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We study the thermodynamic behavior of nonpolar liquid mixtures in the vicinity of curved charged
objects, such as electrodes or charged colloids. There is a critical value of charge �or potential�,
above which a phase-separation transition occurs, and the interface between high- and low-dielectric
constant components becomes sharp. Analytical and numerical composition profiles are given, and
the equilibrium front location as a function of charge or voltage is found. We further employ a
simple Cahn–Hilliard type equation to study the dynamics of phase separation in spatially
nonuniform electric fields. We find an exponential temporal relaxation of the demixing front
location. We give the dependence of the steady-state location and characteristic time on the charge,
mixture composition and ambient temperature. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2965906�

Situations where charged objects, such as electrodes or
colloids, are found in liquid environments are abundant in
science and technology. In ionic mixtures, experiments and
theory show that ions migrate toward the object and lead to
screening of the electric field. In nonpolar liquids, the situa-
tion is different: the decay of electric field far from the ob-
jects depends on the geometry of all conducting surfaces and
may be long range. When a nonpolar liquid mixture is under
the influence of a uniform electric field E, the theories of
Landau1 and later Onuki2 showed that the critical tempera-
ture can change by a small amount, proportional to E2. Ex-
periment by Debye and Kleboth3 partially confirmed the
theory.

However, here we show that the situation in spatially
nonuniform electric fields, occurring when liquid mixtures
are found under the influence of curved charged surfaces, is
quite different. When the temperature T is larger than the
critical temperature Tc, the mixture exhibits smooth compo-
sition variations. This dielectrophoretic behavior is reminis-
cence of the effect of gravity.4 For a homogeneous mixture
below Tc, there are two scenarios: If the charge density is
small, there are still weak composition gradients. On the
other hand, large enough charge leads to a phase-separation
transition, where the liquid with high-dielectric constant is
close to the high field region while the liquid with low di-
electric constant is pulled away, and the coexisting domains
are separated by a sharp composition front.

The phase transition described below occurs in systems
described by bistable free-energy functionals giving rise to a
phase diagram in the composition-temperature plane divided
into two regions: homogeneous mixture and a phase-
separated state. In order to be specific and to facilitate the
connection to experiment, we consider the following binary

mixture free-energy density fm=kTf̃m /Nv0, where

f̃m = � log��� + �1 − ��log�1 − �� + N���1 − �� . �1�

This symmetric �NA=NB=N� free energy is given in terms of
the A-component composition � �0���1� in a mixture of
A /B liquids, and the so-called Flory parameter ��1 /T.5

Simple liquids have N=1, while polymers have N�1 mono-
mers, each of volume v0. k is the Boltzmann constant. The
critical point is given at ��c , �N��c�= �1 /2,2�. In the absence
of electric field, the mixture is homogeneous if T�Tt, and
unstable otherwise. The transition �binodal� temperature Tt at
a given composition is given by Tt= �N��cTc�log�� / �1
−��� / �2�−1��−1.5 The phase transition does not depend on
the exact form of fm, and appears in a Landau series expan-
sion of Eq. �1� around �c, or in any other similar “double-
well” free-energy functional.

As is shown below, the effect of electric fields is large if
they originate from curved charged surfaces. In this work we
consider for simplicity surfaces with fixed curvature: a
charged spherical colloid, a charged wire or two concentric
cylinders, and the “wedge” capacitor, made up from two flat
and nonparallel surfaces. Fixed charges on the conductors,
fixed potentials, or a combination of the two are considered
by us. When the mixture is in the vicinity of a charged object
with a fixed surface charge, the total dimensionless free en-

ergy is f̃ = f̃m+ f̃es, where f̃es= �Nv0 /kT���1 /2���������2� is
the dimensionless electrostatic free-energy density.1,6 Note
that we do not include any direct short- or long-range inter-
actions between the liquid and the confining walls.

The equilibrium state is a solution of the two coupled

nonlinear equations: � f̃ /��=0 and � f̃ /��=0, where � is the
electrostatic potential obeying the proper boundary

conditions.2,7 The equation � f̃ /��=0 leads to Laplace’s
equation: � · ��������=0, and is readily solved by the use
of Gauss’ law for systems with prescribed charges on the
confining conductors and in azimuthal or spherical symme-
tries. For example, for a mixture confined between two infi-
nite concentric cylinders of radii R1 and R2�R1, we find Ea�Electronic mail: tsori@bgu.ac.il.
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=−��=� / �2	����r�, where � is the charge per unit
length on the inner cylinder and r is the distance from the

cylinder’s center. Subsequently, � f̃es /��=−N2v0� / �kTc�

�� / �4	�r��2d� /d�. Similarly, E=Q / �4	����r2� for a
spherical colloid of radius R1 and charge Q, and r is the
distance from the colloid’s center, and E=V / ��r� for a
wedge consisting of two flat conductors with potential differ-
ence V and opening angle � between them, and r is the
distance from the imaginary meeting point of the conductors.

