only one solvent
is employed and it is advantageous over existing methods in
cases where the modification of the colloid surface chemistry
is undesired. The most important requirement to achieve a
stable suspension is to choose a salt in which the ions’ sol-
vation asymmetry in the mixture is large enough. We ex-
pect our results to be most beneficial for dispersing charge-
free particles. For example, there have been large efforts re-
cently in “transparent and conducting” electrodes for solar
cell applications.32 In these works, graphite is typically son-
icated to yield graphene sheets, and these sheets are dis-
persed using surfactants. Using evaporation or slow sedimen-
tation, these sheets assemble as a thin and conducting layer
on top of a transparent substrate. In those works, surfactants
stay between graphene sheets and reduce the conductivity im-
mensely. In this and other cases, using salts for the dispersion
instead of surfactants could increase markedly the conductiv-
ity of the film.
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