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Lamellar Phases in Nonuniform Electric Fields: Breaking the In-Plane
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ABSTRACT: We consider orientational transitions of lamellar phases under the influence of a spatially nonuniform
electric field. The transition between parallel and perpendicular lamellar stackings with respect to the substrate
is investigated as a function of the system parameters. The dielectrophoretic energy and the energy penalty for
having dielectric interfaces perpendicular to the field’s direction are identified as linear and quadratic terms in a
free energy expansion in the dielectric constant mismatch. We find that if the dielectric constant mismistch
smaller than some critical valuke., parallel lamellar stacking will be realized, no matter how large the voltage
difference between electrodes is. At > Ae., perpendicular stacking will appear if the voltage is high enough.
Nonuniform fields remove the in-plane degeneracy present in the more common uniform fields. We therefore
calculate the energy of grains of different orientations. The torque acting on the grains leads to the preference of
only one orientation. The results have direct implications to block copolymer orientation and to surface patterning
on the nanometer scale.

Introduction (@) ®)

In recent years we have seen a large effort directed toward
finding ways to control the phase behavior and orientation of
self-assembled structuré3.Confinement between two solid
surfaces; 13 shear flow!* or the use of external electric
fields'>27 have proved very useful. The use of electric fields
is especially appealing, as the field strength scales favorably
with the system size. Spatially uniform electric fields, however,
pose a long-lasting problem since the orientation of the
assembled phases is not unigtbe symmetry of the field
means that all grain rotations in the plane are energetically
equivalent. (c) L, (d) L, defect

Spatially varying fields remove this degeneracy and thus can
be quite useful in alignment of various mesophases. The early 5
experiments of Russell et @ have employed nonuniform fields, YZ
but ever since then all research have been on uniform fields. It
seems that now, when such spatially uniform fields have been

well understood and exploited possibly to their full potential, it _. . . -
S K iall ina fiel hi ol Figure 1. Schematic illustration of the system. (a) Two thin “razor-
is time to come back to spatially varying fields. In this article pjage” electrodes are laid down on the substrate. The voltage difference
we focus on the most simple periodic structttiee lamellar between them i§. (b) Parallel stackingy lamellae lie parallel to the
phase, which is found under the influence of an electric field substrate. (c) |ff thel voltage is SUff(ijCientf'y high, e|e<§ri0|field Cakh
i “ _ ” i i overcome interfacial interactions and prefer a perpendicular stacking

tlamir;latllng frI(I)m a razo(rj bladeftelecctjr_]c()fde d$S|g? (_sele I:gurg Ly (lamellae are parallel to the field lines). (d) A defeein unfavorable

). The qme ae are made up o _Wo fmerent matenals, A an perpendicular morphology where lamellae are perpendicular to the field
B, e.g., diblock copolymers. In this example, the two polymers |ines. In subsequent calculations we took the distance between electrodes
A and B have different dielectric constantg, andeg. In the to be 1um, and the lamellar period is 100 nm unless otherwise
following we assume ion-free polymers; alternatively, for ion- indicated.
containing polymers, application of a quasi-static field in the
frequency~1 kHz renders the ions immobile but leaves the
electrostatic equations unchandéth spatially uniform electric
fields, the lowest-order contribution to the system electrostatic
free energy is quadratic in the permittivity difference of the two
constituents;Ae = e — €. As is explained in detail below, an

inhomogeneity of the field gives rise to a dielectrophoretic force contribution to the energy scales liker 1This energy indeed

which is manifested in a linear term iAe, and this has . X S
S . . . . decays, but very slowly, and it has an important contribution
significance to the orientation selection and to phase-transi-
even very far from the electrodes.

X

At this point it should also be pointed out that nonuniform
electric fields are in general neither interfacial nor purely bulk
ones. In the razor-blade geometry, the field is high close to the
electrodes’ edge. However, sufficiently far from the electrodes
the field behaves lik&(r) = Viar, wherer is the distance from
the middle of the gap. Thus, the integrated electrostatic

i 29
tions: We assume that the lamellae are rigid enough so that the
electric field does not bend them. In the example of block
T E-mail: tsori@bgu.ac.il. copolymers, this corresponds to the so-called strong-segregation
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Figure 2. Plot of E3(xy) in the x—y plane, for the case where the

dielectric constant is uniform, and the electrodes arexat 0.5um

(V=14 V)andx < —0.5um (V = =%, V). The largest field is at the

elezctrodes’ edgey = +£0.5um. Eis scaled by 18 and given in (V/ Figure 3. Numerically calculated electrostatic enerfy; (eq 1) of

m)y”. parallelL; (solid line) and perpendicular; (horizontal dash-dotted line)
stackings as a function of the permittivity differencAe = ex — ¢s.

