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We investigate the vapor-liquid coexistence of polar and nonpolar fluids in the presence of a nonuniform
electric field. We find that a large enough electric field can nucleate a gas bubble from the liquid phase or a
liquid droplet from the vapor phase. The surface tension of the vapor-liquid interface is determined within
squared-gradient theory. When the surface potential (charge) is controlled, the surface tension increases
(decreases) compared to the zero-field interface. The effect of the electric field on the fluid phase diagram
depends strongly on the constitutive relation for the dielectric constant. Finally, we show that gas bubbles
can be nucleated far from the bounding surfaces.

1. Introduction

The phase behavior of fluids in external electric fields has
drawn increasing interest in recent years. Theoretical1-5 and
experimental6-8 investigations thus far focused mainly on the
application of a uniform field. The first treatment of dielectric
fluids in uniform electric fields was that of Landau and Lifshitz.1

Their mean-field results predicted a small change in the fluid’s
critical temperature ∆Tc. For typical fields used in experiments
(=107 V/m) ∆Tc is rather small, of the order of milliKelvins.
Dipolar fluids, with more complex phase behavior due to the
dipole-dipole interaction, have been studied more recently.2-5

Simulations of Stockmayer fluids found reasonable agreement
with mean-field theory.5 Experiments in pure fluids and low
molecular weight binary mixtures agree with the theory on the
magnitude of ∆Tc, but reports in the literature on the sign of
the change are conflicting.8-11 The effect of a uniform gravi-
tational field on vapor-liquid coexistence is even smaller and
can only be detected very close to fluid’s critical point.12

Field gradients naturally occur in complex systems like
microfluidic devices and colloidal suspensions. In nonpolar
binary mixtures, nonuniform electric fields, originating from the
proximity to a curved charged object, can induce a phase-
separation transition and change the phase diagram substanti-
ally.13-15 In polar binary mixtures, the existence of salt leads to
intrinsically nonuniform fields. Here, a small amount of ions
can modify the phase equilibrium and surface tension of the
mixture considerably.16-19

Here we show, on the mean-field level, that the effect of
nonuniform fields on the vapor-liquid coexistence can be quite
large. For concreteness we use a simple van der Waals theory
together with Onsager’s theory of dielectrics to treat fluids
placed in condensers at constant voltage or charge. The paper
is organized as follows: In section 2 the van der Waals theory
is extended to include the contribution of electric fields. In
section 3.1 we describe the field-induced phase transition and
calculate the density and pressure profiles. In section 3.2 we
explore the field effect on the temperature-density phase plane
in various circumstances. In section 3.3 we use gradient theory
to calculate the surface tension change due to the electric field.
In section 3.4 we give an example of a complex electrode

configuration: the quadrupolar electrode array. In this config-
uration we demonstrate that phase separation can occur away
from the confining surfaces. Conclusions are given in section
4.

2. Model

We consider a one-component van der Waals fluid. We
characterize the fluid by its temperature T and density F ) N/V,
where N is the number of molecules and V the volume. In the
presence of an external field the density is allowed to change
in space and the Helmholtz free energy is expressed as

where fes is the electrostatic energy density and fvdw is the van
der Waals free energy density given by20

Here, Λ is the thermal de Broglie wavelength and kB is the
Boltzmann constant. The parameter b accounts for the reduction
in effective volume due to the hard-core repulsion; b ) (2πd3)/
3, where d is the molecular hard-core diameter. The parameter
a takes into account the pairwise attractive interaction between
the fluid molecules. Within the mean-field approximation a is
given by

where u(r) is the spherically symmetric interaction potential
between a pair of molecules. The modified Lennard-Jones
potential with hard-core repulsion is a natural choice for the
van der Waals fluid* To whom correspondence should be addressed: E-mail: tsori@bgu.ac.il.

F ) ∫ [fvdw(T, F) + fes(T, F, r)]dr (1)

fvdw ) kBTF[log(FΛ3) - 1 - log(1 - Fb)] - aF2

(2)

a ) -1
2 ∫d

∞
u(r)dr (3)
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where ∆ is a constant. Putting eq 4 in eq 3 we have a ) 2π∆/
(3d3). In the absence of an electric field, the fluid’s pressure P
is given by P ) F(∂fvdw/∂F) - fvdw and hence the van der Waals
equation of state is (P + aF2)(1 - bF) ) FkBT.

