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ABSTRACT: We consider orientational transitions of lamellar phases under the influence of a spatially nonuniform
electric field. The transition between parallel and perpendicular lamellar stackings with respect to the substrate
is investigated as a function of the system parameters. The dielectrophoretic energy and the energy penalty for
having dielectric interfaces perpendicular to the field’s direction are identified as linear and quadratic terms in a
free energy expansion in the dielectric constant mismatch. We find that if the dielectric constant mismatch∆ε is
smaller than some critical value∆εc, parallel lamellar stacking will be realized, no matter how large the voltage
difference between electrodes is. At∆ε > ∆εc, perpendicular stacking will appear if the voltage is high enough.
Nonuniform fields remove the in-plane degeneracy present in the more common uniform fields. We therefore
calculate the energy of grains of different orientations. The torque acting on the grains leads to the preference of
only one orientation. The results have direct implications to block copolymer orientation and to surface patterning
on the nanometer scale.

Introduction

In recent years we have seen a large effort directed toward
finding ways to control the phase behavior and orientation of
self-assembled structures.1,2 Confinement between two solid
surfaces,3-13 shear flow,14 or the use of external electric
fields15-27 have proved very useful. The use of electric fields
is especially appealing, as the field strength scales favorably
with the system size. Spatially uniform electric fields, however,
pose a long-lasting problem since the orientation of the
assembled phases is not uniquesthe symmetry of the field
means that all grain rotations in the plane are energetically
equivalent.

Spatially varying fields remove this degeneracy and thus can
be quite useful in alignment of various mesophases. The early
experiments of Russell et al.28 have employed nonuniform fields,
but ever since then all research have been on uniform fields. It
seems that now, when such spatially uniform fields have been
well understood and exploited possibly to their full potential, it
is time to come back to spatially varying fields. In this article
we focus on the most simple periodic structuresthe lamellar
phase, which is found under the influence of an electric field
emanating from a “razor-blade’’ electrode design (see Figure
1). The lamellae are made up of two different materials, A and
B, e.g., diblock copolymers. In this example, the two polymers
A and B have different dielectric constants,εA andεB. In the
following we assume ion-free polymers; alternatively, for ion-
containing polymers, application of a quasi-static field in the
frequency∼1 kHz renders the ions immobile but leaves the
electrostatic equations unchanged.17 In spatially uniform electric
fields, the lowest-order contribution to the system electrostatic
free energy is quadratic in the permittivity difference of the two
constituents,∆ε ≡ εA - εB. As is explained in detail below, an
inhomogeneity of the field gives rise to a dielectrophoretic force
which is manifested in a linear term in∆ε, and this has
significance to the orientation selection and to phase-transi-
tions.29

At this point it should also be pointed out that nonuniform
electric fields are in general neither interfacial nor purely bulk
ones. In the razor-blade geometry, the field is high close to the
electrodes’ edge. However, sufficiently far from the electrodes
the field behaves likeE(r) ) V/πr, wherer is the distance from
the middle of the gap. Thus, the integrated electrostatic
contribution to the energy scales like 1/r. This energy indeed
decays, but very slowly, and it has an important contribution
even very far from the electrodes.

We assume that the lamellae are rigid enough so that the
electric field does not bend them. In the example of block
copolymers, this corresponds to the so-called strong-segregation† E-mail: tsori@bgu.ac.il.