We thus arrive at a considerable simplification of the
problem, since the expression for E obtained above allows to
write a single dimensionless governing equation for all three
cases with radial or azimuthal symmetry:

log� �

1 − �
� + N��1 − 2�� − N�M

d�̃/d�

�̃2���
r̃−n − � = 0. �2�

In the above, M is the dimensionless ratio between the maxi-
mum electrostatic energy stored in a molecular volume and
the thermal energy. M is Mc��2Nv0 / �16	2kTcR1

2�0� for two
concentric cylinders, M is Ms�Q2Nv0 / �64	2kTc�0R1

4� for a
spherical colloid, and M is �̃2Mw for the wedge, where Mw

�V2Nv0�0 / �4�2kTcR1
2�, V is the voltage between the wedge

plates, and R1 is the smallest distance from the conductors’
edge to their imaginary meeting point. r̃�r /R1 is the scaled
distance from the center of the sphere or the inner cylinder,
and �̃=� /�0, where �0 is the vacuum permittivity. Finally, n
is the exponent characterizing the fall of E2: n=2 for con-
centric cylinders and the wedge geometries, and n=4 for the
sphere. The importance of curvature is exemplified by the
appearance of R1 in the expressions for the M’s. � is a
Lagrange multiplier needed to conserve the average mixture
composition: 	��r�
=�0, and �0 is the average composition.
In the case of an open system coupled to a particle reservoir
at r→
, � is the reservoir’s chemical potential. The phase
transition described below is from a homogeneous �mixed�
to a demixed state, and therefore it is assumed that �0 is
outsides of the binodal curve, namely, T�Tt.

Equation �2� expresses implicitly the composition profile
��r̃�. Above Tc, ��r̃� has only smooth variations, irrespective
of the value of M. Below Tc �equivalently N�� �N��c�, if M
is sufficiently small, the profile ��r̃� is smooth, with high-�
values at small r̃’s and low values at larger radii. However,
there is a critical value of M, denoted M*, above which ��r̃�
exhibits a sharp jump: for M �M*, high- and low-� domains

coexist separated by a clear interface at r̃= R̃. This transition
occurs generally, even when the constitutive relation ���� is
linear in �. This is in contrast to the Landau mechanism,
which relies on a quadratic dependence of � on � and is
responsible to a small change in Tc. We therefore chose the
linear relation ����=�b+���, where ����a−�b, and �a

and �b are the dielectric constants of components A and B,
respectively.

The typical demixing electric fields and surface or line
charge density can be estimated from the values of M �see
Figs. 1 and 2�. At Ms=0.001 and using a molecular volume
of Nv0=10−26 m3, colloid’s radius R1=1 �m, Tc�300 K,
and �̃�4, we find the electric field at the sphere’s edge to be
E�106–107 V /m �surface potential �1–10 V�. The corre-

sponding charge density is �=�E�10−5–10−4 C /m2 �total
charge Q=800–8000e�. Similar values for the electric field
and charge density appear in the concentric cylinders and
wedge geometries.

Figure 1 shows ��r̃� for a binary mixture confined by
two concentric cylinders for several values of the dimension-
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FIG. 1. �Color online� Equilibrium profiles ��r̃� for concentric cylinders
with different dimensionless charge Mc. Dashed line: T=0.991Tc, and Mc

=0.008 too small for phase separation. Circles: same T, but Mc=0.04. Solid
line: same T, but Mc=0.08. Dash-dot line: Mc=0.08, but T=0.994Tc is a
higher temperature. We took fixed average composition �0=0.4. In this and

other figures, R̃1=1, R̃2=5, �a=5�0, and �b=3�0.
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FIG. 2. �Color online� �a� Filled symbols: dimensionless critical charge M
s
*

for phase-separation near an isolated spherical colloid as a function of tem-
perature. The colloid is coupled to a reservoir with three compositions: �0

=0.2 �squares�, 0.3 �circles�, and 0.4 �crosses�. Open symbols: M
c
* for a

closed cylindrical system with same compositions. �b� M
w
* vs ��=�t−�0

from Eq. �3� �solid line� and from numerics �symbols�.
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less parameter Mc and at two different temperatures. When
Mc=0.008, there is no phase separation, and the profile is
smooth. As Mc increases above M

c
*, phase separation occurs,

and ��r̃� rapidly changes from high to low values at the

phase-separation front located at r̃= R̃. Further increase of

Mc at constant temperature leads to displacement of R̃ to
larger values and to larger composition difference between
coexisting domains.8,9

Figure 2�a� shows the calculated critical value M
s
* as a

function of temperature for a spherical colloid coupled to a
particle reservoir at three different compositions. At a given
T above Tt, larger values of ��c−�0� require more charge for
demixing. Curves also show M

c
* for a system enclosed be-

tween two concentric cylinders. Notice that approaching Tt,
M* becomes infinitesimally small. For a wedge with average
composition �0 close to the transition composition �t at
given temperature, we obtain the following approximation:

