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We calculate the meniscus location in tapered capillaries

Final Form: March 19, 2007

under the influence of pressure difference and dielectrophoretic

forces with and without gravity. We find that the meniscus location can be a discontinuous function of the pressure
difference or the applied voltage and that the meniscus can “jump” to one end or another of the capillary. Phase
diagrams are given as a function of the pressure and voltage, depending on the geometrical parameters of the system.
We further consider a revision of the dielectric rise under dielectrophoretic force in wedge capillaries and in the case
of electrowetting, where the dielectrophoretic force is a small perturbation. Finally, we also find discontinuous liquid

gas interface location in the case of liquid penetration into closed volumes.

1. Introduction

The location of the interface between two immiscible liquids
or between a liquid and a gas is essential in microfluidic
applications, since the meniscus determines the way light is
scattered,; 3 how chemical species intergctthe way drops are
transported in small channét$and so forth. Attention must be
given to liquid channels or capillaries where the cross section
is nonuniform, since liquid channels are never perfectly uniform
and, as we show below, this nonuniformity has a strong effect
on the meniscus locatidh.1°

Consider a liquid contained in a channel with hard walls and
a varying cross section, and suppose that there is a pressur
differenceAP between the two sides of the meniscus. At first
glance, it seems that an increase\iR will cause the meniscus
to move to the point where the Laplace pressure, as determineg

(@)

from the local geometry, equalsP, so the meniscus location
as a function ofAP is continuous if the channel is smooth.
When a dielectrophoretic force or, indeed, a gravitational force
is acting on the liquid at the same time, we find that this naive
picture is changed and that the meniscus location becomes &
discontinuous function akP. The current case is different from
those of refs 9 and 11 in that (i) it takes into account gravity and
electrostatic forces, (ii) pressure differences exist even for a flat
interface due to an external “pumping”, and (iii) the liquid layer
is found underneath the solid surface and acts as a big reservoir
To be concrete, we consider the illustration in Figure 1. A
similar wedge-shaped geometry has recently been investigated
on homogeneous (miscible) liquid mixtur&sl3 Here, the
meniscus can be a liquieas or liquid-liquid interface, and its
location is given byh (being negative in part a and positive in

{
[
]
[
[
i
[
"
[
1
l
[
[l
i
[l
i
[l
i
"

(1) Beebe, D. J.; Atencia, Nature 2005 437, 648.

(2) Whitesides, G. MNature 2006 442, 368.

(3) Psaltis, D.; Quake, S. R.; Yang, Nature 2006 442, 381.

(4) Janasek, D.; Franzke, J.; Manz, Mature 2006 442, 374.

(5) deMello, A. J.Nature2006 442, 394.

(6) de Gennes, P. G.; Brochard-Wyart, F.;"@,®. Gouttes, bulles, perles
et ondesBelin: Paris, 2002.

(7) de Gennes, P. RRev. Mod. Phys1985 57, 827.

(8) Jones, T. BJ. Appl. Phys1974 45, 1487.

(9) Shuttleworth, R.; Bailey, G. L. Discuss. Faraday S0d.948 3, 16.

(20) Tsori, Y.Langmuir2006 22, 8860.

(11) Parry, A. O.; Wood, A. J.; Rascon, &C.Phys.: Condens. Matt&001,
13, 4591.

(12) Tsori, Y.; Tournilhac, F.; Leibler, LNature2004 430, 544. Tsori, Y.;
Leibler, L. Proc. Natl. Acad. Sci. U.S.2007, 104, 7348.

(13) Tsori, Y.; Leibler, L.Phys. Re. E 2005 71, 032101.

10.1021/1a7003062 CCC: $37.00
Published on We

Figure 1. Schematic illustration of a tapered liquid channel made
up of two tilted planes, and definitions of parameters. Two of the
possible cases are shown: (a) Hydrophobic surfacegcesO,

connected to a voltage supply. The opening angkepositive, and

h is negative. (b) Hydrophilic surface, cés> 0, negativea and
positive h.

part b). The distance between the tilted planes &t0 is 2Ry,
anda is the tilt angle. In regular capillary risé,is positive if

the wetting anglé is smaller than (1/2) and is negative i)

