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Discontinuous Liquid Rise in Capillaries with Varying Cross-Sections
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We consider theoretically liquid rise against gravity in capillaries with height-dependent cross-sections. For a
conical capillary made from a hydrophobic surface and dipped in a liquid reservoir, the equilibrium liquid height
depends on the cone-opening anglehe Young-Duprecontact anglé, the cone radius at the reservoir’s lefRg)
and the capillary lengtk—1. As o is increased from zero, the meniscus' position changes continuously until, when
o attains a critical value, the meniscus jumps to the bottom of the capillary. For hydrophilic surfaces the meniscus
jumps to the top. The same liquid height discontinuity can be achieved with electrowetting with no mechanical motion.
Essentially the same behavior is found for two tilted surfaces. We further consider capillaries with periodic radius
modulations and find that there are few competing minima for the meniscus location. A transition from one to another
can be performed by the use of electrowetting. Finite pressure difference between the two sides of the liquids can
be incorporated as well, resulting in complicated phase-diagrams m-tleplane. The phenomenon discussed here
may find uses in microfluidic applications requiring the transport small amounts of water “quanta” (velunmé.)

in a regular fashion.

Introduction

interfacial tensionyp is the liquid mass density (gas density

The behavior of liquids confined by solid surfaces is important Neglected)gis the gravitational acceleration, afi the Young-

in areas such as microfluidiég,wetting of porous mediathe
creation of hydrophobic surfacé$,oil recovery® and water
transport in plant$ As the system size is reduced, the interfacial
tensions become increasingly important in comparison to bul

energies and are essential in understanding the equilibrium state

as well as the system dynamics.

Wetting has been studied for liquids in contact with curved
surfaces,;®°0wedgesi1?cones!'®~15 and topographicalhf-1”
or chemically modulated substratés?? However, surprises

Duprecontact angle given by cas= (ygs — vis)/o, whereygs
andys are the gassolid and liquid-solid interfacial tensions,
respectivelyt The constant is ¢ = 2 for a cylindrical capillary,

K In which caseRis the radius, oc = 1 for two parallel and flat
§urfaces separated at distan€® Zhe liquid is sucked upward

ifthe capillary’s surface is hydrophili@(< Y/,), and is depressed
downwards in the case of a hydrophobic surfage-(Y/,).??

Capillaries with Varying Cross-Sections

appear even for very simple geometries of the bounding surfaces. Suppose now thatthe capillary walls are not vertical but rather

Here we focus on the rise of a liquid in capillaries with nonuniform

have some opening angleas is illustrated in Figure 1. What

cross-sections. When a solid capillary is immersed in a bath of is the liquid rise then? One can naively expect thati small,

liquid, the height of the contact line above the bath ldvéd
given by
h=c« 2cos6/R

1)
wherex~1 = (0/gp)Y/2is the capillary lengthy is the liquid—gas
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h changes from eq 1 by a small amount proportionakid is
not even a priori clear whethdr increases or decreases. We
restrict ourselves to narrow capillaries, whelRex 1 is satisfied.
In this case, as will be verified below, the height is larger than
the radius,h > R, and the height variations of the meniscus
surface are negligible as compared to the total height.

In mechanical equilibrium, at the contact line the Laplace
pressure is balanced by the hydrostatic pressure

P+ <7 =Py~ pgh )

wherePy is the ambient pressure ands the inverse curvature
and is given by (h) = —R(h)/cos@ + o).We denoteR, as the
radius at the bath level (see Figure 1) and heRgg = Ry +
h tan a.

We therefore find that the liquid rise is given by
cos@ + a) = f(h) (3)

(4)

where the dimensionless variables= «h andRy = «Ry have
been used. These equations reduce to the familiar form eq 1 in
the limit oo — 0. Let us concentrate first on the case wherie

f () = %ﬁ(ﬁo + htano)

(22) Throughout this paper, line tension effects are ignored because the length
scales considered are not small enolighese effects can be incorporated as
well.23:24
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(b)

Figure 1. Schematic illustration of cone capillary or two tilted

planes and definitions of parameters. Two of the possible cases: (a) 1 L L ' '

hydrophobic surface, co8 < 0, positive opening angle, and
negativeh. (b) hydrophilic surface, co8 > 0, negativeoa, and
positive h.

positive and the surface is hydrophobic, ¢os 0 (see Figure
1a); the results foo < O follow immediately.The left hand-side
of eq 3 is then negative for small enough valuesxptind the
quadratic form off (h) means that the two solutiofgand h;
are negative (see Figure 2a). The stable solutidn ighile h;
< hy is unstable.

If the opening anglex is too large, however, the minimum of
f (h), attained ah* = —Ry/(2 tana), is f (h*) = —Ry¥/(4c tan
a) > cos@ + a), and there is no solution. Hence, for a given
value of contact anglé, the critical value of the opening angle
o is given by the conditionf (h*) = cos@ + o). As o is
increased past;, the meniscus “jumps” all the way to the bottom
of the capillary; in the case of a nearly closed capillary this
occurs ath = 2 h*.