regime, whereyN > 1. Let us verify the validity of this Fes is normalized by its value whene = 0. Fes of perpendicular

assumption. The elastic bending energy per unit volume is lamellae is constant, while that of parallel ones decreases before it

: —1 2 ; ; increases (see inset). The critical valueAafis Aec = 1. WhenAe <
written askey 12KIR®, whereK is the bending modulus and Ae, Ly is preferred ovelLp. If Ae > Ae, Liis preferred. We took the

Ris the local bending radius (inverse curvature). For strongly average dielectric constant to be= 6, the lamellar period is 100 nm,
stretched lamellagk = Dyag, whereD is the lamellar period and the electrode gap isudm. The dashed line is a similar plot Bfs
(D ~ 100 nm) andyas ~ 10 mN/m is the A/B interfacial for L, lamellae, with the same parameters; only the electrode gap is 2
tension. On the other hand, the electrostatic energy per unit#M
volume isFes = Y2¢E?, wheree is the dielectric constant artgl
the local field, which cannot exceed100 V/um because of
dielectric breakdown. Let us take this maximum value, in this
caseFes = 10° J/mB. Therefore,Fe = Fes if the lamellae are
bent with a radius of curvature of Oum. The same estimate
relates to the stresses (forces) of course. Electric fields canno
bend lamellae to a radius smaller thaf.1 um. In the razor-
blade system, at larger distances from the electrodes the field
is weaker, and therefore the lamellae should stay flat as well.
Since the fields we consider are typically much weaker, we do field’s direction, and this penalty is absent in the state.
not expect be_nt lamellae in this electrode arrangement. TheCIearIy, the orientation selection depends on the magnitude of
above reasoning does not hold for weakly segregated Iamellae:EA ~ e
The_sg lamellae .have a much weaker modiluand therefore The electrostatic energy of the system is given by an integral
significant bending can occur. over all space

A lamellar stack can therefore have the basic configura-
tions: parallel or perpendicular to the substrate (Figure 1b,c), 1 5 3
denoted a4, and L, respectively. Note that in the parallel Fes= = 5/e(n) E(r) T 1)
stacking the first layer at the substrate is half as thick as the
others. A third state exists which we denote the perpendicular The dielectric constand(r) is a spatially varying quantity. In
defect. Here the lamellae normals are not parallel to the this study it is a periodic function. In tHg state, for example,
electrodes’ edges. Figure 1d represents the highest energy oft is given by
such defects. Weakly segregated systems exhibit lower energy
defects, e.g., T-junction or grain boundary. In some experimentse(r) =

-
T
L

y [um]

substrate and also to the polymer/air interface.

Let us now assume without loss of generality that> ¢g.
As is well-known in the field of dielectrophoretic forcé&sa
material with large value o€ is drawn to regions with high
fields, whereas smad-material is repelled. Since the electric
field is largest near the electrodes’ edges) astate can form
with the A material touching the substrate. However, the work
of Amundson et al. has shown that there is also a free energy
penalty for having dielectric interfaces perpendicular to the

with weakly segregated block copolymers on preferential _. 1 . 1 .
surfaces, few lamellar layers are adsorbed preferentially on the et ZAG if nd<y=<nd+ 2 d, n=0123,..
substrate (mixed morphology) due to the long-range effect of _ 1 . 1 .
surface ordering?3°As is mentioned above, this system is out € ZAG if nd+ 2 <y=<(+1)d n=0123,..
of the scope of the current work, and it will be dealt with in a 2

subsequent publication.

A peculiar feature of nonuniform fields is that the state =~ Wheree = /5(ea + €g) is the average dielectric constant, and
can be favored over the; one even in the absence of specific the period isd. The above equation simply represents a square
interfacial interactions with the substrate. In order to understand wave in they-direction, wheree alternates betwees andeg.
this, consider first the distribution of electric field squared for The dielectric constant can be defined similarly for the other
two semiinfinite planar electrodes in the-z plane, with agap ~ stackings.
of 1 um between them. This distribution is shown in Figure 2
for a medium with spatially uniform dielectric constaat Theory and Results
Clearly E2 is very high close to the surface and, in particular, Figure 3 showd-s for the L, and L stackings at a fixed
close to the electrodes’ edgexat £0.5um. The field is small value of € = 6 and varying values of the dielectric constant
far from the substrate, and therefore interfacial instabilities are mismatch. The electrostatic energy is calculated numerically for
not expected! this is true even more so since above the a system with electrode gap ofun. FedA€) (dashed horizontal
electrodes’ edges the field gt— « is actually parallel to the line) is constant for the case because the electric field between
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the electrodes is independent &§ ande. On the other hand,
in the L, case (solid line),Fe{A€) decreases first before it

