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We calculate the meniscus location in tapered capillaries under the influence of pressure difference and dielectrophoretic
forces with and without gravity. We find that the meniscus location can be a discontinuous function of the pressure
difference or the applied voltage and that the meniscus can “jump” to one end or another of the capillary. Phase
diagrams are given as a function of the pressure and voltage, depending on the geometrical parameters of the system.
We further consider a revision of the dielectric rise under dielectrophoretic force in wedge capillaries and in the case
of electrowetting, where the dielectrophoretic force is a small perturbation. Finally, we also find discontinuous liquid-
gas interface location in the case of liquid penetration into closed volumes.

1. Introduction

The location of the interface between two immiscible liquids
or between a liquid and a gas is essential in microfluidic
applications, since the meniscus determines the way light is
scattered,1-3 how chemical species interact,4,5 the way drops are
transported in small channels,6,7 and so forth. Attention must be
given to liquid channels or capillaries where the cross section
is nonuniform, since liquid channels are never perfectly uniform
and, as we show below, this nonuniformity has a strong effect
on the meniscus location.8-10

Consider a liquid contained in a channel with hard walls and
a varying cross section, and suppose that there is a pressure
difference∆P between the two sides of the meniscus. At first
glance, it seems that an increase in∆P will cause the meniscus
to move to the point where the Laplace pressure, as determined
from the local geometry, equals∆P, so the meniscus location
as a function of∆P is continuous if the channel is smooth.
When a dielectrophoretic force or, indeed, a gravitational force
is acting on the liquid at the same time, we find that this naive
picture is changed and that the meniscus location becomes a
discontinuous function of∆P. The current case is different from
those of refs 9 and 11 in that (i) it takes into account gravity and
electrostatic forces, (ii) pressure differences exist even for a flat
interface due to an external “pumping”, and (iii) the liquid layer
is found underneath the solid surface and acts as a big reservoir.

To be concrete, we consider the illustration in Figure 1. A
similar wedge-shaped geometry has recently been investigated
on homogeneous (miscible) liquid mixtures.12,13 Here, the
meniscus can be a liquid-gas or liquid-liquid interface, and its
location is given byh (being negative in part a and positive in

part b). The distance between the tilted planes ath ) 0 is 2R0,
andR is the tilt angle. In regular capillary rise,h is positive if
the wetting angleθ is smaller than (1/2)π and is negative ifθ
> (1/2)π. In addition to the gravitational forces and the pressure
difference, a dielectrophoretic force is acting: a high-frequency
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et ondes; Belin: Paris, 2002.
(7) de Gennes, P. G.ReV. Mod. Phys.1985, 57, 827.
(8) Jones, T. B.J. Appl. Phys.1974, 45, 1487.
(9) Shuttleworth, R.; Bailey, G. L. J.Discuss. Faraday Soc.1948, 3, 16.
(10) Tsori, Y.Langmuir2006, 22, 8860.
(11) Parry, A. O.; Wood, A. J.; Rascon, C.J. Phys.: Condens. Matter2001,

13, 4591.
(12) Tsori, Y.; Tournilhac, F.; Leibler, L.Nature2004, 430, 544. Tsori, Y.;

Leibler, L. Proc. Natl. Acad. Sci. U.S.A.2007, 104, 7348.
(13) Tsori, Y.; Leibler, L.Phys. ReV. E 2005, 71, 032101.

Figure 1. Schematic illustration of a tapered liquid channel made
up of two tilted planes, and definitions of parameters. Two of the
possible cases are shown: (a) Hydrophobic surface, cosθ < 0,
connected to a voltage supply. The opening angleR is positive, and
h is negative. (b) Hydrophilic surface, cosθ > 0, negativeR and
positiveh.
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voltage differenceV is imposed across the two tilted planes. The
frequency is assumed to be high enough so ionic screening does
not occur, and the force exerted on the liquid is dielectrophoretic
in nature.

