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We consider the influence of electric field gradients on the phase behavior of nonpolar binary
mixtures. Small fields give rise to smooth composition profiles, whereas large enough fields lead to
a phase-separation transition. The critical field for demixing as well as the equilibrium
phase-separation interface are given as a function of the various system parameters. We show how
the phase diagram in the temperature-composition plane is affected by electric fields, assuming a
linear or nonlinear constitutive relations for the dielectric constant. Finally, we discuss the unusual
case where the interface appears far from any bounding surface. © 2009 American Institute of
Physics. �doi:10.1063/1.3257688�

I. INTRODUCTION

The effect of gravitational and magnetic fields on the
phase diagram of liquid mixtures is quite small in general
due to the weak coupling of the field with the mixture’s
composition. The influence of electric fields was studied ex-
tensively in geometries where the field is uniform. Theoreti-
cal work predicted that for a binary mixture the upper critical
solution temperature Tc is shifted upward by a small amount,
of the order of millikelvins.1,2 Experiments in low molecular
weight liquids predominantly showed an opposite shift of the
same magnitude.3–6 Two exceptions are Reich and Gordon7

who measured the cloud point temperature of a polymer mix-
ture and Gábor and Szalai8 who predicted a downward shift
in the critical pressure of dipolar fluid mixtures in uniform
electric fields.

In a uniform field the shift in Tc is proportional to the
square of electric field E2 and d2� /d�2—the second deriva-
tive of the dielectric constant with respect to the mixture
composition.9–15 However, in realistic systems, such as col-
loidal suspensions and microfluidic devices, the electric field
varies in space due to the complex geometry. In such sys-
tems, electric fields on the order of 107 V /m naturally occur
due to the small length scales involved. Recently, we have
shown that a homogeneous mixture confined by curved
charged surfaces undergoes a phase-separation transition and
two distinct domains of high and low compositions
appear.16,17 The transition occurs when the surface charge �or
voltage� exceeds a critical value. In this paper we examine in
detail numerically and analytically the location of the transi-
tion. We also show how this transition affects the
temperature-composition phase diagram. We find that near Tc

the spatial variation of the field leads to a nontrivial modifi-
cation of the stability lines. Our analysis shows that in non-
uniform electric fields even a linear constitutive relation can
lead to a substantial change in the transition �binodal� tem-

perature. Lastly, we demonstrate that the phase-separation
interface can appear far from any of the surfaces bounding
the mixture.

II. THEORY

Consider an A/B binary mixture confined by charged
conducting surfaces giving rise to an electric field. The free
energy of the mixture is

F =� �fm��,T� + fes��,E��dr , �1�

where fm is the bistable mixing free energy density, given in
terms of the A-component composition � �0���1� and the
temperature T. fes is the electrostatic free energy density due
to the electric field E, given by

fes = − 1
2��������2. �2�

� is the electrostatic potential. The negative sign corresponds
to cases where the potential is prescribed on the bounding
surfaces. When the charge is given on the bounding surfaces
the sign should be replaced by a positive one.9,18,19 � is the
mixture’s permittivity and is a function of the composition �.
Note that in order to isolate the electric field effect we do not
include any direct short- or long-range interactions between
the liquid and the confining surfaces. The equilibrium com-
position profile ��r� and electrostatic potential ��r� are
given by the extremization of the free energy with respect to
� and �.20,21 The resulting Euler–Lagrange equations are

�F

��
=

�fm

��
−

1

2

d����
d�

����2 − � = 0, �3�

�F

��
= � · ����� � �� = 0. �4�

Equation �4� is simply Gauss’s law. Notice that the relation
���� couples these nonlinear equations. In the canonical en-
semble � is a Lagrange multiplier adjusted to satisfy mass
conservation:a�Electronic mail: tsori@bgu.ac.il.
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� ���r� − �0�dr = 0, �5�

where �0 is the average composition. In the case of a system
in contact with a matter reservoir �grand-canonical
ensemble�, the chemical potential is set by the reservoir,
�=���0� where �0 is the reservoir composition.