> (1/2)r. In addition to the gravitational forces and the pressure

difference, a dielectrophoretic force is acting: a high-frequency
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voltage differencé/ is imposed across the two tilted planes. The . h
frequency is assumed to be high enough so ionic screening does x=1+ ﬁo il 6)
not occur, and the force exerted on the liquid is dielectrophoretic
in nature. and the dimensionless numbers are
We restrict ourselves to narrow capillaries, whelRe< 1 is
satisfied, where—1 = (o/gAp)Y2is the capillary lengthd is the A APR,
interfacial tension, andp is the density difference between the o

two liquids). In this case, as will be verified below, the height

is larger than the radiug,> R, and the height variations of the B— AeV? )
meniscus surface are negligible compared to the total height. In oR,

mechanical equilibrium, at the contact line, the Laplace pressure

is balanced by the hydrostatic pressure Letuslook at the magnitude 8fandB. For a pressure difference

AP = 1 atm, surface tensiam= 0.1 N/m, andRy = 1 mm, we
find A= 10%. If Ae = 10¢ (Whereep is the vacuum permittivity)
andV = 100 V, we findB = 1072, Thus,A can be very large
while B is typically quite small, and the product AB = 1.
whereP, — P= APis the pressure difference anis the inverse Equation 5 is a parabola in the variableandx is always
curvature given by(h) = —R(h)/cos@ + o). Here, R(h) is the positive, becaus®, + htana > 0. Let us look at the case of
surface separation at the meniscus’ location and is giveR({itjy positive A and B but negative co®{ + «); this means that the

P+7 =P, Apgh+ %AeEz(h) 1)

= Ry + h tana. The height-dependent electric fieldds dielectric liquid is pulled toward higher valuestolby the electric
field and applied pressure. The minimum of the parabola is at

_V sina Xo = —cosP + a)/2A. If B or A is sufficiently small, there are

E(h) = 20 R, + htana @) two roots to the equation: an unstable rept Xy and a stable

rootx, < Xo (see Figure 2a). Figure 2b shoWwss a function of
the productAB at giveno. and values. There is no solution if

Finally, Ae is the permittivity difference between the liquid and . .
Y, O P y g A or B is too large, and this occurs whé&B > (AB).;, where

the gas or between the two liquids.

The electric field has two general effects: (i) it exerts a net
dielectrophoretic body force on the liquid and (ii) it changes the
g(r)lnttr?gtjgglliigfﬁgc?sggtégfllgLeJrrﬁgsosftcr)]tiglrs;tsr:acZFA?JQU\fvgeveﬁlndsis a critical value ofAB. Hence, an increase &B from below
deal with the high-frequency regime, where the electric field is tc;above AB). leads to a jump of the meniscus frdm given
dielectrophoretic in nature and the contact angle is unaffected

(AB), = 2 cog(a + 6)/[(sin a)/a]? (8)

by the field. Equation 1 is the basic relation for the meniscus R 1
location, and it will be studied in detail for several cases below. hy=— m(l + oA cos@ + a)) 9
2. No Gravitational Force to the top of the capillary. Relation 8 can be inverted to give a

The gravitational force is zero if the channel is horizontal, as condition for a critical anglé.:
occurs in many cases, orAfp is sufficiently small. In this case,

we are faced with the following equation: 9 = arcco{ /lABSiﬁ) —a (10)
¢ 2 a
o 1
P+ = Py + EAeEz(h) ) The meniscus location is changing continuouslyéfor 0. and

is found at the capillary’s top whefi < 6..
Note that if AP = O is zero. there is a balance of the The phase diagram is presented in Figure 3 as a function of
dielectrophoretic force against the surface tension, and this leads® andd for different values oAB. As the value ofABincreases
to some liquid heighb where the forces balandein this case ~ [1omMzero, the area below tiig(c) lines (solid curves) increases.
is a continuous function of the system parameters (é)gSince This area is where the meniscus is found at the top of the liquid

this is the less interesting scenario, we now assume, without losschannel, while above it the meniscus location is continuous.
Lines (a) and (b) are foAB = 0.1 andAB = 1, respectively.

of generality, thatAP = P, — P > 0. We obtain the following - :

for the mechanical balance: Curve (c) corresponds B = 2, and it is the first that touches
the limiting diagonal lineo. + 6 = 1. As AB increases above

2, the linef(a) overlaps with thex + 6 = xr line for small values

1 Sin a2
éAeVZ(T) + ocosf + o)(R, + htana) + of 6 but not for large ones (curve (d) f&B = 3). The maximum
- value of 2 coda + 60)/(sin a/a)? occurs ato. = 6 = (1/2)r.
AP(R, + htano)”=0 (4) Therefore, from eq 8, we see that there is another special value
of AB:
This relation can be further cast in the dimensionless form: 1
_ (AB)* = Zn? (11)
2 2
%B(%I) +cos@ + )X+ A =0 5)

Hence, whemAB > (AB)*, the meniscus is at the top for all
values ofo. and 6.

