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Interfacial instability of charged–end-group polymer brushes
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Abstract – We consider a polymer brush grafted to a surface (acting as an electrode) and bearing
a charged group at its free end. Using a second distant electrode, the brush is subject to a
constant electric field. Based on a coarse-grained continuum model, we calculate the average brush
height and find that the brush can stretch or compress depending on the applied field and charge
end-group. We further look at an undulation mode of the flat polymer brush and find that the
electrostatic energy scales linearly with the undulation wave number, q. Competition with surface
tension, scaling as q2, tends to stabilize a lateral q-mode of the polymer brush with a well-defined
wave length. This wavelength depends on the brush height, surface separation, and several system
parameters.

Copyright c© EPLA, 2008

Introduction. – There are different ways to bind
polymers to surfaces. Either by adsorption from solution
or grafting them onto the surface with a terminal group
or having an adhering block in case of block copolymers.
Such coated surfaces have many important applications
in colloidal and interfacial science. The polymer layer
can change the hydrophobicity of the surface, prevent
absorption of other molecules from solution and, in
general, plays an important role in colloidal suspensions
by preventing flocculation and aggregation of coated
colloidal particles [1,2].
A densely grafted polymer layer is called a polymer
brush. The layer is grafted irreversibly on a solid surface
by an end-group. Both neutral and charged polymer
brushes have been studied extensively in the last few
decades [3–11]. If there is no strong interaction between
the monomers and the surface, the brush properties are
mainly determined by the chain entropy. Neutral brushes,
to a large extent, are characterized by their height that
scales linearly with N , the polymerization index [4–7].
Charged polymer brushes depend in addition on the
charge density of the chain as well as the solution ionic
strength [8–13].
In this letter we aim at understanding another variant

of polymer brushes having a terminal charge group, Ze,

(a)E-mail: tsori@bgu.ac.il

at their free end, where e is the electronic charge and Z
the valency (see fig. 1). The main advantage of having a
charged end-group is that we can control the layer height
and other properties by applying an external electric
field and varying it continuously. This field stretches
(or compresses) the chains and is in direct competition
with their elastic energy and entropy. Even without
any external field, we expect the brush to be affected
by the charged end-groups, because of their repulsive
interactions. Indeed, the height profile depends on the
charged group and an instability of the flat brush toward
an undulating one may occur.

Flat end-charged polymer brush. – Let us briefly
recall the equilibrium properties of a neutral grafted layer.
The condition of highly dense layers (the brush regime) is
��Rg, where Rg is the chain radius of gyration, and � is
the average distance between chains (fig. 1(a)). The brush
height, defined as the average distance of chain ends from
the substrate, is denoted by h. In the 1970s, a simple free
energy was proposed by Alexander and de Gennes [4,5] to
determine the layer equilibrium height. In the Alexander-
de Gennes model, the brush height is taken to be the same
for all chains; namely, the height distribution is stepwise.
Later, in more refined theories, the free-end distribution
was found to be parabolic [6,7]. In the present work we
remain within the stepwise distribution approximation,
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Fig. 1: (a) Schematic illustration of a polymer brush with a
terminal charged group. The polymer is grafted onto a flat
and conducting surface at y= 0, while the other electrode at
y=L provides an electrostatic potential difference V , with
an average electric field, E =−V/L. Each chain end-group
carries a charge Ze, the grafting chain density is �−2 and the
average brush height is h. (b) A continuum model of the brush
used to calculate the electrostatic properties. The dielectric
constant ε has the same value throughout the gap between
the two electrodes. The chain end charges are bound to a
two-dimensional layer, with a charge density per unit area,
σ=Ze/�2.

which is adequate as long as the wavelength of the
predicted instability (see discussion below) is larger than
the width of the chain-end distribution [6,7].
The Alexander-de Gennes expression for the brush free-

energy is

Fbrush =
1

6
Kh2+

kBT

2
v0�
−2N2h−1, (1)

where the entropic “spring” constant is K = 9kBT/(Na
2),

a is the Kuhn statistical length, N the polymerization
index, kBT the thermal energy, and v0 = a

