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Abstract. We study morphologies of thin-film diblock copolymers between two flat and parallel walls.
The study is restricted to the weak segregation regime below the order-disorder transition temperature.
The deviation from perfect lamellar shape is calculated for phases which are perpendicular and parallel
to the walls. We examine the undulations of the inter material dividing surface and its angle with the
walls, and find that the deviation from its unperturbed position can be much larger than in the strong
segregation case. Evaluating the weak segregation stability of the lamellar phases, it is shown that a
surface interaction, which is quadratic in the monomer concentration, favors the perpendicular lamellar
phase. In particular, the degeneracy between perpendicular and unfrustrated parallel lamellar phases for
walls without a preferential adsorption is removed.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 61.41.+e Polymers,
elastomers, and plastics – 68.55.-a Thin films structure and morphology

1 Introduction

Diblock copolymers (BCP) are made up of two chemically
distinct chains covalently bonded together. The BCP sys-
tem forms self assembled structures with length scales in
the nanometer to micrometer range. On the level of mean-
field theory, the bulk phase diagram is governed by two
parameters: f = NA/N , the fraction of the A-block in a
chain of polymerization index N = NA + NB, and χN ,
where χ is the Flory parameter measuring the interaction
between the two species, and is inversely proportional to
the temperature [1–4].

For temperatures above the order-disorder transition
(ODT) temperature the system is in the disordered phase.
As the temperature is lowered, symmetric BCP melts
(f = 1

2 ) undergo a weak first order transition to a lamel-
lar phase at χ > χc. As the degree of block asymmetry f
is increased, |f − 1

2 | > 0, other phases of hexagonal and
cubic spatial symmetries become stable [5–7].

The interfacial behavior of BCP melts has been the
subject of experimental [8–11] and theoretical [12–20] in-
vestigations. In the former case the substrate is typically
spin-coated by the BCP, and subsequently analyzed by
small angle neutron and X-ray scattering or neutron re-
flectivity measurements. If the walls are neutral, i.e., with-
out preferential adsorption to one of the two blocks, thin
films of lamellar diblock copolymers maintain their bulk
periodicity d0 by aligning perpendicular to the confining
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walls. Such long range ordering can be transferred by var-
ious techniques to a surface, creating a template useful in
nanolithography [21]. In cases where the walls prefer one of
the two blocks, the lamellae can reduce the interfacial in-
teractions by aligning parallel to the walls, and change the
lamellar periodicity from its bulk value d0. Which of the
two phases prevails (parallel or perpendicular) depends on
the distance 2L between the two walls (film thickness), the
strength of the wall interactions as well as the degree of
segregation Nχ.

Numerical calculations of confined BCP have been
performed using self-consistent field theory [15,16] and
Monte-Carlo simulations [16,22]. Using these techniques,
order parameter profiles and phase diagrams have been
obtained. Previous analytic theories [22–24], while pro-
viding valuable qualitative results, have been sensitive to
the specific choice of phenomenological coefficients, and
this sensitivity leads to marked inaccuracies of the order
parameter as compared to Monte-Carlo simulations [22].

In the present work we complement the numerical
studies by introducing an alternative analytical method.
In particular, we derive the deviation of the perpendicular
and parallel lamellae from their bulk shape. In Section 2
we introduce a model free energy and derive the underly-
ing equations. In Section 3 the shape of confined lamellae
is investigated and found to be, in general, very different
from the bulk shape. The energy of the perpendicular and
parallel lamellae as a function of surface separation 2L as
well as the stability diagram is discussed in Section 4.
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2 Model

Close to the phase transition point (ODT) between the
disordered and lamellar phases, the free energy of symmet-
ric BCP melt is well described by the following Ginzburg-
Landau expansion [7,17,18,25–27]:

Fb =
∫ {

1
2
τφ2 +

1
2
h
(
∇2φ+ q2

0φ
)2

+
u

4!
φ4

}
d3r. (1)

The bulk free energy Fb (in units of kBT ) is given as a
functional of the local order parameter φ(r) ≡ φA(r)− f ,
which is the deviation of the A monomer concentration
from its average value. The parameters above are given by

f = 1/2
q0 ' 1.95/Rg; τ = 2ρN (χc − χ) . (2)

