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We consider theoretically liquid rise against gravity in capillaries with height-dependent cross-sections. For a
conical capillary made from a hydrophobic surface and dipped in a liquid reservoir, the equilibrium liquid height
depends on the cone-opening angleR, the Young-Duprécontact angleθ, the cone radius at the reservoir’s levelR0,
and the capillary lengthκ-1. As R is increased from zero, the meniscus' position changes continuously until, when
R attains a critical value, the meniscus jumps to the bottom of the capillary. For hydrophilic surfaces the meniscus
jumps to the top. The same liquid height discontinuity can be achieved with electrowetting with no mechanical motion.
Essentially the same behavior is found for two tilted surfaces. We further consider capillaries with periodic radius
modulations and find that there are few competing minima for the meniscus location. A transition from one to another
can be performed by the use of electrowetting. Finite pressure difference between the two sides of the liquids can
be incorporated as well, resulting in complicated phase-diagrams in theR-θ plane. The phenomenon discussed here
may find uses in microfluidic applications requiring the transport small amounts of water “quanta” (volume< 1 nL)
in a regular fashion.

Introduction

The behavior of liquids confined by solid surfaces is important
in areas such as microfluidics,1,2 wetting of porous media,3 the
creation of hydrophobic surfaces,4,5 oil recovery,6 and water
transport in plants.7 As the system size is reduced, the interfacial
tensions become increasingly important in comparison to bulk
energies and are essential in understanding the equilibrium states
as well as the system dynamics.

Wetting has been studied for liquids in contact with curved
surfaces,1,8,9,10wedges,11,12cones,13-15 and topographically16,17

or chemically modulated substrates.18-21 However, surprises
appear even for very simple geometries of the bounding surfaces.
Here we focus on the rise of a liquid in capillaries with nonuniform
cross-sections. When a solid capillary is immersed in a bath of
liquid, the height of the contact line above the bath levelh is
given by

whereκ-1 ≡ (σ/gF)1/2 is the capillary length,σ is the liquid-gas

interfacial tension,F is the liquid mass density (gas density
neglected),g is the gravitational acceleration, andθ is the Young-
Duprécontact angle given by cosθ ) (γgs - γls)/σ, whereγgs

andγls are the gas-solid and liquid-solid interfacial tensions,
respectively.1 The constantc is c ) 2 for a cylindrical capillary,
in which caseR is the radius, orc ) 1 for two parallel and flat
surfaces separated at distance 2R. The liquid is sucked upward
if the capillary’s surface is hydrophilic (θ < 1/2π), and is depressed
downwards in the case of a hydrophobic surface (θ > 1/2π).22

Capillaries with Varying Cross-Sections

Suppose now that the capillary walls are not vertical but rather
have some opening angleR as is illustrated in Figure 1. What
is the liquid rise then? One can naively expect that ifR is small,
h changes from eq 1 by a small amount proportional toR; it is
not even a priori clear whetherh increases or decreases. We
restrict ourselves to narrow capillaries, whereκR, 1 is satisfied.
In this case, as will be verified below, the height is larger than
the radius,h . R, and the height variations of the meniscus
surface are negligible as compared to the total height.

In mechanical equilibrium, at the contact line the Laplace
pressure is balanced by the hydrostatic pressure

whereP0 is the ambient pressure andr is the inverse curvature
and is given byr(h) ) -R(h)/cos(θ + R).We denoteR0 as the
radius at the bath level (see Figure 1) and henceR(h) ) R0 +
h tan R.

