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ABSTRACT: We consider the relative stability of parallel and perpendicular lamellar layers on corrugated
surfaces. The model can be applied to smectic phases of liquid crystals, to lamellar phases of short-chain
amphiphiles, and to lamellar phases of long-chain block copolymers. The corrugated surface is modeled
by having a single q-mode lateral corrugation of a certain height. The lamellae deform close to the surface
as a result of chemical interaction with it. The competition between the energetic cost of elastic
deformations and the gain in surface energy determines whether parallel or perpendicular lamellar
orientation (with respect to the surface) is preferred. Our main results are summarized in two phase
diagrams, each exhibiting a transition line from the parallel to perpendicular orientations. The phase
diagrams depend on three system parameters: the lamellar natural periodicity, the periodicity of surface
corrugations and their corresponding amplitude. For a fixed lamellar periodicity (or polymer chain length),
the parallel orientation is preferred for surfaces having small-amplitude corrugations at long wavelengths.
For a fixed corrugation periodicity, the parallel orientation is preferred for small corrugation amplitude
and/or large lamellae periodicity. Our results are in agreement with recent experimental results carried
out on thin block copolymer films of PS-PMMA (polystyrene-poly(methyl methacrylate)) in the lamellar
phase and in contact with several corrugated surfaces.

1. Introduction

Numerous ways to control the orientation of ordered
mesophases have been extensively studied in recent
years. As an example, we mention that lamellar block
copolymers (BCP) confined between two flat and parallel
surfaces have been shown to orient parallel or perpen-
dicular to the surfaces, depending on the surface
separation and interactions.1,2 Furthermore, a chemi-
cally patterned surface can induce perpendicular or even
tilted lamellae, if the chemical interaction is strong
enough.3,4 Applying shear is yet another effective method
in producing large well-aligned samples,5 but this
method is difficult to implement in thin films. Another
related situation can be found in liquid crystals, where
surface anchoring determines the direction of adjacent
molecules and affects the bulk orientation and possible
defects.6 This type of surface effect has been studied
extensively in relation to the Fréedericksz transition7

and in twisted nematic liquid-crystal displays. Electric
field can be very useful in aligning samples in which a
large dielectric or conductivity contrast exists.8-18 How-
ever, the use of electric field requires rather sophisti-
cated experimental setups in order to avoid adverse
effects of ion accumulation at electrodes, short circuits
due to dust particles, etc.18

Most of the studies mentioned above are restricted
to films in contact with flat and smooth solid surfaces.
Little attention has been paid to the role of surface
roughness on film morphology and orientation, although
it is clear that nonflat surface topography gives rise to
defects (e.g., vacancies in the lamellar ordering) and
affects the lamellae orientation. Quite recently, experi-
ments carried out by Hashimoto and co-workers on
lamellar BCP films19 addressed the question of how

surface roughness affects BCP film orientation. In their
study it was shown that the degree of surface roughness
controls the lamellar orientation, leading to situations
where the BCP films orient themselves parallel or
perpendicular to the surface. These experiments serve
as a starting point of our theoretical investigation,
where we restrict ourselves to lamellar multilayer
systems in contact with a corrugated surface. The model
is expressed in terms of the elastic energy of lamellar
or smectic systems and is described by only two elastic
constants. Hence, although some system-specific details
are missing, the results are not restricted to BCP films
but are more general and equally apply to a broad class
of systems ranging from smectic liquid crystals to
lyotropic (oil/water/amphiphile) systems. The main dif-
ference between these systems is in the values of the
system parameters: the lamellar periodicity, strength
of surface interaction, and elastic constants.

The elastic deformation energy of lamellar layers is
studied separately for parallel and perpendicular ori-
entations. It is shown that, depending on the surface
corrugation amplitude and periodicity, phase transitions
can occur between the two orientations. Since real
surfaces are never ideally flat, understanding and
characterizing surface roughness can be of great im-
portance in controlling orientation of lamellar phases.
This orientation mechanism is complementary to the
mechanisms mentioned above of electric fields, shear
and chemical surface patterning. In sections 2 and 3 we
calculate the deviations of lamellae from their corre-
sponding flat perpendicular and parallel states. The free
energies of the parallel and perpendicular states are
compared in section 4, and a general discussion and
comparison with related experiments follows in section
5.
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2. Perpendicular Layers on Corrugated Surface
Consider a lamellar system confined by one topo-

graphically corrugated surface, as depicted in Figure 1.
Instead of considering a rough surface having a random
and quenched topography, we assume that the surface
is characterized by a typical corrugation with a single
amplitude and wavelength. The difference between a
true rough surface and a corrugated one is not expected
to be very significant as long as the rough surface
amplitude and wavelengths do not vary much about
their average values. A further simplification is that the
surface height h (measured along the z direction) is
taken to depend only on the lateral x direction, while it
is translational invariant in the y direction:

where the average h0 ) 〈h(x)〉 is taken hereafter to be
zero, h0 ) 0, R is the corrugation amplitude, and ds ≡
2π/qs is the surface lateral periodicity.