With a monomer size a, the gyration radius for Gaussian
chains is R2

g ' 1
6Na

2, and ρ = 1/Na3. Other parameters
in equation (1) are

χc ' 10.49/N ; h = 3ρc2R2
g/2q

2
0. (3)

The dimensionless parameters u/ρ and c are of order unity.
The reduced temperature τ ∼ (χc − χ) is positive in the
disordered phase, where φ(r) = 0. Close to the ODT the
bulk system is described by two length scales: the first is
the periodicity of lamellar modulations d0 = 2π/q0, and
the second is the correlation length ∼ (τ/h)−1/4, charac-
terizing the decay of surface induced modulations. This
length diverges at the ODT, χ = χc.

The interaction free energy of a BCP melt with the
confining wall (in units of kBT ) can be written as a sum
of two terms

Fs =
∫ [

σ(rs)φ(rs) + τsφ
2(rs)

]
d2rs (4)

where {rs} denotes the wall position. The first term is
linear in the order parameter, and expresses preferential
adsorption: a positive σ(rs) induces a negative φ(rs) (pref-
erence to the B monomers). The second (quadratic) term
allows surface deviation of the Flory parameter χ from its
bulk value. A positive τs means that the surface has an
ordering temperature lower than the bulk one [28].

In the following we consider a thin film in which the
melt is confined by two flat and parallel walls at y = ±L.
Interactions between the wall and the melt are assumed
to be short-range, and for homogeneous walls, σ(rs) =
const., used throughout this paper, no additional surface
length scales are introduced (see Refs. [17–19,29] where
σ(rs) varies on the walls). The strength of wall interaction
is given by two parameters: σ+ = σ(y = L) and σ− =
σ(y = −L). Symmetric (σ+ = σ−) and asymmetric (σ+ =
−σ−) walls will be considered as special cases.

The deviation of the order parameter, φ(r), from its
bulk value φb(r) is denoted by δφ

δφ(r) ≡ φ(r) − φb(r). (5)

This deviation contains the effect of the walls. The free
energy F = Fb + Fs is then expanded to second order
around its bulk value, F = F [φb] +∆F [δφ, φb],

∆F =
∫ {

[(τ + hq4
0)φb +

1
6
uφ3

b + hq2
0∇2φb]δφ

+
1
2

(τ +
1
2
uφ2

b) (δφ)2 +
1
2
h
(
∇2δφ+ q2

0δφ
)2}

d3r

+
∫ [

σδφ+ τs
(
2φbδφ+ δφ2

)]
d2rs. (6)

In the next section we investigate the parallel and per-
pendicular lamellar phases denoted as L‖ and L⊥, respec-
tively, and choose the appropriate forms for their bulk
phase φb. The free energy, equation (6), is then minimized
with respect to the correction field δφ and yields the BCP
profile.

3 Order parameter profiles

The cases of parallel L‖ and perpendicular L⊥ phases are
now considered separately.

3.1 Perpendicular lamellar phase: L⊥

Up to this point δφ and φb were not specified. For films
below the ODT (τ < 0), the perpendicular bulk phase L⊥
has the bulk periodicity d0 = 2π/q0. Its order parameter
is given in the single mode approximation (close to the
ODT) by [30]

φb(r) = φq cos(q0x) (7)

the amplitude φq = (−8τ/u)1/2 is obtained from a varia-
tional principle of the bulk free energy.

The order parameter for the perpendicular lamellae is

φ⊥(r) = φb(r) + δφ(r)
δφ(r) = w(y) + g(y) cos(q0x) (8)

where for the correction field δφ we use the single mode
ansatz. If additional modes are included in the bulk or-
der parameter, equation (7), such modes should also be
included in equation (8).

