PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Annular ballast resistor: Symmetry breaking, pinning, and coarsening
in a globally constrained reaction-diffusion system
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The wire ballast resistofBR) is one of the simplest physical systems that exhibit bistability and pattern
formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuni-
formity of the electric current density in the annular BR leads to translational symmetry breaking in the
temperature domain dynamics. As a result, the steady-state position of the domain wall is “pinned” and the
system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR
are investigated analytically and numericall$1063-651X98)02701-9

PACS numbefs): 82.40.Ck, 44.30+v

I. INTRODUCTION ary conditions(see a formulation of the problem in Seo. Il
. : Since both equations are nonlinear and the equatiow fisr

The wire ballast resistorBR) represents a current- 5154 nonjocal, the problem is quite complicated, even in the
carrying iron wire put in a gas-filled cylinder, and this device standard limit of a slow thermal diffusion that we will adhere
has been known for a long tineee Refs[1-5] and refer-  to throughout the paper. As a simple first step, we will con-
ences therein A closely related system is an electrically sider an annular geometry and assume azimuthally sym-
heated catalytic ribbof6]. For a nonlinear physicist, the BR metrical dynamics. In this cas¢ can be represented as an
is one of the simplest and reasonably well controllable sysintegral of p(T) and most of the conveniences of a one-
tems that exhibit pattern formation. Temperature dynamicglimensional BR model are restored. However, the current
along the wire is described by a reaction-diffusion equatiorflensity and therefore Joule heating are nonuniform now, as
with a small thermal diffusion term, the “reaction” term the centr_al zone of Fhe BR is _heated more than the_penphery.
being the difference between the Joule heating and NewtoﬁS we will show, this translational symmetry breaking leads
cooling rates. Because of the characteriSishaped tem- 0 important effects that are not present in the “conven-

. o .. tional” reaction-diffusion equation with bistability2,4,5,7—
perature dependence of the wire resistivity, the BR exhlbltslo]_ As an additional simp?ification we will emE)Qon a step
thermal bistability. In the constant-current regime either ho '

X . . function for the temperature dependence of the resistivity
or cold domains expand until they occupy the whole wire. (T). In this case one gets a setlifear equations forT in

On the contrary, in the constant-voltage regime, domains 0gach domain, the nonlinearity entering only via the moving
the two “phases " can coexist in a stable manner under thg,o,ndaries(“domain walls”). This simplifies the analysis
well-known “area rule” or “Maxwell construction” that  consjderably and enables one to investigate the annular BR
sets in self-consistently owing to a global constraint imposegjynamics analytically, even far from equilibrium. Section Il
on the dynamics by the constant voltage-5,7. The addresses a two-phase steady state of the annular BR. The
constant-voltage BR is therefore able to sustain long-livednain result here is a unique positiguinning) of the steady-
patterns (temperature domains However, these domains state domain wall. Because of the intrinsic nonuniformity of
(and, more generally, domains in a globally constrainecheating, the celebrated area riif§ becomes irrelevant and
bistable reaction-diffusion equatipare to some extent de- domain wall curvature insignificar{tn contrast to the con-
generate, as they are only neutrally stable with respect tgentional reaction-diffusion equati¢@—10]). Section IV ad-
translations. dresses relaxation to this two-phase steady state. Of course,
To the authors’' knowledge, no attempts have been madé&e azimuthally symmetric model of the annular BR, which
until now to extend the BR to higher dimensions. Such exe employ throughout most of the paper, is meaningful only
tensions are not straightforward, as related two- and thredf the domain wall is stable with respect to small azimuthal
dimensional scalar reaction-diffusion equations, investigate@erturbations. Linear stability of the azimuthally symmetric
recently in other context§7—10], are not applicable here. Mode of the domain wall dynamics with respect to small
Instead, one has to introduce an additional scalar field, th@Zimuthal perturbations is indeed proved in Sec. V. Section
electric potential, that enters the thermal balance equatio | shows tha.t the_ annular BR .eXh'b'tS coarsening: A tem-
through the Joule heating term. The electric potential in turdP€rature profile with two domain walls becomes simplified
is affected by the temperature field through the temperatur@nd or_lly one domam vyaII remains. Section VIl describes
dependence of the electric resistivity(T). Employing numerlcal simulations with the model and Sec. VIII summa-
Ohm'’s law and assuming that the current is quasistatic, onB%€S the results.
can reduce the problem to a set of two coupled partial dif-
ferential equations: a nonlinear parabolic equation for the
temperatureT (r,t) and an elliptic equation for the potential Let us start with a general two-dimensional BR. Using
¢(r,t) that should be solved with proper initial and bound- Ohm'’s law and assuming quasistationarity of the current dis-