The fluid’s equilibrium density is obtained by minimization
of F under the constraint that the total number of molecules is
conserved. Thus, one needs to minimize the functional Ω )
∫ω dr, where

is the grand potential density. The Lagrange multiplier µ is
identified as the chemical potential. The van der Waals theory
predicts qualitatively correct the first-order vapor-liquid phase
transition. Below the critical temperature Tc, the integrand in
eq 5 has two minima corresponding to vapor and liquid phases
with densities Fv(T) and Fl(T), respectively. Coexisting equi-
librium phases appear at a chemical potential µ ) µc determined
by the Maxwell construction. This corresponds to the two phases
having the same grand potential density ω(F,T). The locus of
densities Fl,v(T) gives the fluid’s phase diagram in the
temperature-density plane. The densities Fv(T) and Fl(T)
terminate at the critical point (Tc,Fc) ) (8a/(27kBb),(3b)-1). From
the equation of state one finds for the critical pressure Pc )
a/(27b2). In the following we use reduced quantities of density,
temperature, and pressure: φ ) F/Fc, t ) T/Tc, and p ) P/Pc.

In the presence of an external electric field the fluid is
polarized and we add the electrostatic energy density fes to the
total energy. We do not include nonlinear polarization effects
in fes since they are important only in very large fields (J108V/
m) at which dielectric breakdown frequently occurs.21 When
the electrostatic potential ψ is prescribed on the bounding
surfaces fes is given by22,23

where E ) -∇ψ is the electric field and ε is the fluid’s
permittivity. When the total charge Q is prescribed on the
bounding surfaces, fes is given by22,23

where D is the electric displacement field and we assume the
linear relation D ) εE for the isotropic fluid.

In order to correctly describe the fluid on submicrometer scale
we employ gradient theory24 and add a |∇F|2 term to the free
energy, namely,

where the positive parameter m is given by24,25

From eqs 4 and 9 we obtain m ) 2π∆/3d ) ad2.

Extremization of the free energy with respect to F and ψ gives
the Euler-Lagrange equations18,19,25,26

The constitutive relation ε ) ε(F) couples Gauss’s law (eq 11)
with eq 10. In the canonical ensemble, µ is an adjustable
parameter needed to conserve mass: 〈F〉 ) F0, where F0 is the
average density. An equation similar to eq 10 is obtained for
the fluid density in a gravitational field,12,27 but the coupling of
the density to the Laplace equation is unique to electromagnetic
fields. We will also treat the grand-canonical ensemble in which
the chemical potential is set by the chemical potential µ0 of the
reservoir. On the system boundaries we impose the condition
n ·∇F ) 0, where n is the outward unit vector normal to the
surface.28 This boundary condition corresponds physically to a
vanishing surface field. In order to elucidate the influence of
the electric field, we do not consider any direct short- or long-
range interactions between the fluid and the confining solid
surfaces.

We begin by considering the two elementary model geom-
etries shown schematically in Figure 1. In these geometries the
solution of eqs 10 and 11 is greatly simplified since one can
easily calculate the electric field as a function of the density.
The first geometry is the cylindrical condenser made up of two
concentric cylinders of radii R1 and R2. In the limit R2 f ∞,
this reduces to an isolated wire of radius R1 and surface charge
density σ.

In cylindrical symmetry the solution of eq 11 is E(r) ) σR1/
(ε(φ)r)r̂, where r is the distance from the inner cylinder’s center
and σ is the surface charge density. A similar setup has been
used by Lee et al., who investigated the phase equilibrium of
lipid monolayers.29 The above expression for E also applies to
a charged spherical colloid with radius R1; the main difference
is that in this case the field decays as r-2. The second geometry
we consider is the wedge condenser, made up from two flat
electrodes with a potential difference V across them and an angle
� between them. Here also, symmetry requires that F ) F(r)
and the solution of eq 11 is E(r) ) (V/�r)θ̂, where r is the
distance from the imaginary meeting point of the electrodes and
θ is the azimuthal angle. This and similar designs have been
used by Chaikin and co-workers to investigate phase equilibria
of colloidal suspensions in electric field gradients.30-32

u(r) ) {∞ r < d

-∆r-6 r > d
(4)

ω ) f - µF (5)

fes(F, E) ) -1
2

ε(F)E2 (6)

fes(F, D) ) 1
2

D2

ε(F)
(7)

F ) ∫ [1
2

m|∇F|2 + fvdw + fes]dr (8)

m ) -1
6 ∫d

∞
u(r)r2 dr (9)

Figure 1. Two model systems. (a) Wedge condenser made of two flat
electrodes with a potential difference V across them and an angle �
between them. r is the distance from the imaginary meeting point of
the electrodes. R1 and R2 are radii of the electrode’s edge. (b) Charged
cylindrical wire with radius R1 or condenser made of two concentric
cylinders with radii R1 and R2. The inner cylinder surface charge density
is σ.