In the following section, we investigate the case of a tapered
(14) Jones, T. BLangmuir2002 18, 4437. liquid channel under a gravitational force in addition to the
(15) Jones, T. B.; Wang, K.-L.; Yao, D.-langmuir2004 20, 2813. dielectrophoretic force butin the absence of pressure difference.

where
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Figure 3. Phase diagram in the—0 plane.o. and6 are restricted

to be between the two diagonal dashed line$ 6 = 7 ando +
0.4 0.6 6 = (1/2)r. The solid line marked as (a), correspondingh® =

AB 0.1, divides the plane into two parts: below it, the meniscus is at

. . . the top of the capillary, and above fitjs a continuous function of

Figure 2. (a) Plot of the left-hand side of eq 5 versusf Ais large o and%. Lines (bF)J (C)y and (d) are the same, but WkB = 1, AB

(dashed green curve), there is no real root to the equation. For smalleC_ 5 ', 4aB = 3 <’(AB,)* respectively. AtAB < (AB)* = (1/2')712

values ofA (solid blue curve), the parabola first descends before it ' ; ; g, ; '

ascends and there are two roots. (b) Plot of the meniscus Height the meniscus is at the top, irrespectiveoondo.

normalized byR, as a function ofAB. At larger values ofAB, AB

> (AB)., the meniscus jumps to the top of the capillary. In both parts, he B-denendent terms as follows:

@ = 0.17, 0 = 0.67, Ry = 1 mm, and AB); = 0.71. P '

0 0.2

3. Gravity Effect in the Absence of Pressure cos+ 6) = (h)

Difference f(h) = R,h + (tana)h? (15)
We now turn to the rather complex case where there are _ o B
dielectrophoretic and interfacial tension forces acting, together f(h) has a maximum & = h* = —Ry/(2 tana), and its value
with gravity, but no pressure difference. The governing equation at the maximum i§(h*) = —R§I(4 tana). Thus, for hydrophilic
reads as follows: surfaces (cos(+ 6) > 0), for small and negative values, there
. is a solution to eq 15. Ifa| is too large, however, there is no
1AEVZ(M) + ocos@ + 0)(R, + htana) = solution: —R/(4 tana) is smaller than cos( + 6), and the
8 a meniscus jumps from
Apgh(R, + htana)® (12)

The high-frequency limit of the potenti& corresponds to the h* = — 5 2:1(1 (16)

purely dielectrophoretic case, wheffes simply the zero-field
contact angle. In the low-frequency limiy — 0, the dielec-
trophoretic force vanishes (this is equivalent to setthg O
above), while6 = (V) is the voltage-dependent (Lipmann)
contact angle. I?%

The gravitational force introduces the capillary lengtth = -~ 1 .
(0/gAp)Y2, and this length is used to scale all lengths in the cospu+ 0) =f(h*) = -7 — nofield  (17)
system. The above equation can be expressed using dimensionless
lengths as follows: Alternatively, the condition can be expressed as a condition for
a critical anglef(o):

to the capillary’s end (to the top @ < 0 and to the bottom if
o > 0). The condition for the meniscus’ jump is as follows:

cos@ + 6) =f(h) sino)\2
o o1 o 6, = arccost-Ry/4 tana) — o no field  (18)
f(h) = Rh + (tana )h*> — = ———— (13)
1+ —tana For a negative angle, the meniscus location is continuous if
6 > 6, while the meniscus is at the top for evety< 6.. The
system is invariant with respect to the transformation —a
where andf — 7 — 6. Hence, for a positive value of, if 6 > 6., the
h=«h, R=«R, (14) meniscus is at the capillary’s bottom, and its location is

continuously changing fa? < 6.. There is a “special’ angle*

To investigate the field effect, we note tHats usually small given byo* = arcsinéﬁm). If —a* < a < a*, the meniscus

and seek solutions witB < 1. In the absence of an electric field  location as a function of is continuous for alp values.
(B=0), eq 13 was recently studied in ref 10, and we give here ~ We now add the field’s effect and treat eq 13 perturbatively
a brief summary of the main results. We rewrite eq 13 without with small B values. We are looking for the maximum fgh)
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from eq 13. UsingB < 1, we find that