In order to simplify the solution of Eqs. �3�–�5�, we con-
sider the three simple model systems shown schematically in
Fig. 1. The first one is a charged isolated spherical colloid of
radius R1 and surface charge density �, immersed in an in-
finite mixture bath. In this system, spherical symmetry
dictates that �=��r� and E=E�r� where r is the distance
from the colloid’s center. Since the colloid has a prescribed
charge, we can integrate Gauss’s law and obtain an explicit
expression for the electric field: E�r�=�R1

2 / �����r2�r̂. The
second geometry is a charged wire of radius R1 and surface
charge density �, coupled to a reservoir at
r→�. Alternatively, we may consider a closed condenser
made up of two concentric cylinders of radii R1 and R2. In
both cases, we readily obtain the electric field E�r�
=�R1 / �����r�r̂, where r is the distance from the inner cyl-
inder’s center. The last system is the wedge condenser, made
up from two flat electrodes with an opening angle 	 and a
potential difference V across them. Solution of the Laplace

equation gives E�r�= �V /	r�
̂, where r is the distance from
the imaginary meeting point of the electrodes and 
 is the
azimuthal angle. In this geometry �=��r� and therefore
E ·��=0. The explicit expressions for the electric field in all
three systems outlined above decouple Eqs. �3� and �4�.

We will show that Eq. �3� leads, under certain condi-
tions, to a phase-separation transition. This transition is in-
dependent of the exact form of fm and can be realized as long
as fm is bistable and the dielectric constant � depends on the
composition �. In order to be specific, we will consider the
mixing free energy derived from the Flory–Huggins lattice
theory, with lattice site volume v0. We consider the simple
symmetric case where each component occupies N succes-
sive lattice cells. Simple liquids have N=1, while polymers
have N�1 monomers. The mixing free energy density is

then given by fm=kBTf̃m /Nv0, where

f̃m = � log��� + �1 − ��log�1 − �� + N���1 − �� . �6�

kB is the Boltzmann constant, and ��1 /T is the Flory inter-
action parameter.22 We limit ourselves to the case where
��0, leading to an upper critical solution temperature type

phase diagram in the �−T plane. In the absence of electric
field, the mixture is homogeneous above the binodal curve
�t�T�, and phase separates into two phases having the bin-
odal compositions �t below it. Below the binodal curve, but
above the spinodal, given by �s�T�= �1 /2��1
�1−2 / �N���,
the mixture is metastable. The binodal and spinodal curves
meet at the critical point ��c , �N��c�= �1 /2,2�. The transition
�binodal� temperature Tt for a given composition is given by
Tt���= �N��cTc�log�� / �1−��� / �2�−1��−1.22

Using the expressions given above for the electric field,
we write the generalized composition equation valid for cy-
lindrical and spherical geometries:

f̃m� ��� − N�Msc
d�̃/d�

�̃2���
r̃ −n − �̃ = 0. �7�

Here, r̃�r /R1 is the scaled distance and �̃=� /�0, with �0 the
vacuum permittivity, where

Msc �
�2Nv0

4kBTc�0
�8�

is the dimensionless field, and n is an exponent characteriz-
ing the decay of E2 :n=2 for concentric cylinders, and n=4
for spherical colloid. For the wedge geometry we find:

f̃m� ��� − N�Mw
d�̃

d�
r̃ −n − �̃ = 0, �9�

where

Mw �
V2Nv0�0

4	2kBTcR1
2 , �10�

and n=2. Msc and Mw are dimensionless quantities measur-
ing the magnitude of the maximal electrostatic energy stored
in a molecular volume compared to the thermal energy. The
second term in Eqs. �7� and �9� is the variation of the elec-
trostatic free energy with respect to � and is only present
when the mixture components have different permittivities.

The constitutive relation �̃��� is a smooth function of �.
Experiments show that the curve can be slightly convex or
concave, and is dominantly linear.3,4,23 They are mostly in
agreement with Clausius–Mossotti and Onsager-based theo-
ries for the dielectric constant.24 Thus, for a mixture of liq-
uids A and B with dielectric constants �̃a and �̃b, respectively,
the experiments yield a polynomial relation in the form

�̃��� 	 �̃b + �̃�� + �̃��2 + ¯ . �11�

We start by focusing on a linear relation, namely, �̃�=0; in
this case �̃�=��̃� �̃a− �̃b. Even in such a simple case it turns
out that a phase-separation transition occurs, in contrast with
the Landau mechanism which relies on a nonvanishing �̃�.
After investigating linear relations we examine how our re-
sults change when �̃��� has a positive or negative curvature,
by allowing for �̃��0. In this case �̃� is different from ��̃.
Higher order terms in the expansion Eq. �11� are not ex-
pected to change the results qualitatively, since they do not
affect much the curvature of �̃���.3,4,23