For the above choice of φb [Eq. (7)], it is now possible
to perform the x and z integration explicitly, retaining
only the y dependency in equation (6). The free energy
per unit area can be written as

∆F⊥ = ∆Fg +∆Fw (9)

where

∆Fg =
∫ {
−1

2
τg2 +

1
4
h (g′′)2

}
dy

+ τsφq(g+ + g−) +
1
2
τs(g2

− + g2
+) (10)
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and

∆Fw =
∫ {
−1

2
τw2 +

1
2
h
(
q2
0w + w′′

)2}
dy

+ σ−w− + σ+w+ + τs(w2
− + w2

+) (11)

where g± ≡ g(±L) and w± ≡ w(±L).
The amplitude function g(y) results from the surface

modification of the Flory parameter, τs ≶ 0, and it van-
ishes if τs vanishes. This can be seen by noting that if
τs = 0 then the minimum of the integral in equation (10)
is obtained for g(y) ≡ 0 (recalling that τ < 0). There is no
coupling between w(y) and g(y), since the free energy is
expanded to second order in δφ, and the mixed terms are
of higher order. The function w(y) minimizes ∆Fw sub-
ject to the condition that

∫
w(y)dy is fixed. Using λ as the

Lagrange multiplier, it satisfies an ordinary fourth order
differential equation(

q4
0 −

τ

h

)
w(y) + 2q2

0w
′′(y) + w′′′′(y)− λ

h
= 0. (12)

Similarly, the equation for g(y) is

−2τ
h
g + g′′′′ = 0. (13)

A Lagrange multiplier is not needed here because∫
g(y) cos(q0x) d3r = 0. These equations are linear in w(y)

and g(y) since the free energy, equation (6), is expanded
to second order around φb. The four boundary conditions
for g(y) are

2τsφq + 2τsg± ∓ hg′′′(±L) = 0 (14)

g′′(±L) = 0 (15)

and for w(y)

σ± + 2τsw± ∓ q2
0hw

′(±L)∓ hw′′′(±L) = 0 (16)

q2
0w± + w′′(±L) = 0 (17)∫ L

−L
w(y)dy = 0. (18)

Equation (18) expresses the condition that the total A/B
fraction is conserved,

∫
δφ(r)d3r = 0.

All coefficients in equations (12) and (13) are con-
stants, and therefore the solutions g(y) and w(y) have the
form:

w(y) = Awe−kwy +Bwekwy +A∗we−k
∗
wy +B∗wek

∗
wy

+ const. (19)

g(y) = Age−kgy +Bgekgy +A∗ge
−k∗gy +B∗gek

∗
gy (20)

where O∗ denotes the complex conjugate of the variable
O. The complex amplitudes Aw, Bw, Ag and Bg and the
constant term in equation (19) are determined from the
boundary conditions.

The complex wavevectors kw and kg are given by

k2
w = −q2

0 + (τ/h)1/2 (21)

k2
g = (2τ/h)1/2. (22)
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Fig. 1. Contour plot of the perpendicular lamellar phases be-
tween two homogeneous walls. The A monomers are shown in
light shades while the B ones are dark. In (a) the two walls
at y = ±L = ±1.5d0 are neutral, σ± = 0. Part (b) shows
the correction fields w(y) (solid line) and g(y) (dashed line)
in δφ(r) = w(y) + g(y) cos(q0x). A surface Flory parameter
which is different from the bulk value, τs > 0, causes sur-
face deviations of the lamellar structure from its bulk shape,
even for neutral walls. The Flory parameter is χN = 10.8,
τs = 0.1hq3

0 . In this and subsequent figures we use u/ρ = c = 1
and N = 1000.

In the vicinity of the ODT, τ ≈ 0, and the real and imag-
inary parts of kw = k′w + ik′′w are given approximately by

k′w ≈
α

2q0
(Nχ−Nχc)1/2 (23)

k′′w ≈ q0
(

1− α2Nχ−Nχc

8q4
0

)
(24)

where α ≡ 2q2
0/(1.95

√
3c) follows from equations (2)

and (3). The period of modulations 2π/k′′w tends to 2π/q0,
and the decay length of these modulations ξw = 1/k′w di-
verges as ξw ∼ (Nχ−Nχc)−1/2 in the limit τ → 0 [17,18].

A contour plot of the order parameter φ(x, y) =
φb(x, y) + δφ(x, y) is shown in Figure 1a, for inter-plate
separation 2L = 3d0. The two walls at y = ±L are neutral,
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Fig. 2. Same as in Figure 1, but here the two walls favor the B
monomers, σ± = 0.2hq3

0φq > 0. Monomers are rearranged near
the walls and the A/B inter-material dividing surface (IMDS)
is curved (see also Fig. 3). The preferential walls induce parallel
ordering, as w(y) 6= 0 in (b). The length scale of modulation
in (a) is determined by the functions w(y) and g(y) in (b)
[Eqs. (19) and (20)].

