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Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to
orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition
occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value
of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp
interface. Analytical and numerical composition profiles are given, and the interface location as a
function of charge or voltage is found. The possible influence of demixing on the stability of suspensions
and on inter-colloid interaction is discussed.
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1. Introduction

Electric fields influence the structure and thermodynamic
behavior of charged as well as neutral matter. Their effect is
strong, they can be switched on or off, and they are easily
scalable to the sub-micron regime.1) There are two main
distinctions with respect to the field: spatially uniform vs
nonuniform fields. There are also two broad classes of
material properties: pure dielectric vs conducting media. All
four combinations are relevant to phase transitions in liquid
and polymer mixtures and to liquid–vapor coexistence in
pure liquids.

Perfect dielectrics. The electrostatic energy of dielectric
materials is given by the expression

Fes ¼ �
1

2

Z
"E2 d3r; ð1:1Þ

where " is the dielectric constant and E is the electric field.
The negative sign before the integral is applicable to
situations where the electric potential  (E ¼ �r ) is
given on the bounding surfaces; in cases where the charge is
prescribed, E is given as a function of the displacement field
D, and the Legendre transform reverses the sign.1)

The phase-transition described below occurs in systems
described by bistable free energy functionals giving rise to a
phase-diagram in the composition-temperature plane divided
into two regions: homogeneous mixture and a phase-
separated state. For concreteness, we consider the symmetric
mixture free-energy density fm given by

v0 fm ¼ kBT½� logð�Þ þ ð1� �Þ logð1� �Þ�
þ 2kBTc�ð1� �Þ:

ð1:2Þ

This free-energy is given in terms of the dimensionless
composition � (0 � � � 1). In a binary mixture of two
liquids 1 and 2, with dielectric constants "1 and "2, � is the
relative composition of (say) liquid 2. In A/B polymer
blends, it is the relative volume fraction of polymer A, and
similarly for an A/B diblock-copolymer melt. v0 is a

molecular volume, kB is the Boltzmann constant and Tc

is the critical temperature. In symmetric mixtures, the
transition (binodal) temperature Tt at a given composition
is given by d fmðTt; �Þ=d� ¼ 0, that is, Tt=Tc ¼ 2ð2�� 1Þ=
log½�=ð1� �Þ�.2) In the absence of electric field, the
mixture is homogeneous if T > Tt, and unstable otherwise.
The field-induced phase-transition discussed below does
not depend on the exact form of fm; it occurs also in a
Landau series expansion of eq. (1.2) around the critical
composition �c, and in other forms having a ‘‘double-well’’
shape.

The dielectric constant " depends on � via a constitutive
relation. A variation of � from its critical value, �c, induces a
variation of " from the critical permittivity "c. When the
composition deviation ’ � �� �c is small enough, j’j � 1,
the constitutive relation "ð�Þ can be written as a Taylor
series expansion to quadratic order:

"ð�Þ ¼ "c þ�"’þ
1

2
"00’2: ð1:3Þ

The ‘‘dielectric contrast’’ �" is simply equal to "2 � "1, if "00

vanishes.
The electric field depends on the imposed external

potentials or charges and on the local dielectric constant.
Let us denote by E0 the electric field corresponding to the
system with uniform composition �c everywhere. Compo-
sition changes in � induce changes in ", and since " and E
are coupled via Laplace’s equation rð"EÞ ¼ 0, one has
variations in electric field. We may thus write to quadratic
order in ’

E ¼ E0 þ E1’þ
1

2
E2’

2: ð1:4Þ

Note that E0 is constant in space only inside a parallel-plate
capacitor, or if the sources of the field are very far from the
system under investigation. Clearly, even if E0 is uniform,
composition variations lead to field nonuniformities.