We therefore find that the liquid rise is given by

where the dimensionless variableshh ≡ κh andRh0 ≡ κR0 have
been used. These equations reduce to the familiar form eq 1 in
the limit R f 0. Let us concentrate first on the case whereR is
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h ) cκ-2 cosθ/R (1)

P0 + cσ
r

) P0 - Fgh (2)

cos(θ + R) ) f (hh) (3)

f (hh) ) 1
c
hh(Rh0 + hh tanR) (4)
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positive and the surface is hydrophobic, cosθ < 0 (see Figure
1a); the results forR < 0 follow immediately.The left hand-side
of eq 3 is then negative for small enough values ofR, and the
quadratic form of f (hh) means that the two solutionsh1andh2

are negative (see Figure 2a). The stable solution ish1 while h2

< h1 is unstable.
If the opening angleR is too large, however, the minimum of

f (hh), attained athh* ) -Rh0/(2 tanR), is f (hh*) ) -Rh0
2/(4c tan

R) > cos(θ + R), and there is no solution. Hence, for a given
value of contact angleθ, the critical value of the opening angle
Rc is given by the conditionf (hh*) ) cos(θ + Rc). As R is
increased pastRc, the meniscus “jumps” all the way to the bottom
of the capillary; in the case of a nearly closed capillary this
occurs athh ) 2 hh*.

When the surface is hydrophilic and bothθ andR are small,
then there is always a positive solution forhh. However, ifθ <
1/2π butθ + R > 1/2π, the liquid height is negative and the jump
again is possible. In essense the capillary behaves as a hydrophobic
surface.

A different approach, potentially useful in applications, is that
of electrowetting. In the experimental setup the opening angle
R is fixed, but the contact angle may be changed with an external
potentialV imposed on the walls:θ ) θ(V). The change to cos
θ is εV 2/(2σλD) ∼ 0.3V 2 and thus can be quite large (we took
the dielectric constant of water and the Debye screening length
λD ) 10 nm andV is in volt).25-27 At a fixed value ofR, an
increase inθ lowers the liquid height untilθ reachesθc given
by

At all θ > θc the meniscus jumps again to the bottom of the
capillary. However, ifR < R*, where R* is given by

the liquid height is a continuous function ofθ at all θ. The
threshold angleR* is quite small; if Rh0 ) 0.1, we findR* )
1.25‚10-3 (0.07°).

Figure 3a is a phase-diagram in theR-θ plane. In the region
marked “continuous” and for positiveR, hh(R, θ) changes
continuously. Across the critical lineθc(R) (eq 5),hh changes
discontinuously (meniscus is at the bottom of the capillary).
Figure 3b shows the heighthh as a function ofθ at fixed value
of R. The meniscus heighthh decreases below zero until, at the
critical value ofθ, its height jumps fromhh* to the capillary
bottom (at 2hh* if the capillary is nearly closed). Further increase
of θ does not change the meniscus’ location.

The liquid behavior in capillaries with negativeR (Figure 1b)
follows from the symmetry of the problem: the transformation
R f -R andθ f π - θ leaves eqs 3 and 4 unchanged ifhh f
-hh. For negative values ofR, a decrease ofθ from large values
to small ones pastθc leads to a jump of the meniscus to the top
of the capillary.

The above insight can be used to exploring different capillaries,
and we briefly mention a capillary with periodic width modula-
tions,28,29 namely,R(h) ) R0 + Rm sin(qh), whereRm is the
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Figure 1. Schematic illustration of cone capillary or two tilted
planes and definitions of parameters. Two of the possible cases: (a)
hydrophobic surface, cosθ < 0, positive opening angleR, and
negativeh. (b) hydrophilic surface, cosθ > 0, negativeR, and
positiveh.

Figure 2. (a) Solid curved line is a plot off (hh) from eq 4, and solid
horizontal line is cos(θ + R). Their intersection occurs at two points
hh1 (the meniscus location) andhh2 < hh1 marked with circles.Rh0 )
0.5, c ) 2, andR ) 0.087 (5°). Dashed lines are the same, butR
is twice as large,R ) 0.174 (10°) above the critical angle. In this
case there is no solution to eq 3, and the meniscus jumps down to
the bottom of the capillary. (b) Plot off (hh) in the case of periodically
modulated capillary (eq 8). The horizontal dashed line is cosθ, and
the multiple intersections give the possible meniscus locations.c )
2, Rh0 ) 0.07,Rhm ) Rh0/2, andµ ) 3.