σ± = 0, but the surface Flory parameter deviates from its
bulk value, τs > 0. Note that the interfacial width broad-
ens close to the wall, but the A/B inter-material dividing
surface (IMDS) (defined as the surface where φ(x, y) = 0)
is perpendicular to the walls. This result is similar to the
one obtained in reference [16] (their Fig. 3), using differ-
ent methods. In Figure 1b we show the response fields
g(y) and w(y) in δφ = w(y) + g(y) cos(q0x). It is advan-
tageous for the lamellae to reduce their amplitude close
to the wall, hence, in our convention, a positive τs > 0
induces a negative g(y = 0). The amplitude of sinusoidal
modulations in φ(x, y) = w(y) + (φq + g(y)) cos(q0x) is
therefore diminished from it unperturbed value φq. In the
absence of surface fields, σ±, the w part of δφ vanishes,
w(y) = 0.

Figure 2 is similar to Figure 1, but the symmetric walls
(σ+ = σ−) are chosen here to favor the B monomers (in
dark), which partially wet them.
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Fig. 3. Parts (a) and (b) are plots of the IMDS (defined by
φ(r) = 0) of confined perpendicular L⊥ lamellae. In (a), the
two walls favor the B monomers, σ± = 0.2hq3

0φq > 0, and the
B domains are larger than the A domains at the walls. In (b)
σ− = −σ+ = 0.2hq3

0φq, and the A domains have large size at
y = −L, while the B domains are larger at y = L. The Flory
parameter is Nχ = 11 and τs = 0.1hq3

0 .

As a result, the A/B IMDS bends and intersects with
the walls at an angle which is different than 90◦. The
preferred adsorption is also seen in Figure 2b, where w(y)
is negative at the walls, w± < 0.

The copolymer contour lines are defined by the relation
φ(r) = φb(r) + δφ(r) = c, where c is a constant. Clearly,
the inter-material dividing surface (IMDS) is just the spe-
cial case with c = 0. For bulk lamellar phase the IMDS
are just parallel planar surfaces (lines in two dimensions),
but for lamellae confined in thin films the shape of these
lines is more complicated. Figure 3a shows the IMDS lines
for symmetric walls, both favoring the B monomer. As ex-
pected, the contact area of the B domains with the wall is
increased, and the IMDS lines are curved appropriately. A
different behavior is seen in Figure 3b (asymmetric walls)
where the curving of the IMDS lines is opposite at the two
surfaces because of the opposite wall interaction. The de-
viation from a perfect lamellar shape is seen as the IMDS
undulates.
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Fig. 4. Schematic drawing of the IMDS lines. The confining
walls are at y = ±L = ±d0. The dotted line is the location of
the unperturbed IMDS. The lateral deviation from this line at
the walls is ∆x. The angle between the tangent to the IMDS
and the x-axis is θ.

In general, contour lines do not run perpendicular to
the wall but rather form an angle different than 90◦ with
the surface. On contour lines having φ = const., x and y
are related by

cos q0x =
c− w(y)
φq + g(y)

· (25)

Figure 4 is a schematic presentation of the IMDS. The
dotted vertical line shows the unperturbed location of the
A/B IMDS. At the y = −L wall, the deviation ∆x of the
IMDS from this line (see Fig. 4) is

∆x

d0
=

1
2π

arccos
(
−w−
φq + g−

)
− 1

4
· (26)

The departure from the flat interface can be quite large,
for example, in Figure 3a it is ∆x/d0 ≈ 0.1. We define θ
as the angle at which the IMDS line y(x) joins the wall
at y = −L. For neutral walls, ∆x = 0 and θ = 90◦. From
equation (25) it follows that

tan θ =
dy
dx

=
q0 sin(q0∆x)(φq + g−)2

w′(−L)(φq + g−) + w−g′(−L)
· (27)

Using the same parameters as in Figure 3a, we find that
θ ≈ 80◦.