M
w
* =

�t − �0

4��̃

T

Tc

d2 f̃m��t�
d�2 g�x� , �3�

where x�R2 /R1 and g�x�=2�x2−1� / �x2−1−2 ln x�. Figure
2�b� shows M

w
* from this formula and compares it with a

more accurate numerical solution.
We now turn to describe the relaxation toward equilib-

rium. The dynamics are governed by the following set of
equations:10–12

��

�t
+ u · �� = L�2�f/�� , �4�

� · ����� � �� = 0, �5�

� · u = 0, �6�

�
 �u

�t
+ �u · ��u� = ��2u − �P − � � �f/�� , �7�

where u is the velocity field corresponding to hydrodynamic
flow and � is the liquid viscosity. Equation �4� is a continuity
equation for �, where −L� ��f /��� is the diffusive current
due to the inhomogeneities of the chemical potential, and L
is the transport coefficient �assumed constant�. Equation �5�
is Laplace’s equation, Eq. �6� implies incompressible flow,
and Eq. �7� is Navier–Stokes equation with a force term
−���f /��.12

We continue in the limit of overdamping and with the
assumption of azimuthal symmetry. It follows that u=0. We
use the dimensionless time t̃=Nv0R1

2t / �LkT�, radius r̃=r /R1,

and energy f̃ =Nv0f /kT, to express � as a solution to a dif-
fusionlike equation �� /�t=�2�f /��, while satisfying
Laplace’s equation, where the “�” signs have been omitted
for brevity of notation. The time dependence of the profile
��r̃ , t�, obtained numerically, is shown in Fig. 3 for several
times t.

The dimensionless location of the demixing front

changes as a function of time: R̃= R̃�t� and asymptotically

tends toward the steady-state front location R̃
 at long times.

We find excellent match with an exponential relaxation of

the form R̃�t�= R̃
+ �1− R̃
�exp�−t /��, as is shown in the in-
set of Fig. 3.

Figure 4 shows the location of the steady-state demixing

front R̃
 and the time constant � at several different values of
�0 and T, and for two different values of Mc. It is worth
noting that all the points with the same Mc seem to fall on

the same line. Similarly, the dependence of R̃
 on �0 is dis-
played in Fig. 5�a�. Clearly, the domain size increases with
Mc at constant temperature and composition. Increase of �0

at constant T and Mc increases the domain size. Figure 5�b�
shows how � depends on �0. Compositions closer to �c ex-
hibit slower relaxations. In addition, increase of Mc leads to
faster relaxation toward steady state.

It should be emphasized that this phase transition is not
restricted to the vicinity of the critical point, and it occurs at
all compositions, provided that the electric field is large
enough. Moreover, field-induced prewetting could also be
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FIG. 3. �Color online� Composition profiles ��r̃ , t� at several dimensionless
times for concentric cylinders with Mc=0.32, �0=0.3, and T=0.95Tc. Inset:

semilog plot of R̃�t�. Numerical results �squares� and experiments of Ref. 7
�circles, time in s�.
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FIG. 4. Steady-state front location R̃
 vs time constant � for different tem-
peratures and compositions. Stars: Mc=0.318, �0=0.3 and 0.95�T /Tc

�0.99. Circles: Mc=0.818, �0=0.2, and 0.89�T /Tc�0.95. Squares: Mc
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realized in vapor-liquid systems of pure substances subject to
nonuniform electric fields.

There are several circumstances where the field-induced
separation may have an important influence. Colloidal sus-
pension in liquid mixtures and polymer solutions have been
extensively studied.13–17 We point out that standard wetting
theory is insufficient to describe these experiments if the col-
loids are charged. The enrichment layer around the colloid is
sensitive to the colloid’s charge, and this may have an effect
on the intercolloid interaction and hence on the phase behav-
ior and the rheology of suspensions.16,17

A drastic change to the rheological properties is also
predicted for a mixture confined, for example, between two
rotating coaxial cylinders �Taylor–Couette flow�. The classic
�zero field� flow profile would change markedly if a potential
is imposed between the two cylinders. Once the homoge-
neous mixture demixes, most of the velocity gradient will
fall on the liquid component with smaller viscosity.18 A

change to the lubrication in microelectromechanical systems
and in microfluidic channels can be similarly brought by the
application of external potential, recalling that in these sys-
tems the electric field is inherently nonuniform.

Last, we point out that the demixing transition creates
optical interfaces, since the mixture’s components have dif-
ferent refraction indices. Consequently, the propagation of a
light beam through a mixture in a channel will be altered
once an electric field creates optical interfaces, and this may
be used to scatter, focus, or even guide rays in microfluidic
arrays.19
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