We restrict ourselves to narrow capillaries, whereκR , 1 is
satisfied, whereκ-1 ) (σ/g∆F)1/2 is the capillary length (σ is the
interfacial tension, and∆F is the density difference between the
two liquids). In this case, as will be verified below, the height
is larger than the radius,h . R, and the height variations of the
meniscus surface are negligible compared to the total height. In
mechanical equilibrium, at the contact line, the Laplace pressure
is balanced by the hydrostatic pressure

whereP0 - P) ∆P is the pressure difference andr is the inverse
curvature given byr(h) ) -R(h)/cos(θ + R). Here, 2R(h) is the
surface separation at the meniscus’ location and is given byR(h)
) R0 + h tan R. The height-dependent electric field is13

Finally, ∆ε is the permittivity difference between the liquid and
the gas or between the two liquids.

The electric field has two general effects: (i) it exerts a net
dielectrophoretic body force on the liquid and (ii) it changes the
contact angle. The exact influence of the electric field thus depends
on the applied frequency.14,15 Unless otherwise stated, we will
deal with the high-frequency regime, where the electric field is
dielectrophoretic in nature and the contact angle is unaffected
by the field. Equation 1 is the basic relation for the meniscus
location, and it will be studied in detail for several cases below.

2. No Gravitational Force

The gravitational force is zero if the channel is horizontal, as
occurs in many cases, or if∆F is sufficiently small. In this case,
we are faced with the following equation:

Note that if ∆P ) 0 is zero, there is a balance of the
dielectrophoretic force against the surface tension, and this leads
to some liquid heighth where the forces balance.h in this case
is a continuous function of the system parameters (e.g.,V). Since
this is the less interesting scenario, we now assume, without loss
of generality, that∆P ) P0 - P > 0. We obtain the following
for the mechanical balance:

This relation can be further cast in the dimensionless form:

where

and the dimensionless numbers are

Let us look at the magnitude ofAandB. For a pressure difference
∆P ) 1 atm, surface tensionσ ) 0.1 N/m, andR0 ) 1 mm, we
find A ) 103. If ∆ε ) 10ε0 (whereε0 is the vacuum permittivity)
andV ) 100 V, we findB ) 10-2. Thus,A can be very large
while B is typically quite small, and the product isAB J 1.

Equation 5 is a parabola in the variablex, andx is always
positive, becauseR0 + h tan R > 0. Let us look at the case of
positiveA andB but negative cos(θ + R); this means that the
dielectric liquid is pulled toward higher values ofhby the electric
field and applied pressure. The minimum of the parabola is at
x0 ) -cos(θ + R)/2A. If B or A is sufficiently small, there are
two roots to the equation: an unstable rootx1 > x0 and a stable
rootx2 < x0 (see Figure 2a). Figure 2b showsh as a function of
the productAB at givenR andθ values. There is no solution if
A or B is too large, and this occurs whenAB > (AB)c, where

is a critical value ofAB. Hence, an increase ofAB from below
to above (AB)c leads to a jump of the meniscus fromh0 given
by

to the top of the capillary. Relation 8 can be inverted to give a
condition for a critical angleθc:

The meniscus location is changing continuously forθ > θc and
is found at the capillary’s top whenθ < θc.

The phase diagram is presented in Figure 3 as a function of
R andθ for different values ofAB. As the value ofAB increases
from zero, the area below theθc(R) lines (solid curves) increases.
This area is where the meniscus is found at the top of the liquid
channel, while above it the meniscus location is continuous.
Lines (a) and (b) are forAB ) 0.1 andAB ) 1, respectively.
Curve (c) corresponds toAB ) 2, and it is the first that touches
the limiting diagonal lineR + θ ) π. As AB increases above
2, the lineθc(R) overlaps with theR + θ ) π line for small values
of θ but not for large ones (curve (d) forAB) 3). The maximum
value of 2 cos2(R + θ)/(sin R/R)2 occurs atR ) θ ) (1/2)π.
Therefore, from eq 8, we see that there is another special value
of AB:

Hence, whenAB > (AB)*, the meniscus is at the top for all
values ofR andθ.