As the ODT is approached from below (τ < 0), the
lamellae can be deformed more easily. The energetic cost
of lamellae bending and compression is reduced, and the
IMDS departs appreciably from its flat shape. The effect
of temperature is clearly seen in Figure 5, where in (a)
the IMDS is plotted for Flory parameter χN = 12, while
in (b) the temperature is higher and closer to the ODT,
χN = 11, and the contour lines show stronger undula-
tions. Close to the ODT, the length scale associated with
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Y
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0
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Fig. 5. Temperature dependence of the shape of the IMDS. In
(a) the Flory parameter is χN = 12 (relatively strong segre-
gation), and the IMDS are nearly flat. As the temperature is
raised and approaches the ODT, χN = 11 in (b), the lamellae
can easily deform in accordance with the surface fields σ±. The
shape of decaying undulations is given by equation (25) with
c = 0. The parameters chosen are σ± = 0.5hq3

0 and τs = 0.

the undulation periodicity is 2π/k′′w ≈ d0 [see Eq. (24)],
but it may get much smaller as the temperature is reduced,
χ � χc. The second length scale in the system, 2π/k′w,
characterizes the decay of modulations, and it diverges at
the ODT.

3.2 Parallel lamellar phase: L‖

The alternative case of lamellar order occurs when the
lamellae are parallel to the walls, and the A/B profiles de-
pend only on the distance from the walls, φ(r) = φ(y). In
the strong stretching approximation [11,20], the lamellae
are allowed to stretch or compress in order to vary their
natural periodicity d0 according to the constraint inter-
plate separation 2L. The system can have n or n ± 1/2
lamellae between the walls, where n is the closest integer
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to 2L/d0. This strong stretching calculation motivates our
zeroth order approximation to the L‖ phase,

φb(r) = ±φq cos[q(y + L)]. (28)

Using n from above, the wavenumber is q = nπ/L or
(n + 1/2)π/L. The lamellae are stretched if q < q0 and
compressed if q > q0. The ± sign of the profile is deter-
mined by the wall interactions.

The bulk approximation for the profile, equation (28),
serves as a starting point. However, the correction field,
δφ, has an important contribution in the weak segregation.
The order parameter for the parallel phase L‖ is

φ‖(r) = φb(r) + δφ(r)

δφ(r) = w(y). (29)

The free energy (per unit area) has y-dependent terms
only. Expanded to second order in w(y), it can be writ-
ten as:

∆F‖ =
∫ [

1
2

(τ +
1
2
uφ2

b)w
2 +

1
2
h
(
q2
0w + w′′

)2]
dy

+ σ−w− + 2τsφb(−L)w− + τsw
2
−

+ σ+w+ + 2τsφb(L)w+ + τsw
2
+. (30)

Similar to the treatment of the perpendicular phase in
Section 3.1, this free energy is minimized to yield a linear
differential equation, but with y-dependent coefficients:

w′′′′(y) + 2q2
0w
′′(y)

+
[
q4
0 −

τ

h
− τ

h
cos(2qy)

]
w(y) − λ

h
= 0. (31)

The conditions imposed on w(y) are:

σ± + 2τsφb(±L) + 2τsw±
∓q2

0hw
′(±L)∓ hw′′′(±L) = 0 (32)

q2
0w(±L) + w′′(±L) = 0 (33)∫ L

−L
w(y)dy = 0 (34)

where as before λ is the Lagrange multiplier and the last
equation expresses the conservation of the relative A/B
concentration in the film. The homogeneous solution of
equation (31) has the Bloch (Floquet) form

w(y) = e−ky
∑
n

ane2inqy + e−k
∗y
∑
n

a∗ne−2inqy. (35)

A recurrence relation between the coefficients {an} is ob-
tained by substituting equation (35) in equation (31).
However, the recurrence relation converges only for spe-
cific values (eigenvalues) of k. If k is a valid eigenvalue,
then so are k∗, −k and −k∗. These four eigenvalues cor-
respond to the four independent solutions of the fourth
order differential equation, equation (31).