So far we described the quenched corrugated surface
geometry. Next we consider the energetics and structure
of a lamellar phase in contact with such a surface. We
start by examining the order parameter corresponding
to lamellae which are perpendicular to the average
surface position:

In a diblock copolymer system, the order parameter φ⊥
denotes the deviation of (say) the A-monomer concen-
tration from its average value. In smectic A phases and
lyotropic systems φ⊥ is the deviation of the density of
the molecular center-of-mass from the average density.
In these three systems, φ0 is the amplitude of lamellar
concentration variations, d0 ≡ 2π/q0 is the bulk lamellar
spacing, and u(x,z) is a slowly varying phase describing
the deviation from perfect lamellae, perpendicular to the
surface and given by φ0 cos(q0x).

The total free energy F can be written as a sum of
two terms, F ) Fb + Fs, where Fs is the surface energy
and Fb is the bulk lamellar contribution. In a lamellar
system there are different energy costs associated with
bending and compression of the layers. It can be shown
that for a slowly varying phase u(x,z), an expansion of
the free energy Fb to quadratic order in u and its spatial
derivatives, can be written in complete analogy with
smectic phases of liquid crystals as

In the above equation the integral is over the entire

volume, ux ) ∂u/x, uzz ) ∂2u/∂z2, B is the compression
modulus, and K is the bending modulus. The elastic
moudlii are K ∼ d0γAB and B ∼ γAB/d0, where γAB is the
interfacial tension between the A and B polymer blocks
and d0 is the lamellar periodicity.20 For typical di-BCP
such as polystyrene/poly(methyl methacrylate) (PS/
PMMA), where γAB = 2 mN/m and d0 = 50 nm, we
estimate their values to be K = 10-10 J/m and B = 105

J/m3. For liquid crystals, K = 2 × 10-11 J/m and B =
107 J/m3,21 whereas for lyotropic (water/surfactant/oil)
systems, K is about 1-100 kBT/d0 = 10-11-10-13 J/m
and B is in the range 1-106.22 Clearly these lyotropic
phases are “soft”, and their elastic modulii have small
values.

The characteristic length arising from eq 3 is the
penetration length

In lamellar di-BCP this length is proportional to the
lamellar spacing, λ ∼ d0. In liquid crystals λ ∼ 1 nm,
while in lyotropic systems this distance is λ ∼ 1-5000
nm.

Below we consider a semiinfinite lamellar stack in
contact with one corrugated substrate. Under some
conditions the semiinfinite slab can represent well a film
of finite thickness in between a solid substrate and air.
In this description, the elastic strains propagating from
the corrugated substrate into the bulk are fully taken
into account. However, defects at the surface (e.g.,
islands and holes) and grain boundaries in the lamellar
film are not considered. In thin films there are ad-
ditional strains due to possible incommensurabilty
between the film thickness and the lamellar spacing.
The derivation used by us is more applicable when the
film thickness is much larger than the lamellar spacing.

The second term in the free energy is the surface
contribution. Similar to previous works,4,12,13 we assume
a short-range surface field coupled linearly with the
lamellar order-parameter at the surface

The parameter σ is the surface field, and the integral
is taken over the entire corrugated surface. The value
of σ is taken to be a constant throughout the surface,
describing a corrugated surface which is chemically
homogeneous. A positive (negative) σ favors adsorption
of negative (positive) φ at the surface.14 In the language
of an A/B di-BCP, this means that B (or A) monomers
are preferentially adsorbed on the surface for σ > 0
(σ < 0). Assuming small distortions in the order param-
eter close to the surface, Fs can be expanded to first
order in u

The entire profile φ(x,z) can now be calculated by
using a variational principle on the bulk free energy (eq
3). In terms of the phase u(x,z), the resulting Euler-
Lagrange differential equation away from the cor-
rugated surface is