In the following section, we investigate the case of a tapered
liquid channel under a gravitational force in addition to the
dielectrophoretic force but in the absence of pressure difference.

(14) Jones, T. B.Langmuir2002, 18, 4437.
(15) Jones, T. B.; Wang, K.-L.; Yao, D.-J.Langmuir2004, 20, 2813.
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3. Gravity Effect in the Absence of Pressure
Difference

We now turn to the rather complex case where there are
dielectrophoretic and interfacial tension forces acting, together
with gravity, but no pressure difference. The governing equation
reads as follows:

The high-frequency limit of the potentialV corresponds to the
purely dielectrophoretic case, whereθ is simply the zero-field
contact angle. In the low-frequency limit,ω f 0, the dielec-
trophoretic force vanishes (this is equivalent to settingV ) 0
above), whileθ ) θ(V) is the voltage-dependent (Lipmann)
contact angle.

The gravitational force introduces the capillary lengthκ-1 )
(σ/g∆F)1/2, and this length is used to scale all lengths in the
system. The above equation can be expressed using dimensionless
lengths as follows:

where

To investigate the field effect, we note thatB is usually small
and seek solutions withB , 1. In the absence of an electric field
(B ) 0), eq 13 was recently studied in ref 10, and we give here
a brief summary of the main results. We rewrite eq 13 without

the B-dependent terms as follows:

f(hh) has a maximum athh ) hh* ) -Rh0/(2 tanR), and its value
at the maximum isf(hh*) ) -Rh0

2/(4 tanR). Thus, for hydrophilic
surfaces (cos(R + θ) > 0), for small and negativeR values, there
is a solution to eq 15. If|R| is too large, however, there is no
solution: -Rh0

2/(4 tan R) is smaller than cos(R + θ), and the
meniscus jumps from

to the capillary’s end (to the top ifR < 0 and to the bottom if
R > 0). The condition for the meniscus’ jump is as follows:

Alternatively, the condition can be expressed as a condition for
a critical angleθc(R):

For a negative angleR, the meniscus location is continuous if
θ > θc, while the meniscus is at the top for everyθ < θc. The
system is invariant with respect to the transformationR f -R
andθ f π - θ. Hence, for a positive value ofR, if θ > θc, the
meniscus is at the capillary’s bottom, and its location is
continuously changing forθ < θc. There is a “special” angleR*
given byR* ) arcsin(Rh0

2/4). If -R* < R < R*, the meniscus
location as a function ofθ is continuous for allθ values.

We now add the field’s effect and treat eq 13 perturbatively
with small B values. We are looking for the maximum off(hh)

Figure 2. (a) Plot of the left-hand side of eq 5 versusx. If A is large
(dashed green curve), there is no real root to the equation. For smaller
values ofA (solid blue curve), the parabola first descends before it
ascends and there are two roots. (b) Plot of the meniscus heighth
normalized byR0 as a function ofAB. At larger values ofAB, AB
> (AB)c, the meniscus jumps to the top of the capillary. In both parts,
R ) 0.1π, θ ) 0.6π, R0 ) 1 mm, and (AB)c ) 0.71.

Figure 3. Phase diagram in theR-θ plane.R andθ are restricted
to be between the two diagonal dashed linesR + θ ) π andR +
θ ) (1/2)π. The solid line marked as (a), corresponding toAB )
0.1, divides the plane into two parts: below it, the meniscus is at
the top of the capillary, and above it,h is a continuous function of
R andθ. Lines (b), (c), and (d) are the same, but withAB ) 1, AB
) 2, andAB) 3 < (AB)*, respectively. AtAB> (AB)* ) (1/2)π2,
the meniscus is at the top, irrespective ofR andθ.
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from eq 13. UsingB , 1, we find that

To first order inB, the relation replacing eq 17 is

Note that, in the preceding derivation, the second term on the
right-hand side was assumed to be small compared with the first
term. However, asR approaches (1/2)π, the first term goes to
zero, while sinR/R is finite; in this limit, the dielectrophoretic
term dominates and does not represent a small correction anymore,
and our derivation fails.