When the surface is hydrophilic and b@trando. are small,
then there is always a positive solution forHowever, if@ <
Y butd + o > Y7, the liquid height is negative and the jump
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Figure 2. (a) Solid curved line is a plot of (h) from eq 4, and solid
horizontal line is cog{ + o). Their intersection occurs at two points

h; (the meniscus location) artg < h; marked with circlesR, =
0.5,¢c = 2, anda. = 0.087 (5). Dashed lines are the same, lut

is twice as largeg. = 0.174 (10) above the critical angle. In this
case there is no solution to eq 3, and the meniscus jumps down to
the bottom of the capillary. (b) Plot df(h) in the case of periodically
modulated capillary (eq 8). The horizontal dashed line istc@nd

the multiple intersections give the possible meniscus locatoss.

2, Ry = 0.07,Ry = Ry/2, andu = 3.

the liquid height is a continuous function éfat all 6. The
threshold anglex* is quite small; if Ry = 0.1, we finda* =
1.2510°2 (0.07).

Figure 3a is a phase-diagram in the 6 plane. In the region
marked “continuous” and for positive,, h(a, 0) changes
continuously. Across the critical liné.(c) (eq 5),h changes
discontinuously (meniscus is at the bottom of the capillary).
Figure 3b shows the heightas a function of) at fixed value

again is possible. In essense the capillary behaves as a hydrophobief @ The meniscus heigliit decreases below zero until, at the

surface.
A different approach, potentially useful in applications, is that

critical value of 0, its height jumps fromh* to the capillary
bottom (at &* if the capillary is nearly closed). Further increase

of electrowetting. In the experimental setup the opening angle ©f ¢ does not change the meniscus’ location.

ais fixed, but the contact angle may be changed with an external

potentialV imposed on the wallsf = (V). The change to cos
0 is €V %(20p) ~ 0.3V 2 and thus can be quite large (we took

The liquid behavior in capillaries with negatieg(Figure 1b)
follows from the symmetry of the problem: the transformation
o — —a andf — z — 6 leaves egs 3 and 4 unchangedh if>

the dielectric constant of water and the Debye screening length —h- For negative values af, a decrease df from large values

Ap = 10 nm andV is in volt).?>727 At a fixed value ofa, an
increase inY lowers the liquid height untib reached. given

by
6, = arccost-R,7/(4ctana)) — o (5)

At all & > 6. the meniscus jumps again to the bottom of the
capillary. However, ifa. < o*, where a* is given by

sina* = R//4c (6)

to small ones pagl; leads to a jump of the meniscus to the top
of the capillary.

The above insight can be used to exploring different capillaries,
and we briefly mention a capillary with periodic width modula-
tions 2829 namely,R(h) = Ry + Ry, sin(@h), whereR,, is the
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Figure 4. Schematic illustration of a capillary with sinusoidal
modulations of the radius.

For a system prepared in a given minimum, increasiry
the use of electrowetting decreases@.okhus, the liquid location
changes-h decreases. When the liquid height overlaps with a
minimum of f (h), further increase of leads to a jump in the
liquid height to the next “branch” off (h). In this way one
“quantum” of liquid is depleted from the capillary; # is
decreased, at each step one liquid unitis sucked into the capillary.
The unit volume can be estimated todbe Ry?q; for a capillary
width of Ry = 100um and wavenumbeg = 10° m~1, we find
v = 10 nL, whereas reducing the sizesRg= 10um andq =
10* m~1 givesv = 1072 nL.

Nonzero Pressure Difference

Itis instructive to look at situations where the pressure inside
the capillary is higher than the ambient presqurat the liquid
level by amountAp, as may be relevant in many cases (e.g.,
micropipet). For simplicity, we derive results only for the cone

Figure 3. (a) Phase-diagram in the opening angle-contact angle and wedge capillaries. Following a straightforward procedure,

(oe—0) plane. For positive, solid line isf(a) from eq 5, separating
two regions: below it, the meniscus heighthanges continuously
as a function ofx and 6. h is positive ift/,m — o > 0, negative if
Yo — o < 0 < 0., and zero wheid + o = Y/, 7 (dashed diagonal
line). At a given opening angle, increase of) pastf. leads to a
jump down of the meniscus from= h* < 0 to the bottom of the
capillary. Above the critical line the meniscus is at the bottom. For
all angleso. < o* (see text) the behavior is continuous. The phase-
diagram is symmetric with respect to— —a, § — 7 — 6 andh

— —h. Parameters arg, = 1 andc = 2. (b) Meniscus locatioh

as a function of the contact angleat fixeda = 0.01,c = 2, and

R, = 0.1.

modulation amplitude anglits wavenumber (see Figure 4). We
restrict ourselves to the long wavelength regime, wigg <

1. In this case it can be shown that the governing equations

replacing egs 3 and 4 are

cosf = f(h) (7)

_ 1- - _
f(h) = ch(Ro + Ry, sin(uh) 8
whereR, = xRy andu = g/«. Itis clear from Figure 2b that there

are multiple solutions, half of which are maxima and the other
half are minima.