This variation has to be complemented by a set of rather
complex boundary conditions. They are obtained by

Figure 1. Schematic illustration of the rough confining
surface.

h(x) ) R cos(qsx) + h0 (1)

φ⊥(r) ) φ0 cos(q0x + q0u(x,z)) (2)

Fb ) 1
2∫[K(uzz)

2 + B(ux)
2] dV (3)

λ ≡ (K/B)1/2 (4)

Fs ) ∫σφ dS (5)

Fs = σφ0∫[cos(q0x) - q0u sin(q0x)] dS (6)

λ2uzzzz - uxx ) 0 (7)
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taking the variation of the full Fb + Fs on the corrugated
surface, z ) h(x), defined in eq 1

fb and fs are the integrand of the volume and surface
integrals, eqs 3 and 6, respectively. The unit vector
normal to the surface is defined as n̂ ) -(qsR sin qsx,

1)/x(qsRsinqsx)2+1. One way to obtain these equations
is by discretizing the spatial coordinates x and z
and minimizing the bulk and surface free energies
with respect to the discrete variables (see also ref
15).

To proceed, we need to make some further simplifica-
tions. Solving the partial differential equation, eq 7,
with the complex boundary condition, eqs 8 and 9, is a
difficult task. A further simplification is to assume that
u(x,z) is given by the single bulk mode q0 in the x
direction, while it contains a sum over all possible
Fourier modes in the z direction:

where c.c. stands for the complex conjugate. This simple
sinusoidal form of u along the surface x direction may
not fully account for the incommensurability that exists
between the lamellar and surface periodicities. Defects
and vacancies in the lamellar ordering along the surface
are not included either. Equations 7 and 10 lead to a
selection of specific k modes depending on the bulk mode
q0 and the penetration length λ:

This equation has two different valid roots, k(
[Im(k() > 0]

where exp(iπ/4) ) (1 + i)/x2 is the fourth root of unity
in the complex plane. The first boundary condition, eq
8, implies that Ak+ ) Ak-. Throughout this paper we
assume qsR < q0R , 1; whence, it is valid to ap-

proximate x(qsRsinqsx)2+1 = 1 and exp(ikR cos(qsx)) =
1. The second boundary condition (eq 9) then gives

evaluated at z ) h(x) and summed over the two vectors
(k(). The z-dependent term in the exponentials is
neglected as can be justified for q0R , 1. The second
term (proportional to B) can also be neglected for qsR
, 1,

leading to the final expression of the lamellar order
parameter:

where Ak- ) Ak+ is denoted A0 in order to simplify the
notation. The full order parameter expression is ob-
tained by substituting u from above in eq 2. The decay
length of lamellar undulations is proportional to the
lamellar spacing, 1/k( ∼ (λ/q0)1/2 ∼ d0.

The perpendicular lamellar stack on a rough surface
is shown in Figure 2. In Figure 2a the lamellar periodic-
ity is half of the surface one. The surface is attractive
to the component marked in dark shades, causing them
to expand in its vicinity. Light lamellae are in turn
contracted close to the surface; this behavior is seen in
Figure 2c too, where the surface periodicity matches the

Figure 2. Perpendicular lamellar layers in contact with a
sinusoidal surface, as obtained from eqs 2 and 14. All length
are scaled by d0, the lamellar bulk periodicity, and the origin
of the z axis is shifted by d0/2 for clarity purposes. (a) The
lamellar periodicity d0 is chosen to be half of the surface one,
d0 ) ds/2. Different gray shades correspond to different values
of the order parameter φ of eq 2, where dark and white
correspond to negative and positive φ, respectively. (b) Inter-
material dividing surface corresponding to lines where φ ) 0
in (a). (c) The same as in (a), but the lamellar periodicity equals
the surface one, ds ) d0 ) 50 nm. The parameters used are B
) 2 × 105 J/m3. K ) B/(4q0

2), and σ ) xBK/4.

∂fb

∂uzz
) 0 (8)

∂fs

∂u
+ ( ∂fb

∂∇u
- ∂

∂z
∂fb

∂uzz
ẑ)‚n̂ ) 0 (9)

u(x,z) ) eiq0x∑
k

Ake
ikz + c.c. (10)

k4 + λ-2q0
2 ) 0 (11)

k( ) ((q0

λ )1/2

e(iπ/4 (12)

-σφ0q0 sin q0x - iBqsR sin qsx∑
k

q0Ake
i(q0x+kz) -

iK∑
k

k3Ake
i(q0x+kz) ) 0 (13)

u ) A0e
i(q0x+k+z) + A0e

i(q0x+k-z) + c.c.