3(1− 2χ) is
the excluded-volume parameter depending on the Flory-
Huggins parameter χ. For a neutral brush, minimization
of Fbrush with respect to the profile height h gives the
well-known Alexander-de Gennes height of the brush at
equilibrium h0. It scales linearly with N :

h0 =N

(
1

6
v0a

2�−2
)1/3

. (2)

Next, the end-charged brush is considered. As before,
the chains are grafted onto the surface located at y= 0,
but the surface is conducting and held at potential ψ= 0
(see fig. 1)1. At the other (free) end, the chains carry a
charge Ze. Without loss of generality we will take this
charge to be positive, Ze> 0. A second conducting and
flat surface at y=L is held at a potential ψ= V with
respect to the surface at y= 0. Hence, the polymer brush
is subject to a vertical average electric field E =−V/L.
For V > 0, the field is compressing the chains, while for
V < 0, it is stretching them.

1The presence of a thin insulating layer to which the chains are
grafted is not expected to change our results.

Although the chain elastic deformation is considered
explicitly, the electrostatic properties are calculated within
a continuum model where the chains are coarse grained in
the following way. The entire gap 0< y <L between the
two electrodes is assumed to contain the same dielectric
medium with dielectric constant ε. The discrete end-
group charges are replaced by a two-dimensional layer
having a continuous surface charge density. We assume
that the continuum limit is adequate and provides a
good description of the system electrostatics. Finally, we
treat the charged brush without taking into account the
presence of counterions. This assumption and the possible
influence of counterions are discussed further below for a
few relevant limits.
The electric field has a jump at y= h, ∆E(h)� σ/ε,

where σ=Ze/�2 is the layer charge density per unit
area. For a typical grafting density �� 10 nm, dielectric
constant ε� 10ε0 with ε0 being the vacuum permit-
tivity and Z � 1, the electric-field jump is of order
∆E � 107V/m=10V/µm. Because the charged layer at
y= h creates a discontinuity in the electric field E(y), the
electrostatic problem is solved separately in two regions:
the potential is marked as ψa in the region below the
charged layer, 0< y < h, and as ψb for the region above
it, h< y <L. Solving the Laplace equation in the gap
0< y <L, we get

ψa = by, 0< y < h,

ψb = c+ dy, h < y <L,
(3)

where the coefficients b, c, and d are determined from
the boundary conditions: ψa|y=0 = 0, and ψb|y=L = V . At
the charged layer itself y= h, the potential is continuous,
ψa|y=h =ψb|y=h, and the jump in its electric field is
proportional to the charge density σ:

b=
V

L
+
σ

ε
(1−h/L), c=

σh

ε
, d=

V

L
− σh

εL
. (4)

The total free energy can be written as the sum [14]

F = Fbrush− 1
2

∫
ε (∇ψ)2 d3r+

∫
ρψ d3r, (5)

where Fbrush is the brush free energy, and the last two
terms represent the electrostatic energy (in SI units). The
volume charge density ρ is related to the surface one via
the Dirac delta-function, ρ= σδ(y−h).
We first consider the case where the electrostatic inter-

actions have a small effect on the thickness and we expand
Fbrush around its value at h0 to second order in h−h0. The
resulting total free-energy per grafting site is

F =
1

2
K(h−h0)2− 1

2
�2ε

V 2

L

+ �2
(
σV

L
+
1

2

σ2

ε

)
h− 1
2

�2σ2

εL
h2+const. (6)
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Minimization of F with respect to the brush height h
yields the equilibrium brush height hel for the charged
case:

hel � h0
(
1− σ2�2

Kε

[
1

2h0
− 1
L

]
− σ�2V

KLh0

)
. (7)

This expression is valid for low enough σ, i.e. when
σ2�Kεh0/�

2 and σV �KLh0/�
2.