One can expand the electrostatic energy density in
eq. (1.1) in powers of ’:
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fes ¼ const.� "cE0 � E1 þ
1

2
�"E2

0

� �
’ ð1:5Þ

�
1

2

1

2
"00E2

0 þ "cE
2
1 þ 2�"E0 � E1 þ "cE2 � E0

� �
’2

þ Oð’3Þ:

The unimportant constant corresponds to the electrostatic
energy of the system with uniform composition, and it serves
as a reference energy. If the field E0 is uniform in space, the
two terms in linear order of ’ simply add a constant to the
chemical potential, and therefore are inconsequential for the
thermodynamic state of the system.3)

Landau and Lifshitz showed that the existence of a "00’2

term in eq. (1.5) is responsible to a shift of the critical
temperature Tc.

1,4) They found that Tc is increased by �Tc

given by

�Tc ¼
v0"
00E2

0

2kB

; ð1:6Þ

Tc and the whole binodal curve close to the critical point are
increased if "00 > 0 (field-induced demixing) or decreased if
"00 < 0 (field-induced mixing). A similar expression exists
for a pure liquid in coexistence with its vapor.

The experiments, starting with Debye and Kleboth,5) are
in contradiction with this prediction. Debye and Kleboth
investigated the critical temperature of a isooctane–nitro-
benzene mixture (relative permittivities 2.0 and 34.2,
respectively). They observed reduction of Tc by 15 mK in
a field of 4.5 V/mm. Their measurements were later verified
by Orzechowski.6) Beaglehole worked with a cyclohexane–
aniline mixture (relative permittivities 2 and 7.8, respective-
ly), and he measured reduction of Tc by as much as 80 mK in
a 0.3 V/mm dc field.7) Early worked on the same mixture but
in 1 V/mm ac field, and found no change in Tc. He attributed
the results of Beaglehole to spurious heating.8) Wirtz and
Fuller performed similar experiments on n-hexane–nitro-
ethane mixture (relative permittivities 2 and 19.7, respec-
tively), and found a reduction of Tc by 20 mK in a 5 V/mm
field.9) In all cases, "00 was positive but still mixing was
observed. In addition, the observed change in Tc is quite
small, typically in the 10 – 20 mK range. The only exception
is the work of Gordon and Reich.10) They worked on
polymer mixtures of poly(vinyl methyl ether) (PVME)–
polystyrene (PS) system (relative permittivities 2.15 and 2.6,
respectively), and observed changes significantly larger than
1 K. Their strong effect can be attributed to the large
molecular weight of the polymer (14,000 – 30,000 g/mol)
and to their reduced entropy compared to that of simple
liquids.

One is inclined to explain the experimental findings by the
second and third terms on the second line of eq. (1.5)
(proportional to ’2). The third term is twice as large as the
second one and opposite in sign, and the two sum to give
a free energy contribution proportional to the dielectric
contrast squared þð�"Þ2. This is a free energy penalty for
dielectric interfaces perpendicular to the external field.
Indeed, these additional terms are responsible to the normal
field instability in liquids,4) and to orientation of ordered
phases (e.g., block-copolymers) in external fields.11–17) In
liquid mixtures they favor mixing (lowering of Tc).

2. Mixtures of Nonpolar Liquids in Fields Gradients

Field gradients are general, and occur in all electrodes
unless special care is taken to eliminate them (super-flat
and parallel conducting surfaces). When mixtures of pure
dielectric liquids are subjected to a spatially nonuniform
field, the situation is very different. The direct coupling
between field variations and composition fluctuations then
leads to a dielectrophoretic force, depending on �" in
eq. (1.3), which tends to ‘‘suck’’ the component with large "
to regions with high electric field, as in the case of the well-
known rise of a dielectric liquid in a capacitor.1)

2.1 Statics
Three ‘‘canonical’’ geometries with electric field gradients

are presented in Fig. 1. The first is the ‘‘wedge’’ capacitor,
made up from two flat and nonparallel surfaces with
potential difference V , and opening angle �. The electric
field is then azimuthal, EðrÞ ¼ V=ð�rÞ�̂�, where r is the
distance from the imaginary meeting point of the surface. r
is bounded by the smallest and largest radii R1 and R2,
respectively. The second model system consists of a charged
wire of radius R1, or two concentric metallic cylinders with
radii R1 and R2 > R1. In this case the azimuthally-symmetric
field is EðrÞ ¼ �R1=½r"ðrÞ�r̂r, where � is the charge per unit
area on the inner cylinder. Lastly, for a charged spherical
colloid of radius R1 and surface charge �, one readily finds
the spherically-symmetric field to be EðrÞ ¼ �R2