Figure 1. Schematic illustration of the system. (a) Two thin “razor-
blade’’ electrodes are laid down on the substrate. The voltage difference
between them isV. (b) Parallel stackingL| lamellae lie parallel to the
substrate. (c) If the voltage is sufficiently high, electric field can
overcome interfacial interactions and prefer a perpendicular stacking
L⊥ (lamellae are parallel to the field lines). (d) A defectsan unfavorable
perpendicular morphology where lamellae are perpendicular to the field
lines. In subsequent calculations we took the distance between electrodes
to be 1 µm, and the lamellar period is 100 nm unless otherwise
indicated.
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regime, whereøN . 1. Let us verify the validity of this
assumption. The elastic bending energy per unit volume is
written asFel ) 1/2K/R2, whereK is the bending modulus and
R is the local bending radius (inverse curvature). For strongly
stretched lamellae,K ) DγAB, whereD is the lamellar period
(D ∼ 100 nm) andγAB ∼ 10 mN/m is the A/B interfacial
tension. On the other hand, the electrostatic energy per unit
volume isFes ) 1/2εE2, whereε is the dielectric constant andE
the local field, which cannot exceed∼100 V/µm because of
dielectric breakdown. Let us take this maximum value, in this
caseFes ) 105 J/m3. Therefore,Fel ) Fes if the lamellae are
bent with a radius of curvature of 0.1µm. The same estimate
relates to the stresses (forces) of course. Electric fields cannot
bend lamellae to a radius smaller than∼0.1 µm. In the razor-
blade system, at larger distances from the electrodes the field
is weaker, and therefore the lamellae should stay flat as well.
Since the fields we consider are typically much weaker, we do
not expect bent lamellae in this electrode arrangement. The
above reasoning does not hold for weakly segregated lamellae:
These lamellae have a much weaker modulusK, and therefore
significant bending can occur.

A lamellar stack can therefore have the basic configura-
tions: parallel or perpendicular to the substrate (Figure 1b,c),
denoted asL| and L⊥, respectively. Note that in the parallel
stacking the first layer at the substrate is half as thick as the
others. A third state exists which we denote the perpendicular
defect. Here the lamellae normals are not parallel to the
electrodes’ edges. Figure 1d represents the highest energy of
such defects. Weakly segregated systems exhibit lower energy
defects, e.g., T-junction or grain boundary. In some experiments
with weakly segregated block copolymers on preferential
surfaces, few lamellar layers are adsorbed preferentially on the
substrate (mixed morphology) due to the long-range effect of
surface ordering.17,30As is mentioned above, this system is out
of the scope of the current work, and it will be dealt with in a
subsequent publication.

A peculiar feature of nonuniform fields is that theL| state
can be favored over theL⊥ one even in the absence of specific
interfacial interactions with the substrate. In order to understand
this, consider first the distribution of electric field squared for
two semiinfinite planar electrodes in thex-z plane, with a gap
of 1 µm between them. This distribution is shown in Figure 2
for a medium with spatially uniform dielectric constantε.
Clearly E2 is very high close to the surface and, in particular,
close to the electrodes’ edge atx ) (0.5µm. The field is small
far from the substrate, and therefore interfacial instabilities are
not expected;31 this is true even more so since above the
electrodes’ edges the field aty f ∞ is actually parallel to the

substrate and also to the polymer/air interface.
Let us now assume without loss of generality thatεA > εB.

As is well-known in the field of dielectrophoretic forces,32 a
material with large value ofε is drawn to regions with high
fields, whereas small-ε material is repelled. Since the electric
field is largest near the electrodes’ edges, anL| state can form
with the A material touching the substrate. However, the work
of Amundson et al. has shown that there is also a free energy
penalty for having dielectric interfaces perpendicular to the
field’s direction, and this penalty is absent in theL⊥ state.
Clearly, the orientation selection depends on the magnitude of
εA - εB.

The electrostatic energy of the system is given by an integral
over all space

The dielectric constantε(r ) is a spatially varying quantity. In
this study it is a periodic function. In theL| state, for example,
it is given by

whereεj ≡ 1/2(εA + εB) is the average dielectric constant, and
the period isd. The above equation simply represents a square
wave in they-direction, whereε alternates betweenεA andεB.
The dielectric constant can be defined similarly for the other
stackings.

Theory and Results

Figure 3 showsFes for the L| and L⊥ stackings at a fixed
value of εj ) 6 and varying values of the dielectric constant
mismatch. The electrostatic energy is calculated numerically for
a system with electrode gap of 1µm. Fes(∆ε) (dashed horizontal
line) is constant for theL⊥ case because the electric field between

Figure 2. Plot of E2(x,y) in the x-y plane, for the case where the
dielectric constantε is uniform, and the electrodes are atx > 0.5 µm
(V ) 1/2 V) andx < -0.5 µm (V ) -1/2 V). The largest field is at the
electrodes’ edge,x ) (0.5 µm. E2 is scaled by 1010 and given in (V/
m)2.