_ R B(sin a)/o] /R
oo o1 BenO@R,
2tano 41 + B[(sin a)/o]? tana/R;
To first order inB, the relation replacing eq 17 is
_ 1 Ro 1 [sino)2
cost+0) =~ Ftana 4 ( a ) (20)

Note that, in the preceding derivation, the second term on the
right-hand side was assumed to be small compared with the first
term. However, ast approaches (1/2) the first term goes to
zero, while sino/a is finite; in this limit, the dielectrophoretic

term dominates and does not represent a small correction anymore,

and our derivation fails.
The condition for the critical angle becomes

o)
o

Figure 4 summarizes these findings. The zero-field critical value
of 6(a) is shown as dashed lines in Figure 4a, while the solid
lines represent the critical angle for the case wiere0.3. At
apositiven value, if < 6., the meniscus location is continuously
changing withd. Below the diagonal dashed linejs positive,
while h < 0 above the dashed line. Above thdine, the meniscus

is at the capillary’s bottom. Note that the electric field breaks
the symmetry of the system: while basically similar behavior
appears at negative values @f the operatior. — —o. and

60 — m — 0 does not leave the system invariant as it does for the
B = O case.

(21)

4. Revision of the Problem of Dielectric Rise

We now consider the case of a liquid dielectric rise in tapered
capacitors. We assume that the interfacial tensismegligibly
small and that there are no imposed pressure differena@s:
= Py — P = 0. The first treatment to this problem was given by
T. B. Jones in a classical paper from 197%he hydrostatic
pressure is balanced by the dielectrophoretic force, yielding

i 2
éAevZ(%‘) = Apgh(R, + htano)?  (22)
Or, expressed differently,
1/sino\2 _ .~
oo ) =@
f(h) = h(R, + h tana)? (23)
where the dimensionless quantities are
h=hL, R,=RyL (24)
andL is given by
2\1/3
_ (AeV) (25)
Apg

The difference between our derivation and the one by Jones is
the expression for the electric field (eq 2), which is more accurate
for large anglesd); however, in the limito. — 0, we expect to

recover Jones’ results. In the more usual case of a nontapered
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Figure 4. (a) Phase diagram in the—6 plane of a liquid in a
tapered channel with dielectrophoretic and gravitational forces. The
thick dashed lines am®; from eq 21 withB = 0, and the thick solid
lines are for the case wheBe= 0.5. Aboved. and for positivex,

the meniscus is at the capillary’s bottom, whereas it is continuously
varying belowd.. For negativer, the meniscus is at the top provided
thatf < 6.. The thin diagonal dashed line represents the meniscus
heighth = 0; above it, the meniscus is at a negative location, and
below it, the meniscus is at a positive location. (b) Normalized
meniscus height las a function o for a fixed valuea = 0.05.
When# becomes larger thafi, (in this casef. = 2), the meniscus
jumps to the capillary’s bottom. In (a) and (b), we toek= 0.3.

capillary (@ = 0), we recover the familiar expression

. 1
8R
which is equivalent to
AeV* 1
= = 27
BAYG R (27)

in physical quantities.

Let us concentrate on the case where< 0. As is seen in
Figure 5,f(h) has an inflection point. There are two extrema
located at

R =— 1R

2 3tana

. R

h, = tana (28)
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Figure 5. Graphical solution of eq 23. The diagonal dashed line
(a) represent§(h) for the case where the opening anglexis= 0
(regular capillary rise). The curve (b) igh) for the case where.
—a/7. The horizontal line is (1/8)[(sin)/a]?. Their intersection
occurs at the marked circle. As a functionafthe solution may
jump from the right branch dfh) to the left one. The two squares
mark the extremdn; andh;, from eq 28 (see text).

Both extrema are positive and are smaller than the maximum
height in the capillaryhmax = — Ro/tana. The value off(h) at
these extrema is

f(hy) =0

4 R

fthy) = 27tana (29)
The left-hand side of eq 23 represents a horizontal line, and it
can crosd(h) at the right or left branch. On increasingfrom

zero, the solution jumps from the right branch to the left one

when (1/8)[(sina)/a]? = f(hy), that is, when

2R

(sin (x)Z __ 32
27tano

30
o (30)
Alternatively, for the critical voltag&/., we find the following
expression:

— _32Apg RS

T 27 Ae (sin a)2 (31)
tano T

Figure 6a shows the phase diagram for the meniscus location
The solid line isRy from eq 30. At a given negative value af
if Ry is below the critical line, the meniscus is at the top of the
capillary, while above this line the meniscus location is
continuous. Figure 6b expresses this behavior imth¥ plane.
As Vs increased abové. given by eq 31, the meniscus jumps
to the capillary’s top. The meniscus location is continuous below
it.