δΩ
δF

) -m∇2F +
δfvdw

δF
- 1

2
dε(F)

dF
(∇ψ)2 - µ ) 0

(10)

δΩ
δψ

) ∇ · (ε(F)∇ψ) ) 0 (11)

76 J. Phys. Chem. B, Vol. 115, No. 1, 2011 Samin and Tsori



The governing equations are now one dimensional and
decoupled, and thus, we are left with the task of solving eq 10
for the van der Waals fluid. We rewrite eq 10 for the cylinders
as

where f̃vdw ≡ fvdw/Pc, r̃ ≡ r/R1 is the scaled radius, m̃ ≡ 3d2/R1
2,

and ε̃ ≡ ε/ε0 is the dimensionless permittivity (ε0 is the vacuum
permittivity). Here, Msc ≡ σ2/(2Pcε0) is the dimensionless
magnitude of the maximal electrostatic energy density in units
of the critical pressure. For the wedge condenser we similarly
obtain

where Mw ≡ ε0V2/(2Pc�2R1
2) is the scaled field squared.

Before we continue we need to specify the nature of the
constitutive relation ε̃(F) of the fluid. For the dielectric constant
of a polar fluid Onsager’s relation33 holds

where µD is the molecular dipole moment and ε̃∞ is the high-
frequency limit of the permittivity, as given by the Clausius-
Mossotti equation34

where R is the molecular polarizability. Equation 14 predicts
quite well the dielectric constant of polar materials.34 However,
since it neglects short-range orientational order of the fluid
molecules (e.g., hydrogen bonds) it underestimates the dielectric
constant in cases where these short-range effects are important.
For nonpolar fluids we use Onsager’s relation with µD ) 0,
that is, ε̃ is given by the Clausius-Mossotti equation. Since
the van der Waals system is bistable in the absence of electric
fields, we expect a phase-separation transition to occur in
nonuniform electric fields.14,15 In the next section we show that
this is in fact the case.

3. Results and Discussion

3.1. Phase Separation. Typical equilibrium density profiles
φ(r) obtained from eqs 12 and 13 at a temperature T < Tc in the
sharp interface limit (m ) 0) are presented in Figure 2. For a
homogeneous vapor phase in the absence of an electric field, if
M is small, a smoothly decaying profile develops (dashed line).
The density is higher where the field is strong (small r̃) due to
the dielectrophoretic force which favors a higher permittivity
(density) fluid in the region of strong field.14,15

Above a critical value of M, the dielectrophoretic force
nucleates a liquid phase (solid line) with an interface at r̃ ) R̃
(R̃ = 1.3 in Figure 2a). An increase of M moves the interface
to larger radius (dash-dot line, R̃ = 1.52 in Figure 2a). The
nucleation of a liquid drop from the vapor phase occurs first at
R̃ ) R̃1 where the electric field is maximal.

We can estimate the typical demixing charge/voltage from
the value of M being in the range M ≈ 0.001-0.1. Consider a
wire of radius 1 µm placed in a vapor of a polar fluid, for
example, acetonitrile (Tc ) 545 K, Pc ) 4.85 MPa, d ) 5.14
Å, µD ) 3.93 D),35 at t ) 0.99. Then, the typical demixing
electric field is of the order of 106-107 V/m. This is a large
field but still below the dielectric breakdown for many fluids
near Tc.21 This field corresponds to a wire voltage of 10-100
V or equivalently to charge densities per unit length of the wire
of 104 - 105 e charges/µm.