A useful approximation to the free energy equa-
tion (30) is obtained by replacing φ2

b by its average,

−2 −1 0 1 2

−1

0

1

Y/d
0

φ(
y)

/φ
q

(a)

−2 −1 0 1 2

−1

0
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Y/d
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φ(
y)

/φ
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Fig. 6. Concentration profiles for the confined parallel L‖
phase. Dotted line [φ = φb(y)] and solid line [φ = φb(y)+δφ(y)]
are normalized by φq. In (a) the two walls favor the B
monomers (φ < 0), σ± = 0.5hq3

0φq > 0 and the film is sym-
metric, while in (b) the film is asymmetric, σ− = −σ+ =
−0.5hq3

0φq, and the A monomers are adsorbed at the y = −L
wall. The bulk Flory parameter is χN = 10.6 and its surface
modification is τs = 0.125hq3

0 .

smeared value 〈φ2
b〉. This is equivalent to replace the po-

tential term −(τ/h) cos 2qy in equation (31) by its zero
average. The governing equation for the correction field
w(y) is then given by a linear differential equation with
constant coefficients

w′′′′(y) + 2q2
0w
′′(y) + (q4

0 − τ/h)w(y) − λ/h = 0. (36)

Under this approximation, the form of w(y) in the parallel
L‖ phase is the same as it is in the perpendicular L⊥
phase, equation (19), only the boundary conditions are
different.

Order parameter profiles are presented in Figure 6.
The dotted line is φb as obtained by the bulk approxi-
mation, equation (28), and the solid line is the full profile,
φ = φb(y)+δφ(y). In Figure 6a the interfacial interactions
are the same on both walls, σ+ = σ−, inducing a sym-
metric lamellar ordering. The difference between the two
curves is the correction field δφ(y), favoring adsorption
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of the B monomers (φ < 0) at the two walls. In Figure 6b
the film is asymmetric with σ+ = −σ−, and adsorption of
the A monomers at the y = −L wall is enhanced.

4 Free energy and stability diagram

Once the order parameter profiles for the parallel and
perpendicular lamellar phases are calculated, the corre-
sponding free energies can be evaluated by substituting
the order parameter profiles in equations (30) and (9), re-
spectively. The reference free energy F 0[φb] is calculated
by the bulk approximation. For the parallel lamellae it is
given by substituting the profile, equation (28), directly
into equation (1),

F 0
‖ [φb] =

[
1
4
τφ2

q +
1
4
h(q2

0 − q2)2φ2
q +

u

64
φ4
q

]
2L

± σ−φq ± σ+φq + 2τsφ2
q (37)

where the ±σ terms result from the choice of the bulk
order parameter φb. For the perpendicular phase L⊥, sub-
stituting the profile, equation (7), results in:

F 0
⊥[φb] =

[
1
4
τφ2

q +
u

64
φ4
q

]
2L+ τsφ

2
q

= −2Lτ2

u
+ τs

(−8τ
u

)
(38)

As a function of inter-plate separation 2L, the total
free energy F [φb + δφ] has oscillations, as depicted in
Figure 7 for symmetric film, σ− = σ+. The free energies of
the perpendicular and parallel lamellar phases (solid line
and thick solid line, equations (9) and (30), are lower than
the bulk ones F 0

‖ [φb] and F 0
⊥[φb] (dotted and dashed lines).

In Figure 7a the wall interactions are σ± = 0.4hq3
0φq, and

the free energy of the L‖ phase is slightly reduced from the
bulk approximation value. Additional minimum develops
at 2L ≈ 1.5d0. The L⊥ free energy has a marked minimum
for 2L . d0 [14], see inset. In Figure 7b the interfacial in-
teractions are smaller, σ± = 0.2hq3

0φq, and in this case
the L‖ free energy is notably lowered from the bulk ap-
proximation calculation. However, the difference between
the two curves tends to zero as 2L/d0 → ∞, because the
surface induced modulations have finite range. For both
choices of σ, the L⊥ free energy is significantly lowered
from its bulk approximation value. Note that the bulk ap-
proximation curves are similar to the curves obtained in
the strong stretching approximation.