FIG. 1. The three model systems. �a� A single charged spherical colloid with
surface charge density � and radius R1. �b� A charged wire with surface
charge density � and radius R1, or two concentric cylinders with radii R1 and
R2. �c� A wedge comprised of two flat electrodes with an opening angle 	
and potential difference V. R1 and R2 are the minimal and maximal values of
the distance r from the imaginary meeting point of the electrodes.
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III. RESULTS AND DISCUSSION

Before we present the numerical solutions of Eqs. �7�
and �9�, it is illustrative to consider a graphical solution for a
wedge condenser. Recall that in the absence of field it is
assumed that T is above the binodal temperature. We rewrite
Eq. �9� as

f̃m� ��� = �̃�r̃� ,

�12�

�̃�r̃� �
N���̃Mw

r̃2 + �̃0,

where �̃0 is the dimensionless reservoir chemical potential.

At a given temperature, the intersection of f̃m� ��� and the
horizontal line �̃�r̃� gives the local composition ��r̃� �Fig.
2�. When r̃→�, �̃�r̃�→ �̃0 and the composition is �=�0,
corresponding to a homogeneous phase. For simplicity we
consider �0��c. As r̃ decreases, �̃�r̃� �and hence ��r̃�� in-

crease until they attain their maximal value at R̃1. Above Tc,

the free energy is always convex, f̃m� is a monotonic function
of �, and the composition profile ��r̃� is hence continuous.

However, below Tc, f̃m is bistable and f̃m� is sigmoidal. In this
case there are two possible scenarios shown in Fig. 2. If,

for example, �̃�R̃1�= �̃a, the composition profile varies

smoothly. If, on the other hand, �̃�R̃1�= �̃b, there is a discon-

tinuity in the profile since there is a radius R̃� R̃1 where the
value of � can “jump” from high to low values. Below Tc,
there is a range of radii, or compositions, where the discon-

tinuity in ��r̃� can occur. The equilibrium profile ��r̃ ; R̃�
is the one that minimizes the total free energy integral

F=
f���r̃ ; R̃��dr. These conclusions also hold for Eq. �7�.
In Fig. 2 we show the composition �s

�2� defined by the

relation f̃m� ��s
�2��= f̃m� ��s�. Clearly, this is the minimal compo-

sition for which exist more than one solution to Eq. �9�. The
role of this special composition will be discussed later.

The three typical composition profiles are shown in Fig.
3. Above Tc �dash-dot line�, ��r̃� varies smoothly due to the

dielectrophoretic force, whereby the high-�̃ liquid is drawn
into the strong electric field region. Below Tc �dashed line�,
at a temperature where the field-free mixture is homoge-
neous, if M is small the profile ��r̃� is again smoothly de-
caying, exhibiting the same dielectrophoretic behavior. How-
ever, if at the same temperature, M is increased, either by
adding charge to the surface or by increasing the curvature
�smaller R1�, we arrive at a critical value, denoted M�. Above
it, a phase-separation transition occurs. This is shown in the
solid line of Fig. 3, where the mixture consists of two coex-

isting domains separated by an interface at r̃= R̃.
The typical value of charge/voltage required for demix-

ing can be estimated from the value of M being in the range
M �0.001–0.1.17 Consider a colloid of radius R1�1 �m
placed in a mixture having a molecular volume Nv0	5
�10−27 m3 and Tc	300 K. Then, the typical demixing
charge is of the order of 102–104e charges �surface voltage is
1–100 V�. It scales linearly with 1 /N: in a polymer mixture
the confining surfaces require N times smaller charge com-
pared to molecular liquids in order to induce phase separa-
tion.