A0 )
σφ0q0

2K(k+
3 + k-

3)
(14)

8562 Tsori and Andelman Macromolecules, Vol. 36, No. 22, 2003



bulk lamellar one. Clearly, the curvature of the lamellae
adjusts to the surface curvature in order to achieve the
best compromise between elastic deformation and sur-
face coverage.

3. Parallel Layers on Corrugated Surface
We now turn to describe a parallel lamellar stack in

contact with the same sinusoidally corrugated surface.
Our derivation is related to previous treatments,7,23,24

but the boundary conditions are handled differently by
introducing the same type of surface term in the free
energy Fs, as in the previous section. The lamellae can
be described along the same lines as for the perpen-
dicular case but keeping in mind the important points
where the stack orientation affects the free energy:

The perfect parallel layers, φ|(r) ) -φq cos q0z, are re-
covered far from the surface (where u ) 0). The bulk
lamellar phase free energy is obtained simply by inter-
changing the roles of x and z axes (x T z) in the free
energy of eq 3:

As for the case of perpendicular lamellae, the surface
energy (eq 5) can be expanded in small u as follows:

The governing equation for u is obtained from a varia-
tion principle applied to eq 16, δFb/δu ) 0

with the boundary condition obtained from a variation
of Fb + Fs on the z ) h(x) corrugated surface,

Writing u as u(x,z) ) A0eiRz cos qsx and using eq 18,
we find that R ) iλqs

2. At this point it should be
emphasized that when the surface periodicity is larger
than the lamellar periodicity (qs < q0), the decay length
1/R ∼ q0/qs

2 for the parallel stack is much larger than
the decay length 1/k( ∼ 1/q0 in the perpendicular case.
This, in turn, means that for fixed R the elastic
deformation gives preference to perpendicular ordering.

As in the case of perpendicular lamellae, we use

qsR < q0R , 1 to approximate x(qsRsinqsx)2+1 = 1
and obtain from the boundary condition (eq 19)

yielding the order parameter of parallel lamellae

The parallel layering given by eq 21 is plotted in
Figure 3. In Figure 3a (as in Figure 2a) the surface

periodicity is twice larger than the lamellar one, and in
Figure 3b the two periodicities are equal. In the former
case, dark regions (negative φ) appear close to the wall,
the lamellae are able to closely follow the surface
contour, and distortions are long-range. In the latter
case the surface topography changes too quickly for the
lamellae to follow, and the lamellae lie almost perfectly
flat. This is due to the dependence of A0 and R on the
ratio q0/qs. Distortions of the stack, in this case, can be
seen only in the very close vicinity of the surface.

4. Phase Diagram

The elastic energy of the lamellar phase in the two
orientations is obtained by substitution of eq 14 in eqs
3 and 6 (perpendicular lamellae) and eq 21 in eqs 16
and 17 (parallel lamellae). Depending on the system
parameters R, qs, q0, and σ, the minimum of the free
energy is obtained for either one of the two orientations.

Before we proceed in presenting the corresponding
phase diagram, we note that our derivation is not valid
over the entire R, qs, q0, and σ parameter space. The
assumption of small distortions, q0u , 1, together with
eqs 14 and 21 implies that σφ0 , xBK and Rq0

3qs
-2

< 1. We obtain that the limits of validity of our
derivation are given by

Figure 3. Parallel lamellar layers in contact with a cor-
rugated surface, calculated from the free energy minimization
of section 3. (a) The lamellar periodicity is half the surface
periodicity d0 ) ds/2, and the lamellae follow the surface
topography. (b) The two periodicities are equal, ds ) d0, and
the lamellae are unable to follow the surface height variations.
Parameters here are the same as in Figure 2.