Restricting ourselves to L‖ and L⊥ lamellar phases,
the stability diagram is constructed as a function of two
system parameters: the inter-wall separation 2L and the
surface preference σ±. In the first stage, we ignore the
correction presented above, and use F 0

‖ [φb] and F 0
⊥[φb] as

given by the bulk approximation calculation. The stability
diagram in Figure 8 is calculated for walls having a fixed
ratio of surface interaction σ+ = −2σ−. Parallel lamellae
at 2L/d0 = n, for integer n, have symmetric ordering,
while antisymmetric ordering occurs for 2L/d0 = n+ 1/2.
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Fig. 7. Film free energy per unit area as a function of inter-
plate separation 2L. Shown are the bulk approximation to the
free energy of the L⊥ phase (horizontal dashed line), bulk ap-
proximation of L‖ (dotted line), full free energy of the L⊥ (solid
line) and of the L‖ phase (thick solid line). The film is taken
to be symmetric. In (a) σ± = 0.4hq3

0φq, while in (b) the sur-
face interactions are smaller, σ± = 0.2hq3

0φq. Free energies are
measured with respect to the free energy of the bulk lamellar
phase. Inset in (a) is an enlargement of the L⊥ free energy by
a factor of 103, showing a deep minimum for 2L . d0. The
bulk Flory parameter is χN = 11 and its surface deviation is
τs = 0.35hq3

0 .

The difference in the diagram is caused by the choice of
σ’s. In Figure 8a the surface Flory parameter is the same
as the bulk one, τs = 0. For neutral walls, σ± = 0, the
perpendicular lamellae (in dark) are stable. A degeneracy
between L⊥ and L‖ phases occurs for 2L/d0 = n or n +
1
2 (n = 0, 1, 2 ...), where the parallel lamellae are not
frustrated and q = q0. The parallel lamellae (in light color)
are preferred if the surface interaction is strong enough
to overcome the lamellar stretching or compression. The
use of a weak segregation bulk approximation agrees with
previously obtained stability diagrams in intermediate and
strong segregations [15,16].

In Figure 8b we present the bulk approximation,
but now the surface Flory parameter is changed, τs =
0.1hq3

0 > 0. The L‖ phase is pushed upward and the
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Fig. 8. The stability of L‖ (in light) vs. L⊥ lamellae (in dark),
as a function of wall separation 2L and interfacial strength
σ+. The free energies are taken from equations (37) and (38),
respectively. In (a) the surface Flory parameter is the bulk
one, τs = 0, while in (b) τs = 0.1hq3

0 > 0. The L‖ phase is
pushed upward in the stability diagram in (b), removing the
degeneracy between L⊥ and L‖ that occurs for neutral walls
(σ± = 0) when τs = 0. The calculation is done by the bulk
approximation, φ(r) = φb(r). The ratio σ+/σ− = −2 is kept
constant and the Flory parameter is χN = 11.

diagram is different. Symmetric phases (2L ≈ nd0) are
pushed more than the asymmetric ones (2L ≈ (n+ 1

2 )d0)
because of our choice of surface fields σ’s. In the bulk
approximation, the free energy of unfrustrated parallel
lamellae [q = q0 in Eq. (37)] is higher than that of the
perpendicular lamellae [Eq. (38)] if the walls are neutral.
As a result, the L⊥ morphology is favored for all separa-
tions 2L, and the degeneracy is removed [15,16]. Clearly,
a surface segregation temperature different than the bulk
one (τs 6= 0) can account for the experimental lack of
this degeneracy [31]. According to the same reasoning, if
τs < 0 then the parallel phases are preferred on the ex-
pense of the L⊥ phases, and, in particular, for wall sep-
arations 2L ≈ nd0. Note that the last sentence agrees
with the different dependence on τs seen in equations (37)
and (38). For parallel lamellae, the surface term is 2τsφ2

q ,
while for perpendicular lamellae it is only τsφ2

q .

Figure 9 shows the stability diagram, where in (a) we
use the bulk approximation for symmetric σ− = σ+ film,
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Fig. 9. Stability of L‖ (in light) vs. L⊥ lamellae (in dark), com-
paring in (a) the bulk approximation [free energy Eqs. (37)
and (38)], with the full free energy in (b) (calculated from
Eq. (1) with Eqs. (29) and (8), respectively). Note that the
large σ+ behavior lies outside the range of validity of our lin-
ear model. In both parts (a) and (b) τs = 0.3hq3

0 , the Flory
parameter is χN = 10.8 and the film is symmetric, σ− = σ+.

and in (b) we used the full, and correct, order parameter
φ = φb+δφ. The parallel ordering is then always symmet-
ric. A general feature of this diagram is that the L⊥ phase
is more stable relative to the L‖ for larger surface fields
for 2L > d0. The figure also demonstrates the qualitative
agreement with the bulk approximation.