Typical values of M in the wedge condenser are an order of
magnitude smaller than in the cylindrical condenser. In the
wedge condenser E is perpendicular to ∇φ and hence to the
dielectric interface, and therefore, the dielectrophoretic force
(proportional to dε̃/dφ) exists without the energy penalty
proportional to (dε̃/dφ)2 occurring when the dielectric interfaces
are parallel to E.36

For a fluid dielectric in an external field and in mechanical
equilibrium, the fluid’s pressure is a tensor Pik which depends
on position. In an electric field it is given by18,22

m̃∇2
φ )

∂ f̃vdw

∂φ
- Msc

dε̃/dφ

ε̃2
r̃-2 - µ̃ (12)

m̃∇2
φ )

∂ f̃vdw

∂φ
- Mw

dε̃
dφ

r̃-2 - µ̃ (13)

(ε̃ - ε̃∞)(2ε̃ + ε̃∞)

ε̃
) ( ε̃∞ + 2

3 )2 µD
2

kBTε0
F (14)

ε̃∞ - 1

ε̃∞ + 2
) R

3ε0
F (15)

Figure 2. Equilibrium density profiles φ(r̃) in the sharp interface limit
(m ) 0) at a temperature t ) T/Tc ) 0.99 and a reservoir density φ0 )
0.75 (vapor phase, p0 ) 0.952). (a) Wedge condenser: (dashed line)
Mw ) 1.5 × 10-3 is smaller than the demixing critical value; (solid
line) Mw ) 2 × 10-3 is large enough to induce phase separation; (dash-
dot line) when Mw increases to 4 × 10-3 the interface is at larger radius.
(b) The same for a wire with Msc ) 0.06 (dashed line), 0.07 (solid
line), and 0.08 (dash-dot line). We used the molecular data of
acetonitrile (Tc ) 545 K, Pc ) 4.85 MPa).35

Pik ) (F∂f(F, E)
∂F

- f(F, E))δik - EiDk (16)
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In the wedge geometry the reduced pressure p reads

where p0 is the zero-field pressure given by the equation of state.
The (+) sign in eq 17 corresponds to the azimuthal component
of the pressure tensor pθθ and the (-) sign to the radial and z
components prr ) pzz. The off-diagonal elements of the pressure
vanish. In the charged wire the pressure is given by

where the (+) sign corresponds to prr and (-) the sign to pθθ )
pzz.

In Figure 3 we show the pressure curves prr and pθθ

corresponding to the density profiles in Figure 2. The pressure
is discontinuous at a sharp interface. In Figure 3a the discon-
tinuity in prr is very small. In the wedge geometry we find that
pθθ < p0 < prr because the field is in the θ direction. In the
cylindrical geometry the situation is more complex: the r-
directed field destabilizes the interface and hence prr < p0.
However, in the vapor-phase pθθ is larger than p0, while in the
liquid phase pθθ can be larger or smaller than p0. Note that
the pressure inside the liquid droplet is smaller than in the
surrounding vapor. This apparent breakdown of Laplace’s
formula is due to the existence of a body force of electrostatic
origin.

The density difference

at the demixing interface is an important quantity. The condi-
tions for a discontinuity from φ1 to φ2 > φ1 at a point R̃ in the
sharp interface limit are

where the apostrophe sign indicates differentiation with respect
to φ and Ẽ ≡ (Pc/ε0)1/2E is the dimensionless electric field. The
first two equations are eq 10 calculated at R̃, and the third one
is the condition that a high density is as favorable as the low
density: ω̃(φ1) ) ω̃(φ2).37 This set of equations determines φ1,
φ2, and R̃. The negative sign in eq 22 corresponds to constant
potential and the positive sign to the constant charge case.
Insertion of eqs 20 and 21 into eq 22 gives

where ω̃vdw(φ) ) f̃vdw(φ) - µ̃0φ is the van der Waals grand
potential density.

In zero fields, eq 23 reduces to the equality ω̃vdw(φ1) )
ω̃vdw(φ2) and its solutions are the liquid and vapor densities φ1

) φv and φ2 ) φl, respectively. Equation 23 shows that when
phase-separation occurs, the dielectric ratio ε̃/ε̃′ is the significant
quantity determining the densities at the interface and the
location of the interface. A detailed investigation of the nonlinear
equation eq 23 reveals that the dielectric ratio determines the
relation between ∆φ and the density difference at the
liquid-vapor interface ∆φb ≡ φl - φv in the absence of an
electric field. At a constant potential (wedge geometry), ε̃(φ) is
usually convex and ∆φ > ∆φb, whereas in the constant charge
case (cylindrical system) ∆φ can be larger or smaller than ∆φb.