1=½r2"ðrÞ�r̂r.
In all three cases a general scenario occurs: when T is

above Tc, the composition profile �ðrÞ is smooth, and its
gradients increase as the charge on the objects increases.
However, below Tc the behavior is different ��ðrÞ is smooth
as long as the charge (voltage) is small, and becomes
discontinuous when the charge (voltage) attains a critical
value. At this charge, a sharp interface appears between the
coexisting domains.18,19) As the charge further increases, the
interface location and the compositions of the coexisting
domains change.

To see this, consider the wedge capacitor, for which the
electrostatic energy density is

fes ¼ �
1

2
ð"c þ�"’Þ

V

�r

� �2

: ð2:1Þ

Note that we have used a linear constitutive relation. In
uniform electric fields, such a linear relation would

(a) (b) (c)

β
r

V

R 1

R 2

rr

R 2

R 1
R 1

σ

Fig. 1. (Color online) Three model systems where field gradients lead to

demixing. (a) A wedge comprised of two flat electrodes with an opening

angle � and potential difference V . R1 and R2 are the minimal and

maximal values of the distance r from the imaginary meeting point. (b) A

charged wire with radius R1, or two concentric cylinders with radii R1 and

R2. (c) A single charged colloid of radius R1 and surface charge �.
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mean that the electrostatic energy is simply a constant
independent of the composition profile. In addition, in the
wedge geometry the electrostatic energy does not have a
term proportional to ð�"Þ2 because the electric field is
parallel to the dielectric interfaces (both are in the �̂�
direction).

The equation that governs the composition profile ’ðrÞ,
derived from the Euler–Lagrange equation �ð fm þ fesÞ=�’ ¼
0, is the following:

f 0mð’Þ ¼
1

2
�"

V

�r

� �2

þ �: ð2:2Þ

Here � is the chemical potential of the large reservoir at
infinity. Note that eq. (2.2) gives an analytical expression for
r as a function of ’.

The right hand side of the equation is independent of ’,
and is indicated by the horizontal lines in Fig. 2(a). Suppose
the mixture composition in the absence of field corresponds
to a point above and to the left of the binodal curve
(homogeneous mixture). A graphical solution of the govern-
ing equation is obtained by the intersection of the horizontal
line, whose location depends on the field, and therefore on
r, with the curve f 0mð’Þ. If T is above Tc, fm is convex,
and therefore the intersection of the two curves changes
smoothly as r decreases (E increases). The resulting
composition profile is shown in Fig. 2(b).

However, the situation is different below Tc: here f 0mð’Þ
behaves like �’þ ’3. When the applied voltage is small
enough such that the maximum value of the right-hand side
of eq. (2.2) occurs at line b of Fig. 2(a), as one goes from
large to small values of r (increasing E), the composition
increases, but ’ðrÞ is always continuous. There is a critical
value of the voltage, V�, where this is not true: above the
critical potential, the maximum value of the horizontal line
can be at b0 in the figure. Therefore, ’ increases with
decreasing r until, at a certain location r ¼ R, there are three
solutions. The middle one is an unstable while the other two
are stable. At this point, the composition ‘‘jumps’’ between
the two stable values and a discontinuity appears. At such
voltages, the profiles are discontinuous and the coexistence
between two distinct phases occurs.