φ|(r) ) -φ0 cos(q0z + q0u(x,z)) (15)

Fb ) 1
2∫[K(uxx)

2 + B(uz)
2] dV (16)

Fs = σφ0∫[q0u sin(q0z) - cos(q0z)] dS (17)

λ2uxxxx - uzz ) 0 (18)

∂fs

∂u
+ ( ∂fb

∂∇u
- ∂

∂x
∂fb

∂uxx
x̂)‚n̂ ) 0 (19)

σφ0q0
2R + Bλqs

2A0 ) 0 (20)

u(x,z) ) A0e
iRz cos qsx (21)

A0 ) -
σφ0q0

2R

Bλqs
2

) -R
σφ0

xBK(q0

qs
)2

1 . q0R > qsR > (q0R)3/2, σφ0 , xBK (22)
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Cast in different terms, this can be written as

Before presenting the calculated phase diagram, it is
of use to present a rough estimation of the parallel and
perpendicular free energies. Disregarding numerical
prefactors, the bulk free energy of the perpendicular
state is

where S is the surface area and A0 is taken from eq 14.
At distances from the surface greater than 1/Im(k(), the
distortion u is negligible, and the factor 1/Im(k() rep-
resents the effective volume-to-area ratio of the integra-
tion.

The bulk free energy of the parallel state is similarly
estimated to be

Here A0 is taken from eq 21, and the effective volume-
to-area ratio is 1/Im(R).

The difference between the two free energies is
roughly proportional to

Equation 26 describes qualitatively the system behavior.
If q0 is fixed while R and qs can vary, it directly follows
that for q0R > qs/q0 the perpendicular state is favored,
resulting in a straight (dashed) line separating perpen-
dicular and parallel states in Figure 4, while for q0R <
qs/q0 the parallel state is favored. Similar relations hold
when qs is fixed and R and q0 are allowed to vary or
when R is fixed but qs and q0 can vary.

The above simplified approach describes qualitatively
the system behavior and may be used as a “rule of
thumb”. Furthermore, the surface energies and the
correct numerical prefactors can be taken into account
as well. Figure 4 shows the phase diagram in the (qs,R)
plane, for fixed q0 and σ. Not the entire shown phase
diagram is within the range of validity discussed above
(eq 23). For small values of qs, the perpendicular
layering is favored because of the long-ranged elastic
strain pertaining in parallel lamellae as compared to
the perpendicular state. As qs increases, the strain in
the parallel state becomes more restricted to the vicinity
of the surface until, eventually, the parallel state
becomes more stable. At this transition point, the
energetic gain of having a commensurate layer close to
the surface overcomes the loss of elastic energy defor-
mation.

For small values of surface amplitude R, a parallel
state is generally induced. Keeping qs fixed and gradu-
ally increasing R means that the elastic energy of
deforming parallel lamellae increases, while the surface
interaction stays constant. Therefore, at a certain
threshold value of R there is a transition from parallel
to perpendicular ordering. For larger qs values this
critical R value increases as well.

Figure 5 is a phase diagram in the (R,q0) plane, with
qs kept fixed. For a given BCP chain length (fixed q0),
increase of R will also increase the elastic energy of
deforming parallel lamellae and promote perpendicular
layering. On the other hand, keeping R fixed and
decreasing q0 (so that it becomes comparable to qs)
decreases the range of parallel deformation, thus favor-
ing the parallel state.

5. Discussion

Lamellar stacks of either liquid crystals (smectics),
short-chain amphiphiles, or long-chain BCP undergo
deformation as they try to adjust to the presence of a

Figure 4. Phase diagram in terms of qs and R with fixed
surface field σ and lamellar periodicity 2π/q0. For fixed value
of qs (scaled by q0), a horizontal scan of increasing R (scaled
by 1/q0) will increase the elastic penalty of parallel layers and
favor perpendicular ordering. On the other hand, a vertical
scan of increasing qs (while keeping R constant) limits the
deformations in the parallel state to the surface and favors
parallel ordering. σ ) 2xBK, and all other parameters are
the same as in Figures 2 and 3. The dashed straight line,
qs/q0 ) q0R follows from eq 26.

Figure 5. Phase diagram in terms of q0 and R with fixed
surface field σ and surface periodicity 2π/qs. Horizontal scans
of increasing R (scaled by 1/qs) while keeping q0 fixed increases
the elastic penalty of parallel layers and favors perpendicular
ordering. The same is true for vertical scans of increasing q0

(scaled by qs) with fixed R, σ ) 2xBK ) 4 mN/m, and all
parameters are the same as in Figures 2 and 3.

(q0R)1/2 ,
qs

q0
< 1, σφ0 , xBK (23)

F⊥

S
∼ A0

2(Bq0
2 + Kk(

4) 1
Im(k()

)
σ2

φ0
2

K
1
q0

(24)

F|

S
∼ A0

2(BR2 + Kqs
4) 1

Im(R)
)

σ2
φ0

2

K
1
q0

(q0

qs
)2

(q0R)2 (25)

F| - F⊥ ∝ (q0

qs
)2

(q0R)2 - 1 (26)
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rough (corrugated) surface. The amplitude and spatial
extent of inplane and out-of-plane deformations are
different, and the preference for parallel or perpendicu-
lar orientations depends on specific bulk and surface
parameters. Which morphology prevails depends on the
surface periodicity ds ) 2π/qs, surface amplitude R,
lamellar periodicity d0 ) 2π/q0, and surface field strength
σ.