In the following section, we find that similarities appear for

a liquid channel blocked at one end, because in this case the

pressure differencAP depends on the meniscus location.

5. Liquid Penetration into Closed Volumes

In this section, we turn to describing the meniscus location in

tapered channels where one of the ends is blocked. The interfaceAssuming the ideal gas laWwoVo

Tsori
3
(a)
R
0
1 L
meniscus at the top
% 0.5 1 15
=
3000 (b)
20007
meniscus at the top
1000+t Vv
C
0 1 1
0 0.5 1 1.5

-
Figure 6. (a) Phase diagram for the liquid rise in tapered capillaries
with zero pressure differencéP = 0) and negligible interfacial
tension. The opening angteis assumed to be negative here. At a
given value of, if Ryis smaller than its value given by eq 30 (solid
curve), the meniscus is found at the top of the capillary. (b) Phase
diagram in thex—V plane. AsV (in volts) is increased above the
V. value given by eq 31 (solid curve), the meniscus jumps to the
capillary’s top. We took Earth’s gravity, the density of watgs=
0.1 mm, andAe equals five times the vacuum permittivity.

isagas-liquid interface, as depicted in Figure 7. In the following,
we assume that gravity and electric fields are absent, but
nonetheless we find that the meniscus location can be discon-
tinuous. The reason for this is the nonlinear dependence of the
gas pressure in the area enclosed by the liquid and the walls on
the gas volume, and the gas pressure must be balanced by the
Laplace pressure.

The liquid channel is wedge-shaped, with large and small
opening radiR; andRy, as measured from the imaginary meeting
point of the channel walls, and the opening angl@is#s defined
in Figure 7. Let us caly andPg the gas volume and pressure,
respectively, just before contact of the liquid channel with the
liquid reservoirPyis also the ambient pressure in the liquid. The

channel is then brought in contact with the liquid, the liquid

pressure is increased by an amowR, and the liquid may
penetrate to a distande inside the capillary. It follows from
simple geometry that the maximum gas volukig(i.e., when
R= Rl) is

Vo =La(R — R) (32)

whereL; is its depth in the third dimension (in the page). The

total gas volume foR > Ry is

V=LoR - R) (33)

PV, we find that the
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P
—cos(8+a)/(Asin(e)) <"
(b)
x 0.04
0.02

= 3 3.5 4

c —

D x 10

Figure 8. (a) Plot ofpg, the critical value of the reduced pressure
P = AP/Py, as afunction of cos(+ 6)/(Asina), whereA = R,Py/o.
Figure 7. Schematic illustration of liquid penetration into closed Pe is computed from eq 40. (b) Scaled meniscus locatienR/R,
volumes. The wedge-shaped channel is closed at one end and i@S @ function of the scaled pressure differepcéf p < pc, the
brought into contact with the liquid reservoir. Before contact, the Meniscus is ax = 0; that is, the liquid does not penetrate into the
pressure is equal tB, everywhere. After contact, the liquid may ~ channel. Whemp = p, the meniscus jumps to= x, as given by
penetrate into the channel if the outside pressure is increaged to €d 41 with cosg + 0)/(Asina) = —6 x 10°°.

= Py + AP. The larger and smaller channel radii &gand Ry, . . .

respectively, measured from the imaginary meeting point of the @mbient pressure is atmosphefg,= 10° Pa, it follows thatA

-3

walls, and the penetration depthRs = PoRy/o ~ 10* > 1, where we tools = 0.1 N/m andR; = 1
] cm. In the following, we will concentrate gm << 1; however,
gas pressure IS we will assumeA™! < p.
We seek the meniscus locatia= R/R, for a given pressure
p—p Rg - Ri 34 differenceAP and for hydrophobic channels. This means that
- ORS _ (34) we seek the solution of eq 37 for fixéd negative cos( + 6),

and increasin@. X is nonnegative and is smaller than 1, and the
The outside pressure is increasedPp+ AP. We continue functionf(x) descends for sma¥ values and ascends for larger
in the limit of the very small channel opening, that is, x values. The minimum of(x) is obtained ato given by