increases. The decrease is due to the dielectrophoretic term,

linear in Ae¢, while the increase is due to the penalty associated
with dielectric interfaces perpendicular to the field lines, scaling
like (Ae)2

Let us make a short but very general mathematical digression

which will clarify the last point. Denot&y(r) the electric field
which corresponds to a system of uniform dielectric constant

and a given electrode design (not necessarily the one in Figure

1). Eo is derived from a potentiado(r) satisfying the proper
boundary conditions on the electroddsy = —Vo. Suppose

now that the dielectric constant changes from its average value

by an amoungi(r): e(r) =€ + ex(r). This change in permittivity
leads to a change in fieldE(r) = Eo(r) + E(r). We may now
write the integrand of eq 1 in the following way:

= — B! — JeiEy + 2EGE] -
%[ZelEO'El +eE,7 - %ElElz 3)

The first term on the right is the electrostatic energy of the
system with uniform average while the other three terms are
the deviations from it. The second and third terms (square
brackets) are the dielectrophoretic and “dielectric interfaces”
terms, scaling like; ande;?, respectively. Finally, the last term
scales likee;® and is small ife; < €. For the case where this
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Figure 4. Electrostatic energyes of perpendicular-defect structure
(Figure 1d) as a function de. Fesis normalized by its value when
Ae = 0 and is always increasing. Other parameters as in Figure 3.

The expansion ofesis now transparent to ordeAé)?, as both

I; andl, are independent afe, are quadratic iiv?, and depend

on geometry and(r). In order to further demystify the above
expansion, consider the simple one-dimensional example of
uniform electric field Ep (parallel-plate capacitor), with

¢ = £,. In this case we findE; = —cEy andE; = —c(Ae/

€)Eo, and sincelé]= 0 we find a rather well-known result:
[fed 1="/g[( A€)%/€]E¢? + const.

We now return to the razor-blade electrode design and the
results presented in Figure 3. The descenEgffor parallel
lamellae is due to a negative value lgf stemming from the
dielectrophoretic force. The subsequent increase at larger value

last term is dealt with, the interested reader is referred to ref of Ac is due to a positive,. The critical value ofAe, Acg, is

20.
On the basis of this expansion and denotlig= —V,
one can easily show that; obeys the following equation
2 1
Vi, = ZVerEy 4)
with the boundary conditions that; = 0 on all conductors.

Clearly 1 can be written asp; = y4(r, €1/é, geometry,V),
where geometry refers to the electrode geometry\amal the

electrode potential difference (in the case of just two electrodes).

We now writee; in a form that puts emphasis on dimensions:
€1(r) = Ae-c(r). Thus,c(r) is a dimensionless function contain-
ing the spatial variation ok; and whose spatial average
vanishes: [é(r)0= 0. For the square-wave example of eq 2,
¢ = £1/,. It then directly follows that

A€ ~
Y, = ?wl(r ;¢(r), geometryy) (5)
where); obeys the equations
V2, = Ve, (6)

andy = 0 on all electrodes. Sincg; is a universal potential
independent of\e, 11 is linear inei/é (and in fact it is linear
in V as well). Similarly, we findEy = (Ae/@)Ea(r; c(r),
geometryy), with E; independent of\e. We now rewrite eq 3
as follows:

A 2
Fes= Ael; + %Iz + const
= % (e + 2E,E ] o

I, = — 3 120(r)E5E, + B2 %

given by the relation
®)

The existence oA¢. is indeed importantat all Ae < Aec the
morphology is that of parallel layerd,f, irrespectve of the
appliedvoltageor the magnitude of the electric field. In uniform
electric fields similar critical value oAAe does not exist. The
value of the last term ignored in eq 3 is numerically verified to
be negligible in this calculation.

In Figure 4 we plotFes as a function ofAe for the
perpendicular-defect state sketched in Figure 1d. At a given
voltage andAe, this state has the highest electrostatic energy
since the two electrostatic terms are unfavoratfes electrodes
are not covered with the highmaterial (1 > 0), and the field
lines cross the lamellar interfaces ¢ 0).