Assuming that the jump in � occurs at the binodal values,
one obtains the stability criterion18)

�T ¼
v0

2kB

�"

�c � �0

����
����E2: ð2:3Þ

Here E ¼ V=ð�R1Þ is the largest value of the field. A mixture
of initial homogeneous composition �0 is unstable and
demixes into two coexisting domains under the given field if
the temperature is below Tt þ�T , where Ttð�0Þ is the zero-
field transition (binodal) temperature at composition �0. In
contrast to uniform fields, where field variations result from
composition variations, here field gradient are due to the
non-flat geometry of electrodes. Hence, �T above is
typically 2 –100 times larger than �T in uniform fields
[eq. (1.6)]. Note that similar demixing is also expected to
occur in a rapidly rotating centrifuge. In that case ð!rÞ2 is the
analogue of the spatially-dependent field E2, where r is the
distance from the rotation axis and ! the angular frequency.
The density difference �� � �2 � �1 replaces the dielectric
contrast �".20)

Equation (2.3) may be inverted to give the critical voltage
for demixing V� as a function of �0 and temperature. One
finds that V� / ðT � TtÞ1=2. In the experiments of the Leibler
group, conducted using sharp ‘‘razor-blade’’ electrodes, the
measured exponent was 0:7	 0:15, larger than the value 1/2
cited here. One may write the dimensionless potential as
Uw � V½v0"0=ð4�2kBTcR

2
1Þ�

1=2, where "0 is the vacuum
permittivity. The critical value of Uw for a closed wedge,
U�w, is obtained by an approximation similar to that of
eq. (2.3), namely21)

U�2w ¼
v0

kBTc

�t � �0

4j�"j="0
d2 fmð�tÞ

d�2
gðxÞ; ð2:4Þ

where �t is the transition composition, x ¼ R2=R1, and the
dimensionless function g is given by gðxÞ ¼ 2ðx2 � 1Þ=
ðx2 � 1� 2 ln xÞ.

2.2 Dynamics
The phase ordering dynamics of mixtures in electric field

is quite different from the no-field case, since the electric
field introduces a preferred direction and thus breaks the
initial system symmetry. The phase transition studied here is

(a)

(b)
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ϕ
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R
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<

Fig. 2. (Color online) (a) Graphical solution to eq. (2.2). Solid curve is

f 0mð’Þ. Its roots are the transition (binodal) compositions. The intersection

between f 0mð’Þ and the horizontal dashed line gives the solution ’ðrÞ to

eq. (2.2). For voltages V below the critical value V�, the dashed line is

bounded by lines a and b, corresponding to the the maximal and minimal

values of the right-hand side of eq. (2.2), giving rise to a continuous

profile ’ðrÞ. At V > V�, line b is displaced to b0, and the intersection is at

’ < 0 for large r’s and at ’ > 0 at small r’s. (b) Qualitative composition

profiles �ðrÞ. Horizontal dashed line is the average composition �0 in the

absence of field. �ðrÞ varies smoothly when V < V�, and has a sharp jump

at r ¼ R when V > V�.
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even more difficult, because spatially nonuniform fields also
break the translational symmetry.

In this phase transition, droplets nucleate everywhere, not
only in regions of high electric field. As they grow, they
move under the external force. The viscosity plays an
important role, in addition to the field’s amplitude, location
in the phase diagram and distance from the binodal, and
dielectric constant mismatch �". Clearly, the spatial
dependence of the electric field means the initial destabili-
zation and phase ordering dynamics are quite different from
the well-studied normal-field instability in thin liquid
films4,22–25) and the regular coarsening dynamics.26,27)

For salt-free mixtures, the starting point for the dynamics
is the following set of equations:27–29)

@�

@t
þ u � r� ¼ Lr2 � f

��
; ð2:5Þ

r � ð"ð�Þr Þ ¼ 0; ð2:6Þ
r � u ¼ 0; ð2:7Þ

�
@u

@t
þ ðu � rÞu

� �
¼ 	r2u� rP� �r

� f

��
: ð2:8Þ

u is the velocity field corresponding to hydrodynamic flow
and 	 is the liquid viscosity. Equation (2.5) is a continuity
equation for �, where �Lrð� f =��Þ is the diffusive current
due to inhomogeneities of the chemical potential, and L is
the transport coefficient (assumed constant). Equation (2.6)
is Laplace’s equation, eq. (2.7) implies incompressible flow,
and eq. (2.8) is Navier–Stokes equation with a force term
��r� f =��.26,27) It should be noted that similar models have
been proposed in the literature; the main differences here are
the bistability of fm and the nonuniform fields derivable
from the potential  . The presence of salt can be naturally
incorporated into the model by adding two continuity
equations for the two ionic species, and by using Poisson’s
equation instead of Laplace’s. As a starting point, we assume
there is no net flow due to pressure gradients or moving solid
surfaces — flow will be purely a result of the forces exerted
by the electric field. In addition, the liquid viscosity 	 is
taken as a simple constant scalar, independent of mixture
composition.