IIl. GOVERNING EQUATIONS
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p1 when T<T,

p(T)= 5
P2

otherwise,

wherep,>p;, andT > T,. In this case the Joule heating term
(4) can be calculated explicitly, separately for the two tem-
perature intervals, and E¢R) decomposes into a number of
linear partial differential equations, each for the individual
domain. The matching conditions on each of the domain
walls require continuity of the temperature and of its first
derivative with respect to. The simplest two-phase steady
state of the BR is that with only one pointR(t), where
T(R,t)=T., and this point is located far enough from the
boundaries at=a andb. In this case

V2
P17 ., a<r<R(t)
(V)2 | r¥paIn(R/a)+ psiIn(b/R)]?
FIG. 1. Schematic of the annular ballast resistor. = )

g PiVo R(t)<r<b
tribution, we obtain the well-known elliptic equation for the r p,In(Ria) + pyIn(R/b)]?’ ( '
electric potential: (6)

Vo) Therefore, we obtain two equations, one for the central
v 7 =0 1) (*hot” ) zone, the other for the peripheréicold” ) zone.

Rewriting these equations in a dimensionless form, we get
This nonlocal equation is coupled, through the temperature- )
dependent resistivity(T), to the heat balance equation that S 1_|_ T4 a’P3
accounts for_ the Joule heating, Newton’s cooling, and ther- e r2[In(R/a) +&In(b/R) ]2’
mal conduction:

aT (V)2 a<r<R(t) (79)

ot

—A(T—Ty) +V-(«VT), 2
a’p3?

rZ[In(R/a)+eIn(b/R)]?’

. . . . Tt:Trr+lTr_T+
wherec is the heat capacity per unit areajs thermal con- r
ductivity, T, is a(constant temperature of the environment,
andA= const. R(t)<r<b, (7b)

In the following, we consider a planar annular BR: a thin
conducting annulus whose inner and outer circumferenceghere indicest andr mean the corresponding derivatives.
have radiia andb and are kept at constant electric potentialsWe have sek= const; introduced the following scaled vari-
0 andV,, respectively(see Fig. L If we assume azimuthal ables: radiusr=r/3s,,, time t=At/c, and temperaturel
symmetry, Eq(1) yields =(T—To)/(T.—T,) and the following scaled parameters:

e=pilpy, P1=Pye, 8,=(xIA)Y? and

' ’ r—1 !
fap[T(r 1) dr vy

¥ " alepa(TeTo 7

¢(r,1)=Vg ®

b H
f p[T(r’,t)](r")~tdr’
: and omitted the carets. The inner and outer rackindb of

wherer is the radial coordinate. The Joule heating term enihe annular BR and the domain wall positiBnare normal-

tering Eq.(2) takes the form ized accordingly. For concreteness, let the inner and outer
circumferences be kept at constant temperatures. In the
(V)2 VSP[T(M)] scaled units,T(r=a,t)=T;,>1 and T(r=b,t)=Ty,;<1.
= 5 5 (4)  The matching conditions require continuity ®fand T, at
P rZ[I p[T(r',H)](r") "L dr’ r=Rwith T(r=R,t)=1.
a

. . . . . Il. TWO-PHASE STEADY STATE
and we are left with Eq(2), a nonlinear integro-differential

equation in partial derivatives. The nonlocality enters now A two-phase steady-state solution of EG8. (depicted in
through the integral of the temperature-dependent resistivit{Fig. 2) corresponds to a hot central domain and cold periph-
p all over the system. A further simplification is achieved eral domain being in equilibrium, with a fixed domain wall
when the characteristiS-type temperature dependence of positionR=R, . In general, there are two boundary layers
the resistivityp(T) is approximated by a step function close to the boundaries=a andr =b. Because of linearity,
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Now consider the hot part of the domain wall. Mathemati-
cally, we assume thaR—r<R and replaca by R in the
denominator of the Joule heating term. Equati@a be-
comes

2p2
aP;

T+ -0
R In(R/a) + In(b/R)]?