Figure 5 depicts a lamellar grain in a defect state: the lamellae
normals are not parallel to the electrodes’ edges. The highest
energy rotation hag = 90°, while the lowest is thé; state
with & = 0. In Figure 6 we present the electrostatic endfgy
as a function of the rotation angte The torque acting on the
sample to orient it in the preferred direction is given as the
derivative: L = dF.460)/d0; it vanishes for the two extreme cases
0 = 0 and® = 90°.1217 Indeed, wherEy is uniform in space,
we find Fed0) = Fed0) + [Fe{90°) — Fed0)] Sir?(0). As is
seen in the figure, the actual energy is higher than this estimate.

Finally, the interfacial interaction of the two materials with
the substrate can be taken into account as well. Let uygall
andyss > yas the interfacial energies per unit area of the A
and B materials with the surface, respectively. The free energy
difference between the, and L states is

A 2
AF=I1A6+I2%

Ae, = —€l /1,

+ 3= )

whereSis the substrate area. The prevailing state, i AF is
negative and_p otherwise. On the basis of this free energy
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L, defect

(a)

ZL k

Figure 5. (@) lllustration of a defect perpendicular morphology.
Lamellae make an anglé in the x—z plane, as defined in (b). The

system experiences torque which tends to align the stacking, preferring

the state withd = 0.

-0.98

80
6 [deg]
Figure 6. Solid line: electrostatic enerdyes of perpendicular lamellae
as a function of rotation angle defined in Figure 5F¢sis scaled by
|Fed6=0)|. 6 = 0 corresponds to “perfect” perpendicular layering,
while 6 = 90 is the defect with the highest energy. The torquk is
dF.Jdf. Dashed line: a fit interpolating the maximum and minimum
values by a sit(0) fit: Fes= Fed0) + [Fed90°) — Fed0)] sin?(6). We
took ex = 8 andeg = 4, yielding Ae = 4 andée = 6. The numerical
accuracy for the point marked with a circle is questionable.
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Figure 7. Phase diagram in the voltageterfacial interactions plane.
Vs the voltage between the electrodes (see Figure 1)y anandyss

are the interfacial interactions of the A and B polymers with the
substrate. Above the solid line (green) and for = 4, L is stable,
while below itLy is expected. The dashed blue line is the same, but
for Ae = 2. In both caseg = 4, Ae > Aec = 1,d = 100 nm, and the
electrode gap is km.

and the parallel lamellae are not frustrated, as is the case for
surface separation larger tharl0 lamellae.

Conclusions

Lamellar phases under the influence of a spatially nonuniform
electric field are considered. The role of the dielectric constant
mismatchAe is highlighted: the linear term in the free energy
expansion is due to a dielectrophoretic force, while the quadratic
term includes the free energy penalty for having dielectric
interfaces perpendicular to the field’s direction. We have shown
that a simple electrode realization which gives rise to nonuni-
form fields can bring about orientational transitions between
several lamellar stackings. Specifically, fhae < Ae., parallel
lamellae are preferred over perpendicular ones even at very high
voltages. WhenAe > Ae, there is an interplay between
electrostatic forces and interfacial interactions. The “razor-
blade” electrode design suggested here can find numerous
applications in nanotechnology: the large torque is expected
to remove the degeneracy between thestates by orienting
the lamellae perpendicular to the substrate and the electrodes’
edges. More complex morphologies are expected to occur for
block copolymers in the intermediate and weak segregations
where the lamellar bending and grain boundary energies are
smaller, and these systems should be systematically explored
in this and more advanced electrode arrangements.

difference, one can construct a phase diagram, which is shown

in Figure 7 for two values ofe. Note that both; andl, are
proportional toV2, and sinceAe > A, the electric field terms
favor the perpendicular stacking. For fixed interfacial interac-
tions, raising the voltage from small values to large ones
destabilizes thé, and leads to perpendicular stackibg The
critical voltage for this transition scales likgAs — yas)¥2

The polymer melt can be confined by another solid surface
from the top. In this case there are two morgs and ygs
corresponding to the second surface, and the augmented versio
of the equation above reads

(Ae)®

AF = 11Ae + I,

1 1
5 as, = Ves) T 5 Vas, ~ Ves)
(10)
where the “1” and “2” subscripts refer to the bottom and top

surface, respectively. Here we have assumed that the film is
sufficiently thick so that the incommensurability between the

lamellar thickness and the surface separation can be neglected
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