(29) Sharma, R.; Ross, D. 3. Chem. Soc., Faraday Trank991, 87, 619.
(30) Levine, S.; Lowndes, J.; Reed,PColloid Interface Scil98Q 77,253.

we obtain the equation for the liquid height:

cos@ + 0) = f(h) (9)

f(h) = %ﬁoAp + %(I:\’O + Aptana)h —l—% tano h* (10)

where the dimensionless pressur&jis= Ap/(ko). For a positive
opening anglex and6 > Y,m, the minimum off(h) occurs at

h* = —(Ro + Aptana)/2 tana, and the meniscus is at a negative
position if f (h*) = —(Ro — Aptana)%(4ctana) is smaller than
cos( + 0). The meniscus jumps to the bottom of the capillary
if f(h*)islargerthan cos{+ 6). The expression for the critical
angled. generalizing eq 5 is

1 (R, — Aptana)?
e B 0 &

0.= arcco%— -
tana

11
™ (11)
Conversely, an increase Ap from zero past a critical pressure
Apcleadsto a jump of the meniscus to the bottom of the capillary.
Apc is given by

AP, = (R, — (—4ctana cos@ + 6))*/tana.  (12)

In the limita. — 0, we findAp: = Ro/a.,, or expressed in physical
units, Ap. = Rox?c/o.. An estimate using capillary radius Bf
=1mm,a =0.01,« =10°3m1, ando = 0.1 N/m, leads to
Ap. = 107t atm.

The phase-diagram is shown in Figure 5 for several values of
the pressure Ap = 0.5, 1.2, and 1.9. There are three regions:
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Figure 5. Phase-diagram in the.-0) plane, similar to Figure 3a
but with finite pressure difference calculate for three different
dimensionless pressurA®. At the pressurép = 0.5, inside loop

“a” at the right-top of the diagram, the meniscus is at the bottom
of the capillary, and inside loop “d” in the left-bottom region of the
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The location of the tangent point (marked with a circle) is
given by two conditions foo. and 6:

cos@ + 6) = % RApD (14)

R, + Aptana.=0 (15)
The first condition states th&t= 0 is a solution of egs 9 and
10, and the second condition means that the solutien0 is
also a maximum of (h). Thus, as we decreaBecross the loop
“e” at the tangent point (fixed values afandAp), the meniscus
jumps fromh = 0 to the capillary’s top.

Conclusions

We have shown that the liquid height in capillaries with
nonuniform cross-sections is a discontinuous function of the
geometrical variables and the external pressure. This peculiar
phase-transition is important for the understanding of liquids
confined to small environments, as capillaries in practice rarely
have uniform cross-sections. Indeed, sinéean be extremely
small, if the surfaces of the capillary are super-hydrophobic,

diagram, the meniscus is at the capillary’s top. Outside these regionsvery small deviations ofc arounda. = 0 are expected to yield

the meniscus heighitis a continuous function at andé. Curves
“b” and “e” correspond toAp = 1.2, while curves “c” and “f”
correspond toAAp = 1.9. Dotted diagonal line is. + 6 = Y7,
tangent to all loops “a”, “b”, and “c”. Lower dashed diagonal line
marks the line wheré = 0 for the case wherdp = 1.2 and is
tangent to loop “e” at the point marked with circle (see text). We
took Ry = 1 andc = 2.

in the first region, inside the loops “a”, “b” and “c” (top-right
of diagram), the meniscus is found at the bottom of the capillary.
In the second region, inside the loops “d”, “e” and “f” (bottom-

discontinuous liquid heights. The current treaties is different
from refs 14, 15, and 17 in that (i) it takes into account gravity
forces and pressure differences and (ii) the liquid layer on top
of the solid surface is connected to a big reservoir underneath
the solid.

It may be beneficial to exploit the dependence of the water
level on the contact angle or the pressure in, for example,
microfluidic applications where itis desired to accurately control
small volumes of liquid. The setup of Figure 1 could possibly
be used as a switch to prevent or allow a flow of liquid or electrical

left part), the meniscus is at the top. Outside these loops thecurrent in the direction perpendicular to the plane of the paper,

meniscus location changes continuously as a functian arfid
6. The loops “a”, “b” and “c” are all tangent to the lire+ 6
= Y,7. At a given pressure differena&p, there is a line in the
phase diagram where the meniscus height is zars: 0. This
line is readily found to be satisfied by
o+ 6 = arccosR,Ap/c) (13)
This line is tangent to the loop bounding the region where the
meniscus is at the top. For example, the fire 0 corresponding
to Ap = 1.2 appears tangent to the loop marked “e’R4Ap/c
> 1 there is never zero liquid height= 0, and the loop at
bottom-left completely disappears.

while the setup of Figure 4 permits it to “suck” known quantities
of fluids.
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