A simple derivation of this result is possible near the critical
point (φc,tc) ) (1,1). We employ the Landau expansion of f̃vdw

in powers of φ - 1 for t close to 1 and expand ε̃(φ) in eq 14 at
t ) 1 up to second order in φ - 1

Thus, eq 10 (with m ) 0) for a constant potential can be
rewritten as

Figure 3. Radial (prr) and azimuthal (pθθ) pressure profiles corre-
sponding to the density profiles in Figure 2. Horizontal dashed line is
p0(φ0). In (a) the discontinuity in prr is very small.

p ) p0 - Mw((ε̃ + φ
dε̃
dφ)r̃-2 (17)

p ) p0 - Msc((1
ε̃
+ φ

dε̃/dφ

ε̃2 )r̃-2 (18)

∆φ ) φ2 - φ1 (19)

f̃vdw
′ (φ1) -

1
2

ε̃′(φ1)Ẽ
2(R̃) - µ̃0 ) 0 (20)

f̃vdw
′ (φ2) -

1
2

ε̃′(φ2)Ẽ
2(R̃) - µ̃0 ) 0 (21)

f̃vdw(φ1) -
1
2

ε̃(φ1)Ẽ
2(R̃) - µ̃0φ1 )

f̃vdw(φ2) -
1
2

ε̃(φ2)Ẽ
2(R̃) - µ̃0φ2 (22)

ω̃vdw(φ1) -
ε̃(φ1)

ε̃′(φ1)
ω̃vdw

′ (φ1) ) ω̃vdw(φ2) -
ε̃(φ2)

ε̃′(φ2)
ω̃vdw

′ (φ2)

(23)

ε̃(φ) ) ε̃c + ε̃′(φ - 1) + ε̃′′(φ - 1)2 + ... (24)

6(t - 1)(φ - 1) + 3
2

(φ - 1)3 -

ε̃″(φ - 1)Ẽ2(R̃) - µ̃E ) 0 (25)
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where the chemical potential µ̃E is µ̃E ) µ̃ + ε̃′Ẽ2(R̃)/2. By
symmetry the densities φ1 and φ2 satisfy the Maxwell equal
area rule for µ̃E ) 0. Hence, by eq 25

A similar derivation leads in the constant charge case to

where we expanded ε̃-1 up to second order in powers of φ - 1.
In the absence of the field, φ1,2 ) 1 ( �4(1 - t) are the binodal
densities. Since the electrostatic terms in eqs 26 and 27 have
opposite signs (ε̃″ > 0), the difference between ∆φ and ∆φb for
constant potential/charge becomes clear. The significance of this
result will be understood when we discuss the vapor-liquid
surface tension in section 3.3.

3.2. Stability Diagrams. In the previous section we showed
density curves for a few points (φ0,T,M) in the phase diagram.
One can now keep M constant and calculate the stability curve
φ0*(T) in the φ0 - T plane. We consider only the region outside
the binodal curve where the unperturbed fluid is homogeneous.
Between the binodal curve and the stability curve the homo-
geneous fluid becomes unstable under the influence of the field
and phase separation occurs, whereas outside φ0* the fluid’s
density varies smoothly in space.

Figure 4 shows φ0* for three materials: two are polar fluids
(acetonitrile and acetone) and one nonpolar (ethane). As is seen
from the solid curve (closed system) and the dash-dot curve
(open system) in Figure 4a, the unstable region is slightly larger
for an open system. The reason is that in a closed system
material conservation dictates that a change in the liquid density
is accompanied by a change in the vapor density, and this is
associated with an energy penalty in fvdw.

The unstable region grows with increasing value of M:
compare the solid curve in Figure 4 (a) with φ0* in the inset of
Figure 4 (a) where M is 100 times smaller. Even for this small
value of M, the unstable region is significant near Tc.

Compared to the wedge, a larger field is required to induce
phase separation in the cylindrical geometry and the unstable
region is accordingly smaller. In the wedge, the unstable region
is largest for acetonitrile, smaller for acetone, and very small
for ethane. In contrast, in the cylindrical geometry the unstable
region is largest for acetone and smaller for acetonitrile and
ethane (which have regions of similar size). This qualitative
difference is due to the different electrostatic term in the density
equations. The wedge has a term proportional to dε̃/dφ in eq
13. From Onsager’s relation (eq 14) near φc we see that ε̃ ≈
µD

2F + constant and hence dε̃/dφ ≈ µD
2. This explains the

behavior of φ0* in the wedge since µD is largest for acetonitrile
and vanishes for ethane. To explain the behavior in the cylinder
geometry we note that eq 12 has a term proportional to g(φ) ≡
(dε̃/dφ)/ε̃2. We plot g(φ) in Figure 5. From this figure we deduce
that g(φ) and hence the field effect is largest for acetone. For
acetonitrile and ethane, the average value of g(φ) is close and
hence the effect is similar.