Ri < Ry(AP/Pg)Y2 and Ry < R, and therefore, eq 3 with [

E =0 leads to _|_1cose+6) \/(1‘305(1‘*‘9))2 - _I/
A sna VA 3+

sina
[3(1+p)] (38)

b R ocos@+ 6)
‘R-R  Rsina

+ AP (35)

and the value at the minimum i§(xg). When f(xo) >
cos@ + O)/(A sin a), the meniscus is ak = 0; that is,

This governing equation can be written using the dimensionless - >
the liquid does not penetrate into the closed volume. If

variables . - .
f(xo) < cos@ + 0)/(A sina), then the meniscus is &t> xo, as
_ R is given by a direct solution of eq 37. The meniscus jumps from
X= ﬁz x = 0 tox = Xp whenf(xg) = cos@ + 6)/(A sina). This can be
expressed by the rather long expression
_ R,Po
A== cos@+ 6) lz(cos(x + 0))3 B
AP . Asina. |\ Asina
P=F" cos@ + 0)\2 /[cos@ + 6))2
Po 2( @ ))\/( (a ))+3p(1+p)—
. . Asina Asina
in the following form: ot )2
_ _ cos N _
1cospt+6) ) op(1 + p)\/( Asina ) T3P+
A sina cos.+ 6
9p(1+ p)L 127(1+ p)?) (39)
_ . lcose+0), .3 Asina
f(x) = —px + Z\Wx + 1+ px (37)

As we mentioned above, we are interested in the linit <
At this point, we would like to remind the reader that if the p< 1, andinthiscase, we can obtain the following approximate
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and much simpler expression for the critical value of the
dimensionless pressupg:

2 PeyPd1HP) _ 1 cosge+6)

3 3+ 2p, A  sina

V3

(40)

As pisincreased from zero fo= p, the meniscus jumps from
X = 0 to X = Xo, Wherexg is given by

- P.  1cos@+6f)isina
©¥A3a+p) A 31+py

Figure 8a show§. as a function of increasing~! as given
by eq 40p.— 0 if A=t — 0, andp. increases monotonically with
A~1 Figure 8b shows the scaled meniscus locatiasa function
of p at a given value oA. Aspis increased from zero,jumps
fromx = 0tox = xp atp = pc and increases monotonically with
a further increase ip.

We would like to stress that one can also ask the following
guestion: atwhat value of interfacial tensiodoes the meniscus
jump for a given value op? The expression fok. as a function
of pis obtained directly from the inversion of eq 40. In addition,
we recall that the ideal gas pressigis given byPy = nkgT,
wheren is the gas densityg is the Boltzmann constant, aifd
is the absolute temperature. We thus point out that one can hol
both AP ando constant while changing the temperature. Again,
eq 40 can be used to find a critical temperafiygf®r the meniscus
jump.

(41)

6. Conclusions

In this article, we consider in detail the location of a ligtid
liquid or liquid—gas interface in tapered capillaries. The driving

forces are external pressure difference, interfacial tension, and

electrostatic and gravitational forces.

Tsori

As one would naively expect, a small change in the external
forces usually leads to a small change in the equilibrium interface
location. However, as is shown above without exception, due to
the nonlinearity of the competing forces, there are critical values
of the external parameters: pressure, wetting angle, voltage, and
so forth. If the external force is close to its critical value, the
equilibrium interface location is discontinuous. This is a rather
general phenomenon in capillaries with nonuniform cross sections,
and occurs even at small “opening angles’In section 2, we
considered a capillary with a pressure difference and dielec-
trophoretic forces and obtained the threshold values of applied
voltage or pressure difference to drive the meniscus location
discontinuity. In section 3, we studied the liquid rise in capillaries
under a weak dielectrophoretic force and gravity. The meniscus
jump was discussed in terms of the wetting argknd wedge
opening angle.. We further looked in section 4 at the classical
problem of dielectric rise, but this time in a tapered capacitor.
Again, we found that the meniscus location exhibits discontinuities
as a function of applied voltage or the geometrical parameters.
Finally, in section 5, we considered liquid penetration into closed
volumes and once more found a similar transition for the meniscus
location as a function of the external driving forces.

The rich behavior found above is certainly relevant to several
microfluidic systems, where the control of the ligdidas or
liquid—liquid interface at the small scale is important. A
generalization which fully takes into account the frequency

ddependence of electric fields is a natural extension of the current

work and should be exploréd;!> especially in the context of
microfluidic systems.
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