Figure 3. Numerically calculated electrostatic energyFes (eq 1) of
parallelL| (solid line) and perpendicularL⊥ (horizontal dash-dotted line)
stackings as a function of the permittivity difference:∆ε ≡ εA - εB.
Fes is normalized by its value when∆ε ) 0. Fes of perpendicular
lamellae is constant, while that of parallel ones decreases before it
increases (see inset). The critical value of∆ε is ∆εc = 1. When∆ε <
∆εc, L| is preferred overL⊥. If ∆ε > ∆εc, L⊥ is preferred. We took the
average dielectric constant to beεj ) 6, the lamellar period is 100 nm,
and the electrode gap is 1µm. The dashed line is a similar plot ofFes

for L| lamellae, with the same parameters; only the electrode gap is 2
µm.
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the electrodes is independent of∆ε andεj. On the other hand,
in the L| case (solid line),Fes(∆ε) decreases first before it
increases. The decrease is due to the dielectrophoretic term,
linear in∆ε, while the increase is due to the penalty associated
with dielectric interfaces perpendicular to the field lines, scaling
like (∆ε)2.

Let us make a short but very general mathematical digression
which will clarify the last point. DenoteE0(r ) the electric field
which corresponds to a system of uniform dielectric constant
and a given electrode design (not necessarily the one in Figure
1). E0 is derived from a potentialψ0(r ) satisfying the proper
boundary conditions on the electrodes:E0 ) -∇ψ0. Suppose
now that the dielectric constant changes from its average value
by an amountε1(r): ε(r) ) εj + ε1(r). This change in permittivity
leads to a change in field:E(r ) ) E0(r ) + E1(r ). We may now
write the integrand of eq 1 in the following way:

The first term on the right is the electrostatic energy of the
system with uniform averageε, while the other three terms are
the deviations from it. The second and third terms (square
brackets) are the dielectrophoretic and “dielectric interfaces’’
terms, scaling likeε1 andε1

2, respectively. Finally, the last term
scales likeε1

3 and is small ifε1 , εj. For the case where this
last term is dealt with, the interested reader is referred to ref
20.

On the basis of this expansion and denotingE1 ) -∇ψ1,
one can easily show thatψ1 obeys the following equation

with the boundary conditions thatψ1 ) 0 on all conductors.
Clearly ψ1 can be written asψ1 ) ψ1(r , ε1/εj, geometry,V),
where geometry refers to the electrode geometry andV to the
electrode potential difference (in the case of just two electrodes).
We now writeε1 in a form that puts emphasis on dimensions:
ε1(r ) ) ∆ε‚c(r ). Thus,c(r ) is a dimensionless function contain-
ing the spatial variation ofε1 and whose spatial average
vanishes: 〈c(r )〉 ) 0. For the square-wave example of eq 2,
c ) (1/2. It then directly follows that

whereψ̃1 obeys the equations

andψ̃ ) 0 on all electrodes. Sinceψ̃1 is a universal potential
independent of∆ε, ψ1 is linear inε1/εj (and in fact it is linear
in V as well). Similarly, we findE1 ) (∆ε/εj)Ẽ1(r ; c(r ),
geometry,V), with Ẽ1 independent of∆ε. We now rewrite eq 3
as follows:

The expansion ofFes is now transparent to order (∆ε)2, as both
I1 andI2 are independent of∆ε, are quadratic inV2, and depend
on geometry andc(r ). In order to further demystify the above
expansion, consider the simple one-dimensional example of
uniform electric field E0 (parallel-plate capacitor), with
c ) (1/2. In this case we findẼ1 ) -cE0 and E1 ) -c(∆ε/
εj)E0, and since〈c〉 ) 0 we find a rather well-known result:
〈fes〉 )1/8[(∆ε)2/εj]E0

2 + const.
We now return to the razor-blade electrode design and the

results presented in Figure 3. The descent ofFes for parallel
lamellae is due to a negative value ofI1, stemming from the
dielectrophoretic force. The subsequent increase at larger value
of ∆ε is due to a positiveI2. The critical value of∆ε, ∆εc, is
given by the relation

The existence of∆εc is indeed importantsat all ∆ε < ∆εc the
morphology is that of parallel layers (L|), irrespectiVe of the
appliedVoltageor the magnitude of the electric field. In uniform
electric fields similar critical value of∆ε does not exist. The
value of the last term ignored in eq 3 is numerically verified to
be negligible in this calculation.