Since the equations are coupled and nonlinear, it is useful
to first study the demixing in one of the geometries
mentioned above (sphere, cylinder, or wedge). Consider,
for example, the simplifications of the phase-ordering
equations occurring in the system of concentric cylinders.
In this annular capacitor, the no-flow conditions on the inner
and outer cylinders lead to a vanishing flow velocity: u � 0

everywhere. One is therefore left with only a single equation
to solve, @�=@t ¼ Lr2� f =��. This equation can be viewed as
a continuity equation @�=@t ¼ �r � J, with a current density
J ¼ �Lr� f =��. In a closed system, J vanishes at R1 and R2,
and the integral

R R2

R1
2
r�ðr; tÞ dr is kept constant throughout

the system dynamics. Gauss’s law readily gives the electric
field in the concentric capacitor when the charge is given. In
the explicit scheme we used, �ðtÞ is given by a successive
summation of �ðr � JÞdt, calculated for each time interval
dt. The initial condition for the calculation was a homoge-
neous distribution �0.

When the charge on the capacitor is larger than a
threshold charge, we observe fast creation of a discontinuity

near the inner cylinder which then starts to move outsides.
The location of this front, separating the inner and outer
regions, RðtÞ, is shown against time in Fig. 3(a). In closed
systems, R cannot grow indefinitely, since mass conservation
dictates an upper bound Rmax given by

R2
max ¼ ðR

2
2 � R2

1Þ�0 þ R2
1: ð2:9Þ

In the numerical calculation, we find a match to an
exponential relaxation with a single time constant �:

RðtÞ ¼ Rt¼0 þ ðR1 � Rt¼0Þð1� e�t=�Þ: ð2:10Þ

R1 corresponds to the steady-state solution; it tends to Rmax

when the voltage or charge tend to infinity. The time
constant � depends on the external potential (or charge) and
on the temperature and composition. Part (b) plots � as a
function of temperature for different average compositions.
The calculations indicate faster dynamics (smaller �) when
the average composition is farther from the critical value
(large j�0 � �cj) or when the cylinder’s charge is large [see
Fig. 3(b)].

3. Mixtures Containing Salt

Mixtures of polar liquids (e.g., aqueous solutions) contain
some amount of charge carriers. In such mixtures, the
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Fig. 3. (Color online) (a) Plot of the RðtÞ, the dynamics of front location

between coexisting phases, for a mixture confined by two concentric

cylinders when the charge on the inner cylinder is above the demixing

threshold. �0 ¼ 0:3, T=Tc ¼ 0:95, and the dimensionless charge of the

inner cylinder is Uc ¼ 0:445, where Uc � �½v0=ð4"0kBTcÞ�1=2, � is the

charge per unit area of the cylinder, and R1 is its radius. The exponential

time constant � in eq. (2.10) is plotted in (b) for different values of �0 and

Uc. Blue circles: �0 ¼ 0:2, Uc ¼ 0:252. Green stars: �0 ¼ 0:3, Uc ¼
0:199. Red squares: �0 ¼ 0:3, Uc ¼ 0:252. R is scaled by R1, and time is

scaled by LkBT=ðv0R
2
1Þ.