θc ) arccos(-Rh0
2/(4c tanR)) - R (5)

sin R* ) Rh0
2/4c (6)
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modulation amplitude andq its wavenumber (see Figure 4). We
restrict ourselves to the long wavelength regime, whereqRm ,
1. In this case it can be shown that the governing equations
replacing eqs 3 and 4 are

whereRhm ≡ κRm andµ ) q/κ. It is clear from Figure 2b that there
are multiple solutions, half of which are maxima and the other
half are minima.

For a system prepared in a given minimum, increasingθ by
the use of electrowetting decreases cosθ. Thus, the liquid location
changes-h decreases. When the liquid height overlaps with a
minimum of f (hh), further increase ofθ leads to a jump in the
liquid height to the next “branch” off (hh). In this way one
“quantum” of liquid is depleted from the capillary; ifθ is
decreased, at each step one liquid unit is sucked into the capillary.
The unit volume can be estimated to beV ∼ R0

2/q; for a capillary
width of R0 ) 100µm and wavenumberq ) 103 m-1, we find
V ) 10 nL, whereas reducing the sizes toR0 ) 10 µm andq )
104 m-1 givesV ) 10-2 nL.

Nonzero Pressure Difference

It is instructive to look at situations where the pressure inside
the capillary is higher than the ambient pressurep0 at the liquid
level by amount∆p, as may be relevant in many cases (e.g.,
micropipet). For simplicity, we derive results only for the cone
and wedge capillaries. Following a straightforward procedure,
we obtain the equation for the liquid height:

where the dimensionless pressure is∆pj ≡ ∆p/(κσ). For a positive
opening angleR andθ > 1/2π, the minimum off(hh) occurs at
hh* ) -(Rh0 + ∆pj tanR)/2 tanR, and the meniscus is at a negative
position if f (hh*) ) -(Rh0 - ∆pj tanR)2/(4c tanR) is smaller than
cos(R + θ). The meniscus jumps to the bottom of the capillary
if f (hh*) is larger than cos(R + θ). The expression for the critical
angleθc generalizing eq 5 is

Conversely, an increase of∆pj from zero past a critical pressure
∆pjc leads to a jump of the meniscus to the bottom of the capillary.
∆pjc is given by

In the limit R f 0, we find∆pjc ) R0/R, or expressed in physical
units,∆pc ) Rh0κ

2σ/R. An estimate using capillary radius ofR0

) 1 mm,R ) 0.01,κ ) 10-3 m-1, andσ ) 0.1 N/m, leads to
∆pc ) 10-1 atm.

The phase-diagram is shown in Figure 5 for several values of
the pressure:∆pj ) 0.5, 1.2, and 1.9. There are three regions:
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Figure 3. (a) Phase-diagram in the opening angle-contact angle
(R-θ) plane. For positiveR, solid line isθc(R) from eq 5, separating
two regions: below it, the meniscus heighthh changes continuously
as a function ofR andθ. hh is positive if 1/2π - R > θ, negative if
1/2π - R < θ < θc, and zero whenθ + R ) 1/2 π (dashed diagonal
line). At a given opening angleR, increase ofθ pastθc leads to a
jump down of the meniscus fromhh = hh* < 0 to the bottom of the
capillary. Above the critical line the meniscus is at the bottom. For
all anglesR < R* (see text) the behavior is continuous. The phase-
diagram is symmetric with respect toR f -R, θ f π - θ andhh
f -hh. Parameters areRh0 ) 1 andc ) 2. (b) Meniscus locationhh
as a function of the contact angleθ at fixedR ) 0.01,c ) 2, and
Rh0 ) 0.1.

cosθ ) f (hh) (7)

f (hh) ) 1
c
hh(Rh0 + Rhm sin(µhh)) (8)