Note that the brush height is compressed, hel <h0,
even when the external potential gap between the two
electrodes vanishes, V = 0. In this case, the charges at
the brush end-groups are attracted to the induced image
charges on the two grounded electrodes, and the interac-
tion with the closer electrode (at the origin) is stronger.
In the opposite case of strong charge-charge interac-

tions, the brush height can be much smaller than h0, which
makes eq. (6) invalid. In this case, the brush free energy is
dominated by excluded-volume interactions (last term in
eq. (1)). In the limit h�L the brush height is

h2el =
1

2
kBTv0�

−4N2
1(

σV
L
+ 12

σ2

ε

) . (8)

Undulating charged brush. – We now look for an
interfacial instability of the brush layer. A classical inter-
facial instability occurs when two immiscible liquids are
subjected to a perpendicular electric field. The instability
is a result of dielectric constant or conductivity difference
(or both) between the two liquids [15]. Here we focus on
a different physical mechanism, resulting from repulsion
between neighboring chains carrying identical charges.
The electrostatic energy can be reduced if the chains
compress or stretch alternatively, thereby increasing the
distance between chain ends. This mechanism is at play
even if the dielectric constants of the two media are the
same. To make this point more evident, we take ε to be
constant throughout the gap.
To investigate whether such an interfacial instability

exists, consider the illustration in fig. 2. We assume that
the brush height has a single undulation mode along one
of the lateral surface dimensions, x:

h(x) = hel+hq cos(qx), (9)

where hel is the equilibrium location of a flat brush
(eq. (7)), q= 2π/λ is the modulation q-mode, and hq the
amplitude. As was done above for the flat layer, the gap
is divided into two regions and the potential is ψ=ψa for
y < h(x) and ψ=ψb for h(x)< y <L. The potential
ψ(x, y) satisfies Laplace’s equation ∇2ψ= 0, with the
following four boundary conditions:

ψa|y=0 = 0, ψb|y=L = V,
ψa =ψb|y=h(x) ,

εn̂ ·∇(ψa − ψb)|y=h(x) = σeff(x).
(10)

Here n̂= (qhq sin qx, 1)/
√
1+ (qhq sin qx)2 is a unit vector

normal to the undulating interface given by h(x). The

y=0
x

y=L ψb

ψ=0

ψ=V

hel

σeff
hq

ψa

2π/q

Fig. 2: A brush with an undulating height profile given by
h(x) = hel+hq cos qx confined between two conducting and flat
surfaces located at y= 0 and y=L.

density σeff(x) appearing in the above boundary condi-
tion is: σeff = σ/

√
1+ (qhq sin qx)2 and is related to the

constant density σ on the projected area, as defined in
the previous section for the flat layer. Even within the
uniform dielectric media assumption, we are able to show
that the flat interface can be unstable. This demonstrates
that the instability, due to charge-charge interactions, is
different from other instabilities considered in refs. [16–18],
and related to heterogeneous dielectric materials placed in
external electric fields.
The potential within the polymer layer, ψa, and

above it, ψb, are written as a power series in hq:

ψa =
∑∞
n=0 ψ

(n)
a (hq)

n, and ψb =
∑∞
n=0 ψ

(n)
b (hq)

n. Clearly
the Laplace equation is satisfied separately for each order

n in the expansion: ∇2ψ(n)a = 0 and ∇2ψ(n)b = 0. Note
also that the zeroth-order terms, ψ

(0)
a and ψ

(0)
b , are the

solution of the flat charged layer (eqs. (3) and (4)). It
then follows that for n> 0

ψ(n)a =
∑
k �=0

(
a
(n)
k exp(ky)+ b

(n)
k exp(−ky)

)
cos kx,

ψ
(n)
b =

∑
k �=0

(
d
(n)
k exp(ky)+ e

(n)
k exp(−ky)

)
cos kx.

(11)

The leading contributions in hq, the layer undulation
amplitude, can be examined by assuming that hq� hel
and expanding the electrostatic free energy up to order
∼ (hq)2. We therefore limit ourselves to the first order in
hq: ψ=ψ

(0)+ψ(1)hq. Furthermore, we focus on the long-
wavelength limit, qhq� 1, relevant to small amplitude
modulations.
For linear order in hq, only the first Fourier component

k= q does not vanish, and we find

a(1)q =−b(1)q =−
σ

2ε

cosh q(L−hel)
sinh qL

,

d(1)q =−e(1)q =−
σ

2ε

cosh qhel
sinh qL

e−qL.