J. Phys. Soc. Jpn., Vol. 78, No. 4 SPECIAL TOPICS G. MARCUS and Y. TSORI

041010-4



physics is rich and quite different from the simple dielectric
case. The most important feature is due to screening,
occurring when dissociated ions accumulate at the charged
surfaces. This means that the electric field is substantial only
close to the surfaces, within the screening distance � . Field
gradients thus originate from both geometry and screening,
and the phase transition depends on at least two lengths. The
ionic screening therefore adds to the dielectrophoretic force
which separates the liquids components from each other.
Since screening is omni-present, phase-separation may
occur even near parallel and flat charged surfaces, i.e. in
one dimension. But ions have another effect besides
increasing the dielectrophoretic force. Ions have in general
different solubilities in the different liquids. As an ion drifts
toward the electrode, it might ‘‘drag’’ with it the preferred
liquid component.30,31) Thus, the solubility introduces a
force of electrophoretic origin, proportional to the ions’
charge.

We use the following free energy density to describe the
system:

f ¼ fmð�Þ �
1

2
"ð�Þðr Þ2 þ ðnþ � n�Þe 

þ kBT½nþ lnðv0n
þÞ þ n� lnðv0n

�Þ�
� ð�uþnþ þ�u�n�Þ�� �þnþ � ��n�

� ��þ const. ð3:1Þ
The free energy depends on three fields: the electric potential
 ðrÞ, and the two number densities of positive and negative
ions: nðrÞ	. The new terms added here are the interaction of
ions with the potential (n	 ) and the ideal-gas entropy of
ions (logarithmic terms). In addition, the parameters �uþ

and �u� measure the affinity of the positive and negative
ions toward the liquid-1 environment, respectively.32) �uþ,
for example, measures how much a positive ion prefers
liquid-2 environment over that of liquid 1. �	 and � are the
Lagrange multipliers (chemical potentials) of the positive
and negative ions and liquid composition, respectively, and e

is the electron charge.
The free energy is extremized with respect to the fields �,

 , and n	:

� f

��
¼
� fm

��
�

1

2

�"

��
ðr Þ2 ��uþnþ ��u�n� � �

¼ 0; ð3:2Þ
� f

� 
¼ rð"ð�Þr Þ þ eðnþ � n�Þ ¼ 0; ð3:3Þ

� f

�n	
¼ 	e þ kBT½lnðv0n

	Þ þ 1� ��u	�� �	

¼ 0; ð3:4Þ

in keeping with a fixed mixture and ion concentrations:

V�1

Z
�ðrÞ d3r ¼ �0 ð3:5Þ

V�1

Z
n	ðrÞ d3r ¼ n0 ð3:6Þ

Here V is the total volume and n0 the average ion concen-
tration. The Poisson–Boltzmann equation is obtained from
substitution of eq. (3.4) in the Poisson equation, eq. (3.3).

Due to these forces, the phase transition is expected to be
greatly enhanced compared to the no-ions case: it should

occur at elevated temperature above the binodal, and lead to
a very thin demixing layer around the charged object.32)

Consider a mixture in the semi-infinite space x > 0 confined
by one wall at x ¼ 0 charged at potential V . An approximate
formula for the temperature below which a phase transition
occurs, Tt þ�T , can be obtained by performing a first loop
in a perturbative solution of the equations, namely using
a uniform dielectric constant in eqs. (3.3) and (3.4) and
substitution in eq. (3.2). The expression for �T is then
found to be:32)

�T

Tc

¼
j�"j
"c
þ

�u

kBTc

� �
n0v0

�0 � �c

exp �
eV

kBTc

� �
ð3:7Þ

Here �u ¼ j�u	j. In most cases, �"="c 
 �u=kBT 
 1,
and therefore the dielectrophoretic and solubility forces have
the same magnitudes. The numerator n0v0 is quite small:
if we take v0 ¼ 8� 10�27 m3 and average ion density n0 ¼
6� 1019 m�3 (10�7 M) we get n0v0 ’ 5� 10�7. However,
�T is usually large. Even if we ignore the denominator
j�c � �cj�1, the exponential factor can be huge: if the
surface potential is only 1 V and Tc is the room temperature,
we get eV=kBTc ’ 40. This shows us that demixing should
be observed even if the surface potential V or the charge
density n	0 are much smaller.

We would like to note that for homogeneous dielectric
liquids, the equation rð"r Þ ¼ 0 means that an increase of
the potential on the bounding surfaces simply increases the
potential  in the same proportion everywhere, but that for
ion-containing mixtures this is not true: due to the non-
linearity of the problem, increase of the external potential
leads to a change in the whole distribution  ðrÞ. The
composition difference between coexisting phases increases
with V , and the front separating the domains may move to
larger or smaller radii.