The condition for the critical angle becomes

Figure 4 summarizes these findings. The zero-field critical value
of θ(R) is shown as dashed lines in Figure 4a, while the solid
lines represent the critical angle for the case whereB ) 0.3. At
a positiveR value, ifθ < θc, the meniscus location is continuously
changing withθ. Below the diagonal dashed line,h is positive,
whileh< 0 above the dashed line. Above theθc line, the meniscus
is at the capillary’s bottom. Note that the electric field breaks
the symmetry of the system: while basically similar behavior
appears at negative values ofR, the operationR f -R and
θ f π - θ does not leave the system invariant as it does for the
B ) 0 case.

4. Revision of the Problem of Dielectric Rise

We now consider the case of a liquid dielectric rise in tapered
capacitors. We assume that the interfacial tensionσ is negligibly
small and that there are no imposed pressure differences:∆P
) P0 - P ) 0. The first treatment to this problem was given by
T. B. Jones in a classical paper from 1974.8 The hydrostatic
pressure is balanced by the dielectrophoretic force, yielding

Or, expressed differently,

where the dimensionless quantities are

andL is given by

The difference between our derivation and the one by Jones is
the expression for the electric field (eq 2), which is more accurate
for large angles (R); however, in the limitR f 0, we expect to
recover Jones’ results. In the more usual case of a nontapered

capillary (R ) 0), we recover the familiar expression

which is equivalent to

in physical quantities.
Let us concentrate on the case whereR < 0. As is seen in

Figure 5,f(h̃) has an inflection point. There are two extrema
located at

Figure 4. (a) Phase diagram in theR-θ plane of a liquid in a
tapered channel with dielectrophoretic and gravitational forces. The
thick dashed lines areθc from eq 21 withB ) 0, and the thick solid
lines are for the case whereB ) 0.5. Aboveθc and for positiveR,
the meniscus is at the capillary’s bottom, whereas it is continuously
varying belowθc. For negativeR, the meniscus is at the top provided
thatθ < θc. The thin diagonal dashed line represents the meniscus
heighth ) 0; above it, the meniscus is at a negative location, and
below it, the meniscus is at a positive location. (b) Normalized
meniscus height hh as a function ofθ for a fixed valueR ) 0.05.
Whenθ becomes larger thanθc (in this case,θc = 2), the meniscus
jumps to the capillary’s bottom. In (a) and (b), we tookRh0 ) 0.3.
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Both extrema are positive and are smaller than the maximum
height in the capillary,h̃max ) - R̃0/tanR. The value off(h̃) at
these extrema is

The left-hand side of eq 23 represents a horizontal line, and it
can crossf(h̃) at the right or left branch. On increasingR from
zero, the solution jumps from the right branch to the left one
when (1/8)[(sinR)/R]2 ) f(h̃2), that is, when

Alternatively, for the critical voltageVc, we find the following
expression:

Figure 6a shows the phase diagram for the meniscus location.
The solid line isR̃0 from eq 30. At a given negative value ofR,
if R̃0 is below the critical line, the meniscus is at the top of the
capillary, while above this line the meniscus location is
continuous. Figure 6b expresses this behavior in theR-V plane.
As V is increased aboveVc given by eq 31, the meniscus jumps
to the capillary’s top. The meniscus location is continuous below
it.

In the following section, we find that similarities appear for
a liquid channel blocked at one end, because in this case the
pressure difference∆P depends on the meniscus location.