For lamellae oriented perpendicular to the surface we
use a model that indicates how the stack deformation
propagates from the surface into the semiinfinite bulk.
Parallel lamellae are studied using a modification of a
model used previously for smectics phase. In both cases
small surface corrugation is assumed such that we can
use the limits qsR , 1, q0R , 1. Our study is comple-
mentary to a numerical study by Podariu and Chakra-
barti,25 who studied in detail extremely thin films
(thickness comparable or smaller than the lamellar
thickness) of a lamellar stack.

The system behavior in terms of the parameters R
and qs is given in the phase diagram of Figure 4. For
fixed surface periodicity 2π/qs, increase in the surface
amplitude R leads to preference of perpendicular lamel-
lae. On the other hand, keeping R fixed and increasing
qs leads to preference of parallel lamellae. This is a
consequence of the diminished decay length of surface-
induced undulations. When the undulations of parallel
lamellae are restricted to the surface vicinity, the energy
penalty of the elastic defect can be small. Thus, the
phase transition between these two states is described
by a line in the two-dimensional phase diagram. Quite
generally, as the surface interaction parameter σ is
increased, this line moves toward the R axis in such a
way that the state of parallel lamellae occupies a larger
region in the phase diagram.

The transition from parallel to perpendicular orienta-
tion as a function of R and q0 is given in Figure 5.
Increase of R deforms the parallel layers and generally
promotes perpendicular ordering. On the other hand,
increase of q0 while keeping R and qs fixed implies a
reduced range of parallel deformations and yields a
preference for perpendicular lamellae.

A rough surface can be used to obtain morphologies
that are usually controlled by chemical means: not only
the transition between parallel and perpendicular lamel-
lae but also tilted lamellar morphologies. Indeed, in the
limit of very small lamellar periodicity (large q0) and
small interfacial interactions σ, lamellae will appear
locally perpendicular to the surface and therefore tilt
when the surface is not horizontal. Similar tilted lamel-
lae have been predicted for a BCP melt confined by
chemically patterned surfaces,3,4 as the system tries to
match the lamellae with the stripes.

The present work is motivated by and is of direct
relevance to recent experiments of Hashimoto and co-
workers on PS/PMMA symmetric di-BCP on rough
surfaces.19 In the experiments, perpendicular orienta-
tion was observed for system parameters estimated to
be qs = 0.04 nm-1, q0 = 0.33 nm-1, and R = 7.5 nm.
This set of data is in complete accord with the scaling
formula (eq 26) because q0

4R2/qs
2 - 1 is large and

positive. This also can be confirmed by the phase
diagrams presented in Figures 4 and 5.

For different surfaces and BCP films reported in ref
19, qs = 0.018 nm-1, q0 = 0.19 nm-1, and R = 2.7 nm,
and the film orients itself in parallel layers. The scaling
formula (eq 26) yields here a small positive number,

implying weak preference for perpendicular layers. The
phase diagram also show marginal behavior, possibly
preferential for perpendicular layers. This discrepancy
can have several (yet unknown) origins. First, the exact
value of the surface interaction parameter σ is not
known from experiments, and it may be different than
the values chosen by us in Figures 4 and 5. Further-
more, we employed several approximations in our
calculations ignoring, for example, possible vacancies
in the perpendicular lamellae and the temperature
dependence of the elastic modulii. We also assumed that
the system is semiinfinite in the z direction, while in
experiments the BCP film thickness is finite. It may be
that the BCP/air free surface can induce islands or other
types of surface-induced defects that alter the simple
picture employed by us. The free energy model holds
for BCPs in intermediate and strong segregations but
is less adequate for weaker segregations, as is possibly
the case in the experiments. Last, our theory can be
improved by taking into account the possible depen-
dency of σ, the surface free energy parameter, on the
lamellar orientation and a more realistic surface rough-
ness, instead of a single surface q mode.

We hope that additional and detailed experiments of
lamellar systems in contact with well-characterized
rough surfaces will shed more light on this problem and
will further motivate theoretical studies of these in-
triguing systems.
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