Figure 4 shows that the instability region of closed systems
extends to values of φ0 larger than φc, meaning that a vapor
bubble can be nucleated from a homogeneous liquid. Here, the
dielectrophoretic force increases the liquid density near R̃1

(where the field is large) and depletes the fluid near R̃2 (where
the field is small). A vapor phase will be created at R̃ ) R̃2 if
the density at this region is close to the binodal density.
Appearance of the phase-separation interface at r̃ ) R̃2 requires
larger voltages because the field squared at R̃2 is smaller by a
factor of (R̃2/R̃1)2 compared to the field at R̃1.

The stability curves in Figure 4 are piecewise continuous.
They have kinks at temperatures we denote Tk,1 for φ0 < φc and

φ1,2 ) 1 -�4(1 - t) + 2ε̃″

3
Ẽ2(R̃) (26)

φ1,2 ) 1 -�4(1 - t) - 2
3

ε̃′2 - ε̃cε̃
″

ε̃c
3

D̃2(R̃) (27)

Figure 4. (a) Stability diagram for a closed and an open wedge with
Mw ) 4 × 10-3. Three materials with different dielectric properties
are shown for a closed wedge: acetonitrile (solid line), acetone (dashed
line), and ethane (dotted line). For an open wedge we show the stability
diagram of acetonitrile (dash-dot line). (Inset) The same but with Mw

) 4 × 10-5. The blue curve is the binodal curve φl,v(T) in the absence
of field. (b) Stability diagram for concentric cylinders with Msc ) 8 ×
10-2 and the same fluids as in (a). For closed systems we used R̃2 ) 5.

Figure 5. The function g(ε̃) ≡ (dε̃/dφ)/ε̃2 for acetonitrile, acetone, and
ethane at t ) 0.99.
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Tk,2 for φ0 > φc. These kinks can be understood by looking at
the second derivative f̃ ″ ) ∂2f̃/∂φ2. This derivative is given by

for the wedge geometry. Since ε̃(φ) is a convex function, the
electrostatic term in eq 28 is negative and f̃″ can be negative
even at T > Tc. This means that a phase separation is possible
even above Tc. For the cylinders

The electrostatic term in eq 29 is positive, and hence, the
unstable region is suppressed below Tc.

On the section of φ0* connecting the two kink points, phase
separation occurs at a finite value of R̃, R̃1 < R̃ < R̃2. On this
”critical” line the density at R̃ satisfies

The kink points are therefore the transition points in φ0* from a
first-order phase transition to a second-order phase transition.
As we cross the section of φ0* between them from the stable
region into the unstable region, ∆φ increases continuously from
zero. As we cross into the unstable region at the other two
sections of φ0*, ∆φ jumps abruptly from zero to a finite value.

The kink temperatures Tk,1 and Tk,2 may be found by setting
in eq 30 R̃ ) R̃1 and R̃ ) R̃2, respectively. The expansion of
ε̃(φ) (eq 24) allows us to approximate these temperatures for
the wedge geometry

For acetonitrile we find Tk,1 - Tc = 0.6 K (Mw ) 4 × 10-3).
Solving eq 30 numerically for the cylindrical case with Msc )
8 × 10-2 we find Tk,1 - Tc ) -2.1 K. These estimates are 2
orders of magnitude larger than the change in Tc in uniform
fields.2,3,5

3.3. Surface Tension. In real systems the interface between
phases is not sharp but microscopically diffuse. A surface
tension γ is associated with the interfacial area. In the presence
of a long-range electric field, an increase of the area of the
interface by A does not increase the energy by γ × A because
displacement of the interface changes the electric field far away
and leads to a volume contribution to the energy.

In order to examine the effect of the electric field on the
fluid’s surface tension we apply the squared gradient ap-
proximation eq 8 and solve the Euler-Lagrange equations (eqs
12 and 13) numerically for m * 0. We find that inclusion of
the (∇F)2 term leads to a smoothing of the density profiles on

a microscopic scale but does not change the results presented
thus far on the mesoscopic scale.