5. Liquid Penetration into Closed Volumes

In this section, we turn to describing the meniscus location in
tapered channels where one of the ends is blocked. The interface

is a gas-liquid interface, as depicted in Figure 7. In the following,
we assume that gravity and electric fields are absent, but
nonetheless we find that the meniscus location can be discon-
tinuous. The reason for this is the nonlinear dependence of the
gas pressure in the area enclosed by the liquid and the walls on
the gas volume, and the gas pressure must be balanced by the
Laplace pressure.

The liquid channel is wedge-shaped, with large and small
opening radiiR2 andR1, as measured from the imaginary meeting
point of the channel walls, and the opening angle is 2R, as defined
in Figure 7. Let us callV0 andP0 the gas volume and pressure,
respectively, just before contact of the liquid channel with the
liquid reservoir;P0 is also the ambient pressure in the liquid. The
channel is then brought in contact with the liquid, the liquid
pressure is increased by an amount∆P, and the liquid may
penetrate to a distanceR inside the capillary. It follows from
simple geometry that the maximum gas volumeV0 (i.e., when
R ) R1) is

whereLz is its depth in the third dimension (in the page). The
total gas volume forR > R1 is

Assuming the ideal gas lawP0V0 ) PV, we find that the

Figure 5. Graphical solution of eq 23. The diagonal dashed line
(a) representsf(h̃) for the case where the opening angle isR ) 0
(regular capillary rise). The curve (b) isf(h̃) for the case whereR
) -π/7. The horizontal line is (1/8)[(sinR)/R]2. Their intersection
occurs at the marked circle. As a function ofR, the solution may
jump from the right branch off(h̃) to the left one. The two squares
mark the extremah̃1 and h̃2 from eq 28 (see text).

Figure 6. (a) Phase diagram for the liquid rise in tapered capillaries
with zero pressure difference (∆P ) 0) and negligible interfacial
tension. The opening angleR is assumed to be negative here. At a
given value ofR, if R̃0 is smaller than its value given by eq 30 (solid
curve), the meniscus is found at the top of the capillary. (b) Phase
diagram in theR-V plane. AsV (in volts) is increased above the
Vc value given by eq 31 (solid curve), the meniscus jumps to the
capillary’s top. We took Earth’s gravity, the density of water,R0 )
0.1 mm, and∆ε equals five times the vacuum permittivity.
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gas pressure is

The outside pressure is increased toP0 + ∆P. We continue
in the limit of the very small channel opening, that is,
R1 , R2(∆P/P0)1/2 and R1 , R, and therefore, eq 3 with
E ) 0 leads to

This governing equation can be written using the dimensionless
variables

in the following form:

At this point, we would like to remind the reader that if the

ambient pressure is atmospheric,P0 ) 105 Pa, it follows thatA
) P0R2/σ ≈ 104 . 1, where we tookσ ) 0.1 N/m andR2 ) 1
cm. In the following, we will concentrate onph , 1; however,
we will assumeA-1 , ph.

We seek the meniscus locationx ) R/R2 for a given pressure
difference∆P and for hydrophobic channels. This means that
we seek the solution of eq 37 for fixedA, negative cos(R + θ),
and increasingph. x is nonnegative and is smaller than 1, and the
function f(x) descends for smallx values and ascends for larger
x values. The minimum off(x) is obtained atx0 given by

and the value at the minimum isf(x0). When f(x0) >
cos(R + θ)/(A sin R), the meniscus is atx ) 0; that is,
the liquid does not penetrate into the closed volume. If
f(x0) < cos(R + θ)/(A sin R), then the meniscus is atx > x0, as
is given by a direct solution of eq 37. The meniscus jumps from
x ) 0 to x ) x0 whenf(x0) ) cos(R + θ)/(A sin R). This can be
expressed by the rather long expression

As we mentioned above, we are interested in the limitA-1 ,
ph , 1, and in this case, we can obtain the following approximate

Figure 7. Schematic illustration of liquid penetration into closed
volumes. The wedge-shaped channel is closed at one end and is
brought into contact with the liquid reservoir. Before contact, the
pressure is equal toP0 everywhere. After contact, the liquid may
penetrate into the channel if the outside pressure is increased toP
) P0 + ∆P. The larger and smaller channel radii areR2 andR1,
respectively, measured from the imaginary meeting point of the
walls, and the penetration depth isR.