A. The phase-separation interface

At the critical value of M, a sharp interface first appears
separating coexisting regions of high- and low-� value. If
the average composition �0 is smaller than �c, the interface

appears at r̃= R̃1. When we further increase M and supply
more electrostatic energy to the system, dielectrophoresis
leads to an increase in the size of the high composition do-

main. Thus, the location of the separation interface R̃ in-

creases. Figure 4 shows how R̃ varies with M at a constant
temperature in the concentric cylinders and wedge systems.
Notice that as �0 approaches the binodal composition ��t

	0.33�, R̃ is larger at the same M. It also grows more rap-
idly with increasing �0. Indeed, when the binodal is ap-
proached, the mixing free energy barrier is smaller. Second,

R̃ grows faster in an open system than in a closed one. This

f̃ ′
m

φ
φsφ

(2)
sφ(r̃)

µ̃0

µ̃(r̃)

µ̃a

µ̃b

FIG. 2. Graphical solution of Eq. �12� for an open wedge at T�Tc and a

symmetric mixture. Solid curve is f̃m� ���. Its roots are the transition �bin-

odal� compositions. The intersection between f̃m� ��� and the horizontal dash-

dotted line �̃�r̃� gives the composition ��r̃�. If �̃�R̃1� is at �̃a, the profile

��r̃� varies smoothly, but if �̃�R̃1�= �̃b, ��r̃� has a discontinuity.

1 1.5 2
0.4

0.5

0.6 R̃

φ

r̃

FIG. 3. The three types of equilibrium profiles ��r̃� for a system of two
concentric cylinders. Dash-dot line: T=1.005Tc and Msc=0.04; above Tc the
profile is smoothly varying. Dashed line: T=0.995Tc, Msc=0.01, smaller
than the critical value for demixing. Solid line: same T, but Msc=0.04 is

large enough to induce phase separation marked by an interface at r̃= R̃. We

took an average composition �0=0.41. Here and in other figures, R̃1=1,

R̃2=5, �̃a=5, and �̃b=3.
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is because in a closed system the energy penalty in f̃m grows

faster than the energy gain in f̃ es. Material conservation gives

the maximum value of R̃, R̃�, given by

R̃�
2 = �0�R̃2

2 − R̃1
2� + R̃1

2. �13�

This M→� limit is physically unattainable and is pre-
empted by dielectric breakdown.

Note that the typical values of M in the cylindrical and
spherical cases are an order of magnitude larger than in the
wedge condenser, see Figs. 4�a� and 4�b�. Indeed, in the
spherical and cylindrical symmetries, E is parallel to ��: the
dielectrophoretic force �proportional ��� has to be large
enough to overcome the energy penalty associated with di-
electric interfaces parallel to E �proportional to ����2�.12 On
the other hand, in the wedge condenser E is perpendicular to
��, and the required dielectrophoretic force for demixing is
correspondingly smaller, leading to smaller values of Mw.
This could be seen by comparing the electrostatic terms in
Eqs. �3� and �4�, differing by a factor of �̃���−2�0.1, which

Msc has to compensate for in order for the values of f̃ es to be
equal.

Alternatively, an increase in T at constant electric field

decreases �M �M /T and decreases R̃. Figure 5 shows how

an increase in T shrinks the high-� domain and decreases R̃

in a closed and open cylindrical system. In Fig. 5, when R̃
=1 the temperature is that for which M =M�. The effect of

temperature is much more pronounced in an open system: R̃
tends to infinity when approaching the binodal temperature

�not shown�. On the other hand, R̃ is finite when approaching

the binodal in a closed system. Its maximal value is larger
when ��0−�c� is smaller, because then the mixing free en-
ergy difference between low- and high-� values is reduced.

In Fig. 5�a�, R̃ appears to be linear simply because T changes
over a small interval.

One can estimate the value of � at the demixing inter-
face in an open system. At the interface there is a “jump” in

��r̃� from �1 to �2��1. Let us denote by ��R̃� the upper

interface composition, ��R̃�=�2. The conditions for a
“jump” in the wedge geometry are:

f̃m� ��1� − N�
��̃Mw

R̃2
− �̃0 = 0, �14�

f̃m� ��2� − N�
��̃Mw

R̃2
− �̃0 = 0, �15�

f̃m��1� − N�
�̃��1�Mw

R̃2
� f̃m��2� − N�

�̃��2�Mw

R̃2
. �16�

The first two equations define the local solutions of Eq. �12�,
and the third one is the condition that a high composition is

favorable: f̃��2�� f̃��1�. The true value of R̃ is the one that
gives the global minimum of the free energy. Putting

Eq. �14� in Eq. �16� and using �̃0= f̃m� ��0�, we get

0 0.1 0.2 0.3 0.4
1

1.1

1.2

1.3

1.4

R̃

Msc

(a)

φ0 = 0.28
φ0 = 0.30
φ0 = 0.32

0 0.005 0.01 0.015 0.02 0.025
1

1.1

1.2

1.3

1.4

R̃

Mw

(b)

φ0 = 0.28
φ0 = 0.30
φ0 = 0.32

FIG. 4. Location of the demixing interface R̃ as a function of M, �a� for
three average compositions �0 in a closed cylindrical system �lines with
symbols� and for �0=0.28 �dashed line� and �0=0.3 �dash-dot line� in an

open system. Curves do not coincide at R̃=1. �b� The same, in the closed
“wedge” geometry. We took T=0.96Tc.