The smooth line in Figure 6 shows the interface profile φI ≡
φ(r̃;m), while the step curve is the density profile in the sharp
interface limit φS ≡ φ(r̃;m ) 0). The distance in this figure is
measured in units of the molecular diameter. As expected, the
(∇F)2 is only appreciable around R̃ defined by eqs 20-22. It
can be shown that mass conservation leads to R̃ being equal to
the equimolar Gibbs dividing surface defined by

meaning that the two shaded areas in Figure 6 have equal areas.
The thermodynamic surface tension γ is the excess of the

grand potential per unit area due to formation of the surface.
φS is the reference profile through which we define the surface
tension γ38

where A is the interfacial area. The surface tension is related to
density difference ∆φ at the interface. A large value of ∆φ

results in large density gradient which increases γ. γ depends
on the location of the interface R̃ because ω̃(φI) and ω̃(φS)
depend on R̃.

We define γ0 to be the zero-field surface tension between
two coexisting phases having binodal densities at a given
temperature. We find that near the critical point, the mean-field
result for the surface tension of a one-component fluid24

holds for both γ and γ0. For γ0, eq 35 is used with ∆φb instead
of ∆φ. Here B ) 3/2 is the coefficient of the (φ - 1)3 term in
the Landau expansion of f̃vdw′ in powers of φ - 1. In Figure 7,
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Figure 6. Zoom of the interface region of the dash-dot density profile
in Figure 2b. Distance is measured in units of the molecular diameter,
and the Gibbs dividing surface is taken as the origin. The shaded areas
are equal. The dashed line is the zero-field vapor-liquid interface at
the same temperature.
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the surface tensions γ calculated numerically using eq 34 for
the wedge and cylinders and γ0 (zero field) are shown to be
consistent with eq 35.

The derivation of eq 35 shows that linear and quadratic terms
in the Landau expansion of f̃ ′ in φ - 1 do not contribute to γ.24

Since the Landau expansion of the electrostatic energy (eq 25)
contains terms only up to second order in φ - 1, γ and γ0 are
described both by the mean-field theory in the absence of a
field. Physically, eq 35 holds because of the long-range nature
of the field. Since the field changes over a length scale much
larger than the interface width, the field and hence the energy
are nearly constant in each phase near the interface, as in the
zero-field case. This is in contrast to systems where ions reside
at the interface.16,26,39 Here, the electric field changes significantly
at length scales comparable to the width of the interface and eq
35 is not expected to hold.

Figure 8 is a plot of the surface tension change defined by

In section 3.1 we have shown that ∆φ < ∆φb for a wire while
∆φ > ∆φb for a wedge (see inset of Figure 7), and this is the
reason why ∆γ is negative for a wire and positive for a wedge,
see Figure 8. Note that ∆γ is appreciable: it can be as large as
50% of γ0, whereas in much larger uniform fields it is only a
few percent of γ0.4

As is seen in Figure 8, when φ0 increases at constant T, ∆γ
increases for the wire and decreases for the wedge. The reason
is that in the cylindrical geometry ∆φ and hence γ increase
with φ0. In the wedge ∆φ and γ decreases with φ0.

∆γ depends on T via ∆φb(T) as well as via ∆φ(T). In the
van der Waals theory, γ0 decreases with T since ∆φb ∝ |t -
1|1/2 close to Tc.25 In the presence of the field, we find that in
both geometries ∆φ and γ decrease with increasing T (see inset
of Figure 7). Here, ∆φ is excellently described near Tc by φ1

and φ2 given by eqs 26 and 27. The net result is a complex
behavior of ∆γ. In Figure 8 we find a concave curve with a
maximum for the wedge and ∆γ decreases for cylinders.

However, for a different set of parameters (T,φ0,M) one may
find a minimum for the cylindrical geometry.

3.4. Complex Geometries. Until now we only considered
effectively one-dimensional systems. In this section we describe
more complex geometries where E has two components: E )
(Ex,Ey). Consider the quadrupole configuration consisting of four
metal wires with alternating voltages ( V placed inside a
grounded cylinder as is seen in Figure 9. As before, we find
that a phase-separation transition occurs if the voltage V exceeds
a critical voltage Vc. Figure 9 shows five nearly cylindrical gas
bubbles nucleated from a homogeneous liquid phase when V
) 20 V: four on the grounded surface and one at the center of
the cylinder.