Figure 8. (a) Plot ofphc, the critical value of the reduced pressure
ph ) ∆P/P0, as a function of cos(R + θ)/(AsinR), whereA) R2P0/σ.
phc is computed from eq 40. (b) Scaled meniscus locationx ) R/R2
as a function of the scaled pressure differenceph. If ph < phc, the
meniscus is atx ) 0; that is, the liquid does not penetrate into the
channel. Whenph ) phc, the meniscus jumps tox ) x0 as given by
eq 41 with cos(R + θ)/(A sin R) ) -6 × 10-5.

x0 ) [- 1
A

cos(R + θ)
sin R

+ x(1
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and much simpler expression for the critical value of the
dimensionless pressurephc:

As ph is increased from zero toph ) phc, the meniscus jumps from
x ) 0 to x ) x0, wherex0 is given by

Figure 8a showsphc as a function of increasingA-1 as given
by eq 40.phc f 0 if A-1 f 0, andphc increases monotonically with
A-1. Figure 8b shows the scaled meniscus locationxas a function
of ph at a given value ofA. As ph is increased from zero,x jumps
from x ) 0 tox ) x0 atph ) phc and increases monotonically with
a further increase inph.

We would like to stress that one can also ask the following
question: at what value of interfacial tensionσ does the meniscus
jump for a given value ofph? The expression forAc as a function
of ph is obtained directly from the inversion of eq 40. In addition,
we recall that the ideal gas pressureP0 is given byP0 ) nkBT,
wheren is the gas density,kB is the Boltzmann constant, andT
is the absolute temperature. We thus point out that one can hold
both∆P andσ constant while changing the temperature. Again,
eq 40 can be used to find a critical temperatureTc for the meniscus
jump.

6. Conclusions

In this article, we consider in detail the location of a liquid-
liquid or liquid-gas interface in tapered capillaries. The driving
forces are external pressure difference, interfacial tension, and
electrostatic and gravitational forces.

As one would naively expect, a small change in the external
forces usually leads to a small change in the equilibrium interface
location. However, as is shown above without exception, due to
the nonlinearity of the competing forces, there are critical values
of the external parameters: pressure, wetting angle, voltage, and
so forth. If the external force is close to its critical value, the
equilibrium interface location is discontinuous. This is a rather
general phenomenon incapillarieswithnonuniformcrosssections,
and occurs even at small “opening angles”R. In section 2, we
considered a capillary with a pressure difference and dielec-
trophoretic forces and obtained the threshold values of applied
voltage or pressure difference to drive the meniscus location
discontinuity. In section 3, we studied the liquid rise in capillaries
under a weak dielectrophoretic force and gravity. The meniscus
jump was discussed in terms of the wetting angleθ and wedge
opening angleR. We further looked in section 4 at the classical
problem of dielectric rise, but this time in a tapered capacitor.
Again, we found that the meniscus location exhibits discontinuities
as a function of applied voltage or the geometrical parameters.
Finally, in section 5, we considered liquid penetration into closed
volumes and once more found a similar transition for the meniscus
location as a function of the external driving forces.

The rich behavior found above is certainly relevant to several
microfluidic systems, where the control of the liquid-gas or
liquid-liquid interface at the small scale is important. A
generalization which fully takes into account the frequency
dependence of electric fields is a natural extension of the current
work and should be explored,14,15 especially in the context of
microfluidic systems.
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