0.935 0.945 0.955 0.965
1

1.1

1.2

1.3

R̃

T /Tc

(a)

0.94 0.95 0.96 0.97
1

2

3

4

5

R̃

T /Tc

(b)

FIG. 5. Location of the demixing interface R̃ as a function of T /Tc, �a� for
three average compositions in a closed cylindrical system: �0=0.28

�squares�, 0.3 �circles�, and 0.32 �crosses� with Msc=0.04. When R̃= R̃1, the

temperature corresponds to Msc=Msc
� =0.04. R̃ grows as T /Tc is reduced

until it attains it maximal value at the binodal temperature �dashed line for
each value of �0� �b� Same, in an open cylindrical system with Msc

=0.004. Here, R̃→� at the binodal.
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f̃m� ��1� − f̃m� ��0� �
f̃m��2� − f̃m��1�

�2 − �1
. �17�

The right-hand side of Eq. �17� is maximal when the transi-
tion occurs from �1=�s

�2� to �2=�s ��s
�2���s�. We therefore

denote �fw,max by

�fw,max =
f̃m��s� − f̃m��s

�2��
�s − �s

�2� . �18�

If the inequality

f̃m� ��1� − f̃m� ��0� � �fw,max �19�

holds, the transition must be at �1=�s
�2�, since for larger

values of �1 the right-hand side of Eq. �17� is smaller while
the left-hand side is larger, so a higher composition is surely
favored. The equality sign in Eq. �19� corresponds to the
maximal average composition �0 for which this equation
holds.

The locus of such compositions is the “differentiating
curve,” �†, shown in the dashed curve of Fig. 6�a�. When the
zero-field point in the phase diagram ��0 ,T� is above the
�†�T� curve, Eq. �19� holds, and the composition at the in-
terface jumps from �s

�2� to �s.
25 When ��0 ,T� is below �†�T�

the upper interface composition ��R̃� is between �s and �t.
Equation �17� shows this result is independent of M. An
example of this situation is given in Fig. 6�b�, where the
compositions �1 and �2 are the same for two values of M.
Figure 6�c� shows the interface compositions are indepen-
dent of M also when �0 is larger than �†.

When the discontinuity in the composition profile occurs

at �2=�s, we can invert Eq. �9� to get R̃�M1/2 for the open
wedge system. In particular, above the differentiating curve
we get in the Flory–Huggins model,

R̃ = � N���̃Mw

f̃m� ��s� − �̃0

1/2

. �20�

Thus, R̃ varies linearly with the wedge potential V.

In the other geometries f̃ es� depends on �, and this influ-
ences the value of pairs �1 and �2. However, a very good
approximation, valid when Msc is not too large and T is not
too close to Tc, is that the transition remains from �1=�s

�2� to
�2=�s. One can then repeat a similar derivation and obtain

f̃m� ��1� − f̃m� ��0� � �fsc,max, �21�

�fsc,max =
f̃m��s� − f̃m��s

�2��
�s − �s

�2�
�̃��s�

�̃��s
�2��

. �22�

Using these equations one can determine the differentiating
curve for cylindrical and spherical geometries.

The situation is different in a closed system, as Fig. 7
shows. In the wedge, the demixing interface occurs at the
binodal composition, �t, irrespective of M. In the cylindrical

and spherical systems, ��R̃� is lower than but close to �t,
and decreases when M grows. The qualitative explanation is

as follows. In the wedge geometry f̃ es� only adds a constant to

f̃�, and the binodal compositions remain the only pair of
solutions of Eq. �9� that have the same mixing free energy

f̃m. Hence, the mixing free energy penalty is minimized
when the transition is at the binodal compositions.26 This

also explains why in the wedge geometry ��R̃� is indepen-
dent of M. In the cylindrical and spherical geometries on the

other hand, f̃ es� affects ��R̃�, resulting in a value of ��R̃�
smaller than �t. This reflects the fact that dielectrophoresis

favors high values of �. Since f̃ es�M, larger values of M

lead to lower values of ��R̃�.
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1
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(b)
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φt