In general, the fluid density follows the field intensity and
therefore the shapes of drops or bubbles follow the contours of
E2, see Figure 9. Bubbles or drops appear only above a critical
size, when the electrostatic gain in the bubble volume is enough
to overcome the interfacial energy. Hence, when the voltage is
increased from zero the four bubbles at the outer surface appear
before the one at the center. As the intensity of the electric field
increases, the contours of E2 displace and bubbles or drops grow.

Figure 7. Surface tension as a function of the density difference at
the interface. For the wedge and cylinders we plot all the data of Figure
8 (circles) vs ∆φ and for the zero-field case at temperatures 0.868 e
t e 0.993 (squares) vs ∆φb. The solid line is eq 35. (Inset) Density
difference as a function of temperature at φ0 ) 0.75. Squares are for a
wedge with Mw ) 4 × 10-3 and circles are for a wire with Msc ) 8 ×
10-2. The solid line is ∆φ for the zero-field case, ∆φb, showing that
∆φ > ∆φb for a wedge while ∆φ < ∆φb for the cylinders.

∆γ ) γ(T, φ0, M) - γ0(T) (36)

Figure 8. (a) ∆γ from eq 36 as a function of temperature (circles, φ0

) 0.75) and reservoir density (squares, t ) 0.99) for an open wedge.
Mw ) 4 × 10-3 for both cases. (b) Same for a wire except that Msc )
0.08. γ0 × 105 ) 0.0821PcR1 at a reduced temperature t ) 0.99. Note
that ∆γ is comparable to γ0 and that ∆γ/γ0 can be as large as 0.5. We
used the molecular data of acetonitrile and took R1 ) 10 µm, giving
PcR1 ≈ 50 J/m2.
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The quadrupole configuration is an example showing that the
electric field may in principle be used to create drops and
bubbles of myriad shapes. By controlling the electrode config-
uration and the boundary conditions one can design the contours
of E2 and thus the fluid density profile. In these complex
configurations the angle between E and ∇F is not constant, and
this makes it difficult to determine analytically the critical
demixing charge/voltage.

4. Conclusions

We study a one-component fluid dielectric in the presence
of nonuniform electric fields within the van der Waals mean-
field theory. Above a critical value of the electric field, a phase-
separation transition occurs and fluid drops (bubbles) nucleate
from a homogeneous vapor (liquid) phase. This type of transition
is general and it should occur in any bistable system with a
dielectric mismatch sufficiently close to the coexistence line.
We calculate the density and pressure profiles in two model
geometries where the field orientation is either perpendicular
or parallel to the density gradient.

The modification of the vapor-liquid coexistence by the
electric field is given by stability diagrams in the temperature-
density plane. The differences in the stability diagrams between
closed and open systems and in the two model geometries are
highlighted. These diagrams show that nonuniform fields change
the transition temperature appreciably and much more than
uniform fields do. The spatial dependence of the thermodynamic
quantities in a nonuniform field leads to the appearance of two
special points at temperatures Tk,1 and Tk,2. At the stability line
connecting these points the interface appears at a finite radius
R̃, R̃1 < R̃ < R̃2.

We show that the electric field can increase or decrease the
surface tension and that this change is comparable in magnitude
to the zero-field surface tension. The change in surface tension
is strongly dependent on temperature and average density.
Although the dynamical mechanism for phase separation in
nonuniform electric fields is yet to be determined, our results

suggest that in a nucleation-and-growth mechanism the nucle-
ation rates in the presence of the electric field may vary
substantially as they generally depend exponentially on γ.20

As is shown in the quadrupole electrode array, the appearance
of the phase-separation interface is not restricted to the vicinity
of the confining surfaces. The quadrupole configuration also
demonstrates that the electric field may be used to control and
design the shape of bubbles and drops.

We suggest two experiments to test our predictions. Consider
a wedge condenser immersed in a vapor near the coexistence
temperature. A density gradient in the fluid implies a refractive
index gradient. Beam bending and light scattering experiments12

can probe the details of formation of a liquid drop as voltage
increases. Alternatively, upon suspending a microwire in a
vapor, its transverse fundamental vibration frequency is expected
to changes from f0 to fE due to condensation of a liquid. The
applied voltage is expected to be proportional to (f0/fE)2. Room
temperature experiments can be performed in substances like
ethane or carbon dioxide, albeit a high-pressure cell is necessary
since Pc is in the MPa range.
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