(12)
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Expanding to second order in hq, both the k= 0 mode and
the second harmonics k= 2q do not vanish.
The electrostatic energy difference ∆fel (per unit area)

between the undulating (hq �= 0) and the flat layer (hq = 0)
is given to second order in hq by

LxLz∆fel =

−ε
2

∫ ∫
dxdz

∫ y=h
y=0

dy

[
2hq∇ψ(0)a ·∇ψ(1)a +h2q

(
∇ψ(1)a

)2]

−ε
2

∫ ∫
dxdz

∫ y=L
y=h

dy

[
2hq∇ψ(0)b ·∇ψ(1)b +h2q

(
∇ψ(1)b

)2]

+σhq

∫
dx

∫
dz
[
a(1)q exp(qh)+ b

(1)
q exp(−qh)

]
cos qx,

(13)

where Lx and Lz are the two lateral dimensions and h is
h(x) from eq. (9). Straightforward algebraic manipulations
give the final answer for the electrostatic energy difference
per unit area of the brush in the long-wavelength limit
(qhq� 1):

∆fel =−σ
2

ε

cosh(qhel) cosh[q(L−hel)]
sinh(qL)

qh2q. (14)

The scaling of the last expression could have been guessed
from the outset. The electrostatic energy is symmetric in
hq→−hq and, to lowest orders, is quadratic in hq. In
addition, the prefactor σ2/ε has dimensions of dielectric
constant times electric field squared, and thus ∆fel must
be linear in q. The derivation above gives us in addition
the numerical factors and an extra dependence containing
trigonometric functions. These functions are symmetric
with respect to the transformation hel→L−hel.
Note that the externally imposed potential V does

not appear explicitly in ∆fel. The external field simply
stretches the brush uniformly, thereby increasing hel.
The interfacial instability is solely due to charge-charge
interactions, as exemplified by the σ2 prefactor. The
simple case of a thin isolated charged layer embedded in an
infinite medium of uniform dielectric constant is obtained
in the symmetric limit hel =

1
2L, and L→∞. In this case

one finds ∆fel =−(σ2/2ε) · qh2q .
Brush surface instability. – The brush instability

mentioned above causes a deformation of the flat layer
and costs interfacial and elastic energy. We consider first
the effect of surface tension and then comment on the
elasticity. For a single q mode, the interfacial energy per
unit area is ∆fγ =

1
4γq

2h2q. The total free-energy difference
∆f =∆fγ +∆fel is

∆f/h2q �−
σ2

ε

cosh(qhel) cosh[q(L−hel)]
sinh(qL)

q+
1

4
γq2; (15)

∆f has a minimum at a finite wave number q∗ as seen
in fig. 3(a), where ∆f is plotted with a choice of typical
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Fig. 3: (a) The brush free-energy ∆f from eq. (15) in dimen-
sionless units (rescaled by (σ2/ε)2(h2q/γ)), as a function of
the dimensionless wave number q (rescaled by σ2/εγ). Solid,
dashed and circle-decorated curves correspond to rescaled
brush height hel(σ

2/εγ) = 0.5, 1 and 1.5, respectively, and
rescaled film thickness L(σ2/εγ) = 10. The location of the mini-
mum increases as hel decreases. (b) The most stable dimension-
less wave number q∗ as a function of rescaled height hel.

parameter values. The value of q∗ can be obtained by
solving the transcendental equation

q∗ =
2

γh2q

∂∆fel
∂q

∣∣∣∣
q∗
. (16)

In fig. 3(b) we show the dependence of q∗ on hel/L. The
most stable wave number q∗ decreases monotonically as
hel increases.
In order to check whether the predicted instability can

be seen in experiments, we estimate its order of magnitude
by taking the brush charge to be Z = 1, chain separation
�= 10nm, dielectric constant ε= 10ε0 and surface tension
of the brush layer γ = 1mN/m. From fig. 3(b), we find
q∗ � 107m−1, resulting in an undulation wavelength λ∗ =
2π/q∗ � 0.63µm. This long-wavelength limit indeed agrees
with the various approximations we made. By further
changing the system parameters: �, Ze and γ it is possible
to tune q∗ and adapt its value (in the micrometer range)
in specific experimental setups.