φs

φ
(2)
s

φ

r̃

(c)

0.4 0.5

0.99

1

(c)

(b)

FIG. 6. �a� The “differentiating” curve, �†, �dashed line� for an open wedge.
Above it, when phase separation occurs, the composition at the interface
jumps from �s

�2� to �s. Below �† the front composition jumps from �s
�2�

��1��t to �2��s. Examples of this behavior are shown in �b� and �c�,
where composition profiles for points above and below �† with two values
of M are given, showing this behavior is independent of M. The inset in �a�
is a blowup showing the location of �b� and �c� in the �0−T plane. In �b�
�0=0.38 with Mw=4�10−4 and Mw=6�10−4, and in �c� �0=0.39 with
Mw=1�10−5 and Mw=1.5�10−5. In �b� and �c� we took T=0.987Tc.

0 0.05 0.1 0.15
0.65

0.66

0.67

Mw, Msc

φ
(R̃

)

φt

FIG. 7. Composition at the demixing interface R̃ as a function of M for a
closed wedge �crosses� and concentric cylinders �circles�. The dashed line is
the binodal composition. Here �0=0.3 and T=0.96Tc.
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B. Stability diagrams

One can also set M constant and for a given electric field
draw the stability curve ���T� in the �0−T plane, see Fig. 8.
���T� is defined such that below it phase separation occurs,
while above it composition profiles are smooth. Figures 8�a�
and 8�b� show the stability diagram of a spherical colloid and
concentric cylinders, respectively. In both diagrams, an in-
crease in M increases the unstable region. For the same value
of M, in a closed system, the phase-separation region is
smaller than in an open one, because the mixing energy pen-
alty makes it more difficult to induce phase separation. The
range of values of �0 that are unstable in nonuniform electric
fields grows when T increases �but still T�Tc�. For low
values of T, there is a significant difference between open
and closed systems: in open systems, if M is large enough
the stability curve tends to �† �see Fig. 6�a��, whereas for
closed systems the stability curve tends to �t where demix-
ing is spontaneous.

In both parts of Fig. 8, there is a kink in all the curves
���T� at a temperature we denote Tk,1. In the Flory–Huggins
model and for spherical colloids and concentric cylinders,
the second derivative of the free energy is

�2 f̃

��2 =
�2 f̃m

��2 + 2N�Msc
�d�̃/d��2

�̃3���
r̃ −n. �23�

The second term in this equation is the positive electrostatic

contribution f̃ es� . It is clear that when an electric field is
present, even at T�Tc, the electrostatic contribution can lead

to a positive value of f̃��� , r̃� and phase separation cannot
occur.

When T�Tk,1, f̃� is negative for all values of r̃, and the

phase-separation interface appears first at R̃= R̃1. However,
when T�Tk,1, for a given value of �0, a special radius

R̃c�T ,�0� exists. This is the largest value of r̃ for which f̃� in
Eq. �23� can be negative. In this case, the demixing interface

appears first at R̃= R̃c. An example of this behavior is shown
in Fig. 9: at constant Tc�T�Tk,1, at points A and B ��0

���� ��r̃� is smooth, similar to ��r� above Tc. However, at

point C ��0���� ��r� has a discontinuity at R̃� R̃c. As the

critical point is approached, R̃c→� and �� approaches the
critical composition.

The kink temperature Tk,1 is given by setting R̃c= R̃1 and
can be obtained from solution of

�2 f̃

��2 �R̃1� = 0,
�3 f̃

��3 �R̃1� = 0. �24�

We stress that this result is independent of the exact form of
mixing free energy. Notice that for a wedge, the electric field
has no effect on the convexity of the free energy, and one
finds Tk,1=Tc �see Fig. 11�.

The surface composition ��R̃1� when approaching the
binodal at constant T and M is given in Fig. 10. When
T�Tk,1 the surface composition has a discontinuity at

�0=�� �dashed and dash-dot lines� and the value of ��R̃1�
becomes larger than �c. When T�Tk,1 the surface composi-

tion varies smoothly �solid lines�. The discontinuity in ��R̃1�
occurs at lower values of �0 in open systems compared to
closed ones; open systems are less stable than closed sys-
tems. When T increases at a given value of �0, the surface
composition decreases since mixing is favored at high tem-
peratures.