Figure 4. Schematic illustration of a capillary with sinusoidal
modulations of the radius.

cos(R + θ) ) f (hh) (9)

f (hh) ) 1
c
Rh0∆pj + 1

c
(Rh0 + ∆pj tanR)hh +1

c
tanR hh2 (10)

θc ) arccos(- 1
4c

(Rh0 - ∆pj tanR)2

tanR ) - R (11)

∆pjc ) (Rh0 - (-4c tanR cos(R + θ))1/2)/tanR (12)
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in the first region, inside the loops “a”, “b” and “c” (top-right
of diagram), the meniscus is found at the bottom of the capillary.
In the second region, inside the loops “d”, “e” and “f” (bottom-
left part), the meniscus is at the top. Outside these loops the
meniscus location changes continuously as a function ofR and
θ. The loops “a”, “b” and “c” are all tangent to the lineR + θ
) 1/2π. At a given pressure difference∆pj, there is a line in the
phase diagram where the meniscus height is zero:hh ) 0. This
line is readily found to be satisfied by

This line is tangent to the loop bounding the region where the
meniscus is at the top. For example, the linehh ) 0 corresponding
to ∆pj ) 1.2 appears tangent to the loop marked “e”. IfRh0∆pj/c
> 1 there is never zero liquid heighthh ) 0, and the loop at
bottom-left completely disappears.

The location of the tangent point (marked with a circle) is
given by two conditions forR andθ:

The first condition states thathh ) 0 is a solution of eqs 9 and
10, and the second condition means that the solutionhh ) 0 is
also a maximum off (hh). Thus, as we decreaseθ across the loop
“e” at the tangent point (fixed values ofR and∆pj), the meniscus
jumps fromhh ) 0 to the capillary’s top.

Conclusions

We have shown that the liquid height in capillaries with
nonuniform cross-sections is a discontinuous function of the
geometrical variables and the external pressure. This peculiar
phase-transition is important for the understanding of liquids
confined to small environments, as capillaries in practice rarely
have uniform cross-sections. Indeed, sinceR* can be extremely
small, if the surfaces of the capillary are super-hydrophobic,
very small deviations ofR aroundR ) 0 are expected to yield
discontinuous liquid heights. The current treaties is different
from refs 14, 15, and 17 in that (i) it takes into account gravity
forces and pressure differences and (ii) the liquid layer on top
of the solid surface is connected to a big reservoir underneath
the solid.

It may be beneficial to exploit the dependence of the water
level on the contact angle or the pressure in, for example,
microfluidic applications where it is desired to accurately control
small volumes of liquid. The setup of Figure 1 could possibly
be used as a switch to prevent or allow a flow of liquid or electrical
current in the direction perpendicular to the plane of the paper,
while the setup of Figure 4 permits it to “suck” known quantities
of fluids.
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Figure 5. Phase-diagram in the (R-θ) plane, similar to Figure 3a
but with finite pressure difference calculate for three different
dimensionless pressures∆pj. At the pressure∆pj ) 0.5, inside loop
“a” at the right-top of the diagram, the meniscus is at the bottom
of the capillary, and inside loop “d” in the left-bottom region of the
diagram, the meniscus is at the capillary’s top. Outside these regions
the meniscus heighth is a continuous function ofR andθ. Curves
“b” and “e” correspond to∆pj ) 1.2, while curves “c” and “f”
correspond to∆pj ) 1.9. Dotted diagonal line isR + θ ) 1/2π,
tangent to all loops “a”, “b”, and “c”. Lower dashed diagonal line
marks the line whereh ) 0 for the case where∆pj ) 1.2 and is
tangent to loop “e” at the point marked with circle (see text). We
took Rh0 ) 1 andc ) 2.

R + θ ) arccos(Rh0∆pj/c) (13)

cos(R + θ) ) 1
c

Rh0∆pj (14)

Rh0 + ∆pj tanR ) 0 (15)
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