Discussion and conclusions. – In this letter we
revisit the problem of polymer brushes. The new feature
considered was to attach a charge Ze to the chain terminal
free-end. The brush can be grafted onto an electrode
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(flat surface), while a second distant electrode is placed
above the brush and provides a voltage gap V . The net
effect is to have a controlled way to compress or expand
the layer height, h.
The charged brush creates an effective surface charge

density that is localized at the y= h interface. These
charges repel each other and also interact with the
external electric field. The equilibrium height hel depends
on the competition between all electrostatic interactions
and the elasticity and entropy of the neutral chain, as
seen from eqs. (7) or (8). It can lead to a compression or
expansion of the layer height with respect to the neutral
brush case. However, the more interesting effect may be
the onset of an instability in the layer height. Employing
a linear stability analysis, the conditions leading to
an instability of the uniform layer are analyzed, and a
preferred wave number q∗ stabilized by surface tension is
found. When elasticity of the polymer brush is included,
it contributes a q4 term in eq. (15) [19] in addition to the
q2-term originating from surface tension. The qualitative
system behavior is similar, with a modified expression for
the preferred wave number q∗.
The full system behavior in the presence of counterions

is quite complicated and should be explored in a sepa-
rate work, especially the limit of highly charged brushes.
Here, we comment briefly on two extreme limits. In the
first limit, the brush charge and the external potential
are taken to be small enough so that the counterions are
uniformly distributed throughout the available volume,
and behave like an ideal gas. It then follows that the elec-
trostatic potential depends quadratically on the direction
y. In this approximation, the counterions do not contribute
to the pressure difference ∆P across the brush end. The
only source of this pressure difference is electrostatic and
is due to the difference in 12εE

2 between the two sides of
the brush. We find ∆P = σV/L+σ2/ε− 3σ2h/εL.
In a second scenario, the brush charge is small, but the

electrostatic energy of counterions in contact with the elec-
trode, eV , is much larger than the thermal energy kBT .
Here we find that all counterions migrate to one of the elec-
trodes. However, because the above calculation assumes a
fixed voltage gap, V , the electrodes will accumulate extra
charge to balance exactly the counterions. Therefore, the
results in eqs. (6), (7) and (8) stay valid. Lastly, we point
out that in a more physically feasible setup, the system
may contain added salt [12,13]. In this case, the electric
field is screened and the brush ends do not “feel” the
electrodes as long as the brush length is larger than the
Debye-Hückel screening length.
It is worthwhile to mention some similarities between

our charged brush and other two-dimensional systems of
charges or dipoles. A two-dimensional layer of electric
dipoles pointing in the perpendicular direction was inves-
tigated [20] in relation with dipolar Langmuir monolayers
at the water/air interface [20]. When the dipoles have a
fixed out-of-plane moment but their in-plane density can
vary, a modulated phase in the in-plane density can be

stabilized with a preferred wave number q∗. In addition,
the dipolar free energy also scales linearly in q [20]. The
similarity between the two systems can be understood in
the following way. The charge displacement from their
average position at y= hel in our case is similar to an
effective dipole whose moment points “up” or “down” with
respect to this reference plane. Increase in the external E
field in our system translates into an increase proportional
to the average dipole strength in the dipolar system.
More recently [21], a q-mode instability was found for

an electric double layer where a charge density bound to
a surface was allowed to fluctuate laterally. The model
is motivated by an experimental setup where charged
amphiphiles coat heterogeneously a mica surface. In the
experiment the surface contains patches of positive and
negative charges but the overall surface charge (summed
over all patches) remains zero. As the surface was placed in
contact with a salt solution, a local electric double layer is
formed. Positively and negatively charged counterions are
attracted, respectively, to negative- and positive-charge
domains, resembling our system as well as the undulating
dipolar one [20,21].
We hope that the simple considerations mentioned here

will motivate experimental studies of end-charged brushes
where some of our predictions can be tested.
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