4. Conclusions

The steady-state and dynamics of phase transitions due to
inhomogeneous electric field are discussed. In nonpolar
mixtures, the composition profile of a mixture is given for
three geometries with azimuthal or spherical symmetries.
Above Tc, the profile is smooth, while below Tc it becomes
discontinuous if the surface charge or voltage exceed their
critical values. The location of the front separating the two
coexisting phases in equilibrium moves to larger values of r
as the charge or potential increase. In the restricted case
shown here, the main feature of the dynamical process
towards equilibrium is the exponential relaxation of the front
location. The exponential time constant increases when the
potential is diminished or when the distance from the critical
composition is reduced.

When salt is present, the phase transition occurs because
ionic screening leads to a dielectrophoretic force. In
addition, the ions’ solubility leads to a strong force of
electrophoretic origin. Thus, the transition is g strengthened
and should occur at virtually all temperatures above the
binodal even at modest salt content. Our results nicely
complement the recent studies by Onuki and co-workers
on the solvation effects of ions in near critical mix-
tures.28,30,31,33)

A similar phase transition was observed for a monolayer
of surfactant mixture subject to an electric field emanating
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from a charged wire passing perpendicular to the mono-
layer.19) The more polar surfactant was attracted to the wire
when the field was applied, while the less polar surfactant
was repelled. The effect observed was linear in electric field
because (i) the dipoles were fixed and not induced, and (ii)
they were confined to a plane and could not twist up-side-
down when the field’s polarity was reversed.

We point out that when charged colloids are dispersed in
aqueous solutions, a thin wetting layer could be formed due
to field-induced demixing, depending on the average salt
content, temperature, and colloid charge. According to
eq. (3.7), this demixing is quite favorable, and one needs not
be very close to the binodal curve. This should have
implications on colloidal aggregation34) and on the inter-
action between charged surfaces in solution,35) because the
electrostatically-induced capillary interaction between the
surfaces is expected to be attractive.
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23) E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner: Nature

403 (2000) 874.

24) M. D. Morariu, N. E. Voicu, E. Schäffer, Z. Lin, T. P. Russell, and U.

Steiner: Nat. Mater. 2 (2003) 48.

25) L. F. Pease and W. B. Russel: J. Chem. Phys. 118 (2003) 3790.

26) A. Onuki: Phase Transition Dynamics (Cambridge University Press,

Cambridge, U.K., 2002).

27) A. J. Bray: Adv. Phys. 51 (2002) 481.

28) T. Imaeda, A. Furukawa, and A. Onuki: Phys. Rev. E 70 (2004)

051503.

29) H. Tanaka: J. Phys.: Condens. Matter 12 (2000) R207.

30) A. Onuki and H. Kitamura: J. Chem. Phys. 121 (2004) 3143.

31) A. Onuki: Phys. Rev. E 73 (2006) 021506.

32) Y. Tsori and L. Leibler: Proc. Natl. Acad. Sci. U.S.A. 104 (2007)

7348.

33) A. Onuki: Europhys. Lett. 29 (1995) 611.

34) D. Beysens and T. Narayanan: J. Stat. Phys. 95 (1999) 997.

35) C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger:

Nature 451 (2008) 172.

Gilad Marcus was born in Jerusalem, Israel in

1968. He obtained his B. Sc. (1995), M. Sc. (1998),

Ph. D. (2006) degrees from the Hebrew University,

Jerusalem. He is now with the Max-Planck Institute

for quantum optics as a post doctorate fellow.

Yoav Tsori was born in Afikim, Israel, in 1968.

He received his B. Sc. (1995) and M. Sc. (1997)

degrees from the Hebrew University, Jerusalem,

and his Ph. D. (2001) from the Tel-Aviv University.

He was a post-doc fellow with Ludwik Leibler in

ESPCI, Paris (2001–2003). He then moved to
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