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1. Introduction. The shear viscosity of dilute poly-
mer solutions ηS(ω) has been studied in the past in
experiments and models and analyzed in a classic book
by Ferry.1 The standard view is that each polymer coil
has a sequence of modes discussed by Zimm2 which are
due to hydrodynamic interactions between the mono-
mers; the viscosity ηS then appears as a weighted sum
of Lorentzian responses from these modes. For qualita-
tive purposes, at frequencies which are not too high, the
first mode dominates, as noticed very early by Peterlin,
and ηS can be reduced to a simple form:

Here Rs is a coefficient of order unity, ν is the number
of polymer coils per unit volume, kBT is the thermal
energy, ω is the angular frequency, and τz is the Zimm
relaxation time, with the scaling structure3

Here η is the solvent shear viscosity, and RF is the coil
size, which we will estimate for good solvents following
Flory’s approach3,4

where a is the monomer size, N is the number of
monomers in a chain, and ø is the Flory interaction
parameter.4

Our aim in the present note is to discuss the longi-
tudinal viscosity ηL(ω) which may be measured via
attenuation of ultrasoundsthis implies that we now
consider the solution as a (weakly) compressible fluid.
For incompressible fluids, symmetry imposes that ηL )
4/3ηS. But here we must write

where ηp includes specific effects of density changes or
(equivalently) of the applied pressure p (see section 3).

Our basic idea is that p modifies the ø parameter, and
thus modifies RF, as indicated in eq 3. We construct a
crude model for the resulting dynamics, assuming an
analogue of Peterlin’s approach, with a single mode
relaxation time τz.

The equilibrium results are presented in section 2,
and the dynamics is schematized in section 3. The
surprising conclusion is that ηp is at least comparable
to ηS, even in liquids which are not very compressible;
this is discussed in section 4. All the exploration is made
only at the level of scaling laws.

2. Basic Couplings between Coil Size and Pres-
sure. We start from a coil in good solvent, with a size
described by the Flory expression, eq 3. We then raise
the pressure by an amount p; the equilibrium size shifts
by a certain amount δR. We can think of (at least) two
contributions to δR.

The first contribution, δRK, is due to a change in Kuhn
length, which may be written in the form

where K = 103 MPa is the elastic modulus of the solvent,
p/K measures the solvent contraction, and RK is a
number which is expected to be of order unity (and
which may be positive or negative).

The second contribution, δRø, is the consequence of
a change δø in the Flory parameter ø

Again we expect |Rø| to be of order unity.5,6 The resulting
shift in size is obtained by differentiating eq 3:

Equations 3 and 7 hold provided that we are in a strong
swelling regime, i.e., that the perturbation parameter
ú describing the excluded volume is small.7 The scaling
structure of ú is ú ) N1/2(1 - 2ø), and thus eq 7 assumes
that

We arrive now to an interesting point. When the
pressure p is applied, the solvent is contractedsall
linear dimensions are reduced by a factor 1 - p/3K. If
the relative shift of δR was just equal to -p/3K, the
whole system would be just modified by an affine
deformation, and no relaxation process would be in-
volved. Thus, we must define an effective chain defor-
mation δReff, where the affine contribution has been
taken out. Collecting all these results, we arrive at

However, we immediately note that the Rø term will
dominate if

3. The Longitudinal Viscosity. For a compression
wave in a liquid, individual molecules can move parallel
or perpendicular to the direction of wave propagation.
The existence of these two modes means that energy
dissipation depends on two independent quantities;
hence there are two fundamental viscosities. The longi-
tudinal compression mode brings about a term div‚v
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in the Navier-Stokes equation, a term which is absent
in the more usual case of an incompressible liquid. In
the linear theory employed here, it is sufficient to
consider only monochromatic waves; the superposition
of many modes is trivial. For such a longitudinal wave
in the x-direction, the velocity of molecules is given by

where ω is the frequency, c ) ω/k ≈ 1500 m/s is the
wave velocity (c . v0), and k is the wavevector. For
frequencies up to megahertz, the sound wavelength is
much larger than the coil size. Each chain then feels a
time-varying pressure p ) p0eiωt, with v0/c ) p0/K. It
can be shown8 that the energy dissipation per unit
volume is given by

where we have defined ηL(ω) ≡ 4/3ηS(ω) + ηP(ω). ηP is
comparable to ηS and always present in a longitudinal
wave. However, in the presence of internal slow relax-
ation processes (e.g., slow chemical reactions) it is
enhanced. In the following, our aim is to find the
expression for ηL relevant to polymer solutions.

It is important to realize that, for an acoustic wave,
the coefficient R is renormalized by a thermal effect. The
wave is adiabatic with temperature modulation

where q ) (T/CpV)(∂V/∂T)p and V is the volume.
For instance, the Kuhn length term RK is renormal-

ized to a new value

We expect a similar renormalization for Rø. This renor-
malization should not affect the scaling law which we
postulated in section 2.

As we saw in the previous section, the equilibrium
size of the coil is modified from its Flory radius RF by
an amount RpRF/K proportional to the external pres-
sure. The polymer, characterized by a “response time”
τz, does not follow this size instantaneously, but rather
with a certain time lag. This time lag leads to dissipa-
tion. Thus, we may denote δR as the instantaneous
deviation of the coil size from the Flory size and write

The solution is straightforward: δR ) δR0eiωt and

An equivalent formulation is to imagine an oscillating
spring in a viscous media characterized by a friction
constant ê

Here the spring constant is kBT/R0
2. Hence, we identify

the friction constant as ê ) τzkBT/R0
2, and the total

dissipation per unit volume is then

In the last line we assumed that R is dominated by the
Rø term (eq 10) and that Rø is of order unity.

Comparison with eq 14 leads to the identification of
ηL as

This expression is identical in form to the one-mode
expression for the shear viscosity ηS in polymer solutions
(eq 1), except for the (1 - 2ø)-2 prefactor, which can be
large in the vicinity of the Θ point.

How is the wave damped? In the above we have
assumed that the wavevector k is purely real. In fact,
damping is described by an imaginary part of k given
in

with the imaginary part much smaller than the real one.
4. Conclusions. (1) We expect a specific (pressure

induced) longitudinal viscosity ηL(ω) in polymer solu-
tions. The pressure contribution should be most visible
near the Θ point, with an enhancement factor

(provided that f remains smaller than N). If we go below
the Θ point, the pressure wave modulates a phase
separationsthere is another dynamics to consider (this
was pointed out to us by a referee). (2) We discussed
the frequency dependence of ηP in a “one-mode ap-
proximation”. For the shear viscosity, the restriction to
one mode is acceptable when ωτz < 1. But the one-mode
approximation could be worse for our case. We can look
at the related problem of chain collapse under a tem-
perature jump (from above Θ to below it). The early
stages of collapse involve “local clumps” along the
chainsthis is rather different from the standard defor-
mation in shear. (3) Our main conclusion is that ηP(ω)
may be observable in certain dilute polymer solutions.
Can we expect this idea to hold for polymer melts? In a
melt, the coils are ideal (as first understood by Flory4)
and the ø parameter becomes irrelevant. But we may
still have a small effect of the pressure on the Kuhn
length. (4) The pressure dependence of ø may also be of
interest in block copolymer melts. Consider, for instance,
a lamellar phase; a change in ø leads to a change in the
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interfacial area per chain and to chain extension.
However, in the strong segregation limit the lamellar
period scales as ∼N2/3ø1/6 and depends only weakly on
the ø parameter.
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