In Figure 4 we plot Fes as a function of∆ε for the
perpendicular-defect state sketched in Figure 1d. At a given
voltage and∆ε, this state has the highest electrostatic energy
since the two electrostatic terms are unfavorablesthe electrodes
are not covered with the high-ε material (I1 > 0), and the field
lines cross the lamellar interfaces (I2 > 0).

Figure 5 depicts a lamellar grain in a defect state: the lamellae
normals are not parallel to the electrodes’ edges. The highest
energy rotation hasθ ) 90°, while the lowest is theL⊥ state
with θ ) 0. In Figure 6 we present the electrostatic energyFes

as a function of the rotation angleθ. The torque acting on the
sample to orient it in the preferred direction is given as the
derivative: L ) dFes(θ)/dθ; it vanishes for the two extreme cases
θ ) 0 andθ ) 90°.12,17 Indeed, whenE0 is uniform in space,
we find Fes(θ) ) Fes(0) + [Fes(90°) - Fes(0)] sin2(θ). As is
seen in the figure, the actual energy is higher than this estimate.

Finally, the interfacial interaction of the two materials with
the substrate can be taken into account as well. Let us callγAS

and γBS > γAS the interfacial energies per unit area of the A
and B materials with the surface, respectively. The free energy
difference between theL| andL⊥ states is

whereS is the substrate area. The prevailing state isL| if ∆F is
negative andL⊥ otherwise. On the basis of this free energy

Figure 4. Electrostatic energyFes of perpendicular-defect structure
(Figure 1d) as a function of∆ε. Fes is normalized by its value when
∆ε ) 0 and is always increasing. Other parameters as in Figure 3.
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εj
ψ̃1(r ;c(r ), geometry,V) (5)

∇2ψ̃1 ) ∇c‚E0 (6)

Fes) ∆εI1 +
(∆ε)2

εj
I2 + const

I1 ) - 1
2∫[c(r )E0

2 + 2E0‚Ẽ1] d3r
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difference, one can construct a phase diagram, which is shown
in Figure 7 for two values of∆ε. Note that bothI1 and I2 are
proportional toV2, and since∆ε > ∆εc, the electric field terms
favor the perpendicular stacking. For fixed interfacial interac-
tions, raising the voltage from small values to large ones
destabilizes theL| and leads to perpendicular stackingL⊥. The
critical voltage for this transition scales like (γAS - γAS)1/2.

The polymer melt can be confined by another solid surface
from the top. In this case there are two moreγAS and γBS

corresponding to the second surface, and the augmented version
of the equation above reads

where the “1” and “2” subscripts refer to the bottom and top
surface, respectively. Here we have assumed that the film is
sufficiently thick so that the incommensurability between the
lamellar thickness and the surface separation can be neglected

and the parallel lamellae are not frustrated, as is the case for
surface separation larger than∼10 lamellae.

Conclusions

Lamellar phases under the influence of a spatially nonuniform
electric field are considered. The role of the dielectric constant
mismatch∆ε is highlighted: the linear term in the free energy
expansion is due to a dielectrophoretic force, while the quadratic
term includes the free energy penalty for having dielectric
interfaces perpendicular to the field’s direction. We have shown
that a simple electrode realization which gives rise to nonuni-
form fields can bring about orientational transitions between
several lamellar stackings. Specifically, for∆ε < ∆εc, parallel
lamellae are preferred over perpendicular ones even at very high
voltages. When∆ε > ∆εc, there is an interplay between
electrostatic forces and interfacial interactions. The “razor-
blade’’ electrode design suggested here can find numerous
applications in nanotechnology: the large torque is expected
to remove the degeneracy between theL⊥ states by orienting
the lamellae perpendicular to the substrate and the electrodes’
edges. More complex morphologies are expected to occur for
block copolymers in the intermediate and weak segregations
where the lamellar bending and grain boundary energies are
smaller, and these systems should be systematically explored
in this and more advanced electrode arrangements.
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