5 Conclusions

We have used a Ginzburg-Landau free energy to study
analytically the thin-film ordering of diblock copolymers
(BCP) in the weak segregation regime. The two homo-
geneous confining walls are assumed to have short-range
interactions with the BCP blocks. The free energy is ex-
panded to second order around the appropriately chosen
bulk phase, and the correction field δφ is obtained. The
use of such free energy formulation is advantageous be-
cause it offers simple analytical results and complements
numerical studies. However, our mean-field approach is
limited to a region of temperatures in the vicinity of the
ODT, but not too close to it, where critical fluctuations
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are known to be important [5]. Very close to the ODT, the
response field δφ diverges. However, if the surface Flory
parameter is different from the bulk one, τs > 0, the sur-
face has a lower ordering temperature than the bulk, and
this divergence is absent [32].

For confined parallel L‖ and perpendicular L⊥ phases,
the correction field δφ adds an enrichment layer of the
preferred component, with thickness ξ ∼ 1/kω′ diverging
at the ODT. This thickness is obtained as a special case
for patterned walls (inhomogeneous σ) studied by us be-
fore. Effects of finite chain length, however, preclude the
divergence of this thickness. In the L⊥ phase, an increase
of the surface fields σ± increases the correction field δφ,
and induces a parallel lamellar ordering until, eventually,
there is no clear distinction between L‖ and L⊥.

In general, the IMDS lines are bent and deviate from
their flat shape in bulk lamellar system. Previous works
used a phenomenological model valid in the strong segre-
gation regime, and obtained a linear equation for the devi-
ation of the IMDS. The resulting order parameter expres-
sions for the confined phases are crude, when compared to
Monte-Carlo simulations [22–24]. In the weak segregation
presented here, the order parameter itself is linearized. Us-
ing the expressions given above for φb(r) and δφ(r), one
can deduce the shape of an arbitrary equi-φ line given by
φ(r) = c. We give expressions for the angle of the IMDS
with the confining walls, and the deviation of the IMDS
from its flat shape. This deviation, characterized by de-
caying oscillations, can be quite large and can even reach
20%− 30% of the lamellar width d0. We note that in an
experimental setup whose target is to produce perpendic-
ular lamellae, system parameters should be tuned in order
to keep the lamellae as flat and parallel as possible.

The free energy as a function of wall separation 2L
is different from the bulk approximation. The free energy
of the L⊥ phase is lower than the one obtained the bulk
approximation, as is seen in Figure 7a. The curve has de-
caying oscillations and tends to a constant when 2L� d0.
The correction to the L‖ free energy has similar undula-
tory character and under different conditions its effect can
be large, as in Figure 7b. The pressure, −∂F/∂y, is differ-
ent than what is expected from the bulk approximation,
since additional maxima and minima are present in the
free energy. Our bulk approximation yields order param-
eter and energy profiles which are the same (apart from
numerical values) as those obtained by the strong stretch-
ing theory of Walton et al. and Turner [11,20].

In experiment with neutral walls, perpendicular lamel-
lae are always favored over unfrustrated parallel lamel-
lae (of period d0) [31], in contrast to the common strong
stretching prediction [11,15,20]. We first compute the bulk
stability diagram and find it similar to previous inter-
mediate and strong segregation calculations [15,16]. We
then show that proper account of the surface change of
the Flory parameter (τs > 0) can explain the experimen-
tal findings, and significantly change the stability diagram
(compare Fig. 8a to 8b). Thus, perpendicular lamellae are
expected to have the lowest free energy at all separations
2L, as in Figure 8b. We point out that if the surface or-

dering temperature is higher than the bulk ODT temper-
ature, i.e. τs < 0, the L‖ phase may become stable even
for neutral walls at 2L = nd0. However, this is yet to be
confirmed experimentally.

The stability diagram in this paper is similar to the
diagram in [15]. For symmetric walls, σ+ = σ−, the L⊥ is
found to be stable for larger σ fields than the bulk approx-
imation predicts, while for 2L ≈ d0 it is stable for smaller
σ fields.

One possible way to refine the calculation presented
here is to use a more accurate ansatz for the bulk order
parameter φb(r). Such ansatz will include more q-modes
or an amplitude other than φq, further lowering the free
energy.
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