C. Quadratic constitutive relation

We now examine how the stability diagram changes if
the dielectric constant has a quadratic dependence on com-
position: �̃��0 in Eq. �11�. For simplicity, we treat the
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FIG. 8. �a� Stability diagram of a spherical colloid with Msc=0.04 �thick
solid line� and Msc=0.08 �dashed line�. Dash-dot curve is �† �see Fig. 6�a��
and thin solid line is the binodal Tt��0�. �b� Stability diagram showing ���T�
for concentric cylinders with Msc=0.04 �thick solid line� and Msc=0.08
�dashed line�.
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FIG. 9. Composition profiles above the kink temperature for an isolated
spherical colloid. The profiles change from smooth �dash-dot and dashed
lines� to discontinuous �solid line� with a discontinuity at finite value of

R̃ : R̃1� R̃� R̃2, when �0 increases at constant T and M �see inset�.
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wedge system where a linear constitutive relation means that
Tk,1=Tc. In the Flory–Huggins model, the conditions in
Eq. �24� give

Tk,1

Tc
= 1 + Mw�̃�, �25�

where we used R̃1=1.
Note that �̃� can be positive or negative. When �̃��0,

f̃ es� is positive and we return to the same behavior we saw for
spherical and cylindrical systems with linear relation �̃���.
On the other hand, if �̃��0 then fes� is negative and phase
separation is possible above Tc. The stability diagram of a
wedge with a quadratic constitutive relation is shown in Fig.
11. In this figure, arrows labeled A–E indicate the variation
of �0 at constant T in different areas of the stability dia-
grams. For each arrow the location for which the interface
first appears is given in the caption of Fig. 11. For the data in
Fig. 11, the kink temperature is given by Tk /Tc=1
0.0064,
depending on the sign of �̃�. Taking Tc�300 K, we have
�T����Tk��=Tk−Tc� 
2 K. This change in Tc is two or-
ders of magnitude larger than the corresponding change in
uniform electric fields. Note that in most of the phase space
the displacement of the transition temperature due to a non-
vanishing �̃� is much smaller than that due to �̃�; in spatially
nonuniform fields far from the critical composition, the de-
mixing transition is well described by a linear constitutive
relation �̃���.

D. Demixing transitions for �>�c

Since the electric field breaks the symmetry of the free
energy with respect to composition ��→1−��, the full sta-
bility diagram is asymmetric with respect to �−�c. Figure
11�a� shows that in an open system, phase separation does

not occur when �0��c. In Fig. 11�b� there are unstable
compositions �0 such that �0��c. This is an important fea-
ture of the stability diagram in closed systems. Here, the
dielectrophoretic force that pulls the high dielectric constant
liquid toward the electrode creates a depletion in the region
where electric field is low, and phase separation will occur if
the composition at this region is close to the binodal compo-
sition. The stability curves in Fig. 11�b� show that higher
values of potential or charge are required for demixing when
�0��c. Indeed, the ratio of electrostatic energies at the inner

and outer radii is 	R̃2
2 / R̃1

2.
Examples of this behavior are shown in Fig. 12. When

���c and M is small �dashed line� ��r̃� varies smoothly,
exhibiting the usual dielectrophoretic behavior. However, if
M is sufficiently large, that is M �M�, the long range dielec-
trophoretic force gives rise to a phase-separation transition

near R̃2 �solid line�. If M is further increased the phase-
separation interface moves to smaller radii �dash-dot line�.

Figure 13 shows how R̃ varies with M and T in the
wedge geometry for ���c. At M�, the interface appears

where the field is minimal, i.e., at R̃2=5, see Fig. 13�a�. An

increase in M decreases R̃ and the volume of the high-�

domain. Figure 13�b� shows that at fixed M, R̃ decreases
with T and attains its minimal value at Tt. The minimal value

of R̃ is R̃� given by Eq. �13�.
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FIG. 10. Surface composition ��R̃1� when approaching the binodal, �a� for
three temperatures in a closed cylindrical system. �b� Same, for an isolated
charged cylinder. We took Msc=0.04.
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When �̃��0, the stability curves in Fig. 11�b� have an-
other kink at ���c at a temperature we denote Tk,2. From

the previous discussion, Tk,2 is obtained by replacing R̃1 by

R̃2 in Eq. �24�. In the wedge geometry we thus find

Tk,2

Tc
= 1 +

Mw�̃�

R̃2
2

. �26�

Hence, Tc−Tk,2 is smaller than Tc−Tk,1 by a factor of R̃2
2.

IV. CONCLUSIONS

We present a systematic study of electric field induced
phase-separation transitions in binary mixtures on the mean
field level. The behavior described by us complements the

findings of Onuki and co-workers9,20,27 and Ben-Yaakov et
al.28 who mainly focused on effects above the critical tem-
perature or on miscible liquids. The transitions should occur
in any bistable system with a dielectric mismatch sufficiently
close to the transition temperature, e.g., a vapor phase close
to coexistence with its liquid. The differences between closed
and open systems and between the three geometries are high-
lighted. The stability diagrams in the temperature-
composition plane are given. These diagrams show that the
change in the transition temperature is much larger in non-
uniform fields than in uniform fields. We describe the special
temperatures Tk,1 and Tk,2 where the stability diagram has a
“kink.” It should be emphasized that the location of the
phase-separation interface is not restricted to the vicinity of

the confining surfaces, and can appear at a finite location R̃
in the range of temperatures Tk,1�T�Tk,2 as described
above in Fig. 11. In other geometries, too, the demixing in-
terface can be created far from any surface, e.g., in quadru-
polar electrode array.

In order to test our predictions we suggest the following
experiments. Consider a wedge capacitor partially immersed
in a binary liquid mixture near the coexistence temperature.
Neutron reflectometry may be used to probe directly the
composition profile29 and to determine the critical voltage for

demixing. Here we expect R̃ to be proportional to the voltage
difference across the electrodes. A different experiment can
be realized by suspending a conducting wire in a dilute vapor
phase of a pure substance near the coexistence temperature
with the liquid. When a potential V is applied to the wire, its
fundamental frequency of vibration perpendicular to its
length changes from f0 to fV because a liquid layer con-
denses around the wire. We expect that the ratio �f0 / fV�2

should be a linear function of V2. Alternatively, one can mea-
sure directly the change in the wire mass �m using a mi-
crobalance; �m should depend linearly on V2. In these ex-
periments, care must be taken to subtract wetting or
confinement effects due to the electrodes.

Capillary condensation has been described30–34 for col-
loidal suspensions in binary mixtures. According to our
work, charged colloidal suspensions can flocculate or be sta-
bilized due to the formation of liquid layers around the col-
loids. The liquid layer may also influence the interaction be-
tween a colloid and a flat surface both far and close to the
critical point.35

Our results may also be measurable in surface force bal-
ance and atomic force microscope experiments. In such ap-
paratus, a bridging transition has been observed in binary
mixtures36 and explained by capillary forces.37,38 Since in
most cases the surfaces are charged, a capillary bridge could
be the result of the merging of two field-induced layers, lead-
ing to long range attractive forces between the surfaces.

In the current work we neglect a ����2 in the mixing
free energy fm, since the system size was relatively large and
the electrostatic energy acts throughout the whole system
volume, and therefore is dominant.21 We verified that inclu-
sion of such term leads to smoothing of composition profiles
but otherwise to no other noticeable changes in the figures
presented. In order to isolate the electric field effect, we have
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FIG. 12. Equilibrium profiles ��r̃� for a closed wedge system with an av-
erage composition �0=0.58 larger than �c. Dashed line: Mw=1�10−3

smaller than Mw
� , and ��r̃� is smoothly varying. Solid line: Mw=4�10−3 is

large enough to induce phase separation. Dash-dot line: Mw=8�10−3, the
separation interface moves to a smaller radius. We used T=0.993Tc.
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value of R̃ is R̃�=3.86 given by Eq. �13�. �b� R̃ as a function of T at Mw

=4�10−3. Dashed line is Tt.

194102-8 S. Samin and Y. Tsori J. Chem. Phys. 131, 194102 �2009�

Downloaded 19 Nov 2009 to 132.72.8.74. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



also not considered any direct short-or long-range interac-
tions with the confining surfaces. In a future study it would
be very interesting to relax these assumptions and to look at
ever smaller systems. Here we are intrigued by the possibil-
ity to find qualitative, and not just quantitative, differences
from our current profiles and diagrams.
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