11

This equation is immediately solved and the solution has two
arbitrary constants. We set one of them equal to zero in order
to match the solution with the large-scale soluti@® and
eliminate the divergence at large negativeR. The second
constant is found from the conditiol(r =R) =1. The result

is

Temperature

o—

2p2
. < _ a3 r—R

: TSw=|1—
oW R In(R/a)+ eIn(b/R) 12
Radius a2P2

+ . 12
FIG. 2. Annular BR with a single azimuthally symmetric do- R7[In(R/a)+&In(b/R)]? 12

main wall. Regions | and VI are the inner and outer boundary

layers, and regions Il and V correspond to the large-scale tempera-

ture profiles, regions Il and IV are the inner and outer parts of theSimilarly, we solve the equation for the steady-state bound-

domain wall. ary layer near =a. Here we replace by a in the heating
term of Eq.(7a), solve the resulting equation, and find two

Egs. (7) with T,=0 can be solved exactly in terms of the arbitrary constants by matching the solution with the large-

Bessel functions. Instead, we will obtain a simpler approxi-scale solution(9) and using the boundary conditiof(r

mate solution by the matched asymptotic expandibh) =a)=T;,. The resultis

based on the assumption that the characteristic domain wall

width &, (which is of order unity in the scaled variablas

much less than the “size of the systerh’] by which we will < T ang acr
usually mean the domain size. BL— | 'inT 3 2|€

It can be checked that the terms includifigcan always ReLIn(R/a) +&In(b/R)]
be neglectedin contrast to the conventional globally con- P2
strained reaction-diffusion equation with bistability, where + 5 (13
the curvature correction proves to be importght10]). Far [In(R/a)+eln(b/R)]

from the domain wall and from the boundaries one can also

neglect theT,, terms. The resulting “large-scale” steady- ) . : .
state solutiorT s is The composite approximatidi 1] makes it possible to com-

prise the thredoverlapping asymptoticg9), (12), and(13)
in a single approximation, valid for the whole central domain
a’P3 asr<R:

Ts= 9
Y r2[In(R/a)+ eIn(b/R) ]2 ®
P3
i T<r=| Tin— e’
for the central domain and [ln(R/a)+8|n(b/R)]2
a2P2
T, i (10) +(1_R2 In(R/ 2| oRTE) S
= +
ST 2 In(R/a) + sIn(b/R) ]2 [In(R/a)+eln(b/R)]
a’pP3
, : , , , + : (14)
for the peripheral domain. In the dimensional variables the r’[In(R/a)+In(b/R)]?

temperature profileg9) and (10) are independent of the

value of thermal diffusivityx. They develop during the rapid

first stage of the dynamics, whose duration is of orclex The same procedure for the peripheral donRiar<b
(see Sec. V. yields the composite approximation
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azpi ] I | I
- — erfb
b?[In(R/a)+ In(b/R)]?

Tisr= ( Tout
V2b/g

[2/(1+¢)]” b/a

a2P2
+ ( 1— ! ) eRr
R?[In(R/a) + ¢In(b/R)]?

a’p3?
+ . (15)
r[In(R/a)+eIn(b/R)]? b/a

The first term corresponds to the boundary layer meab,
the second one to the cold part of the domain wall, and the
third to the large-scale solution. The expressionsTpLg
andT, g satisfy the continuity of the temperaturerat R.

Now we use the continuity of, and find the equilibrium
position of the domain walR=R, . The main contribution
to the derivativeT, in this region is from the domain wall 1
terms. Therefore, differentiating Eqel4) and (15) withre- [T et
spect tor and equating them at=R, , we arrive at the =

algebraic equation — ,
/ [2e/(1+€)]”

P/In(b/a)

R,

:aP2 2

(16)

1+8)1l2

|R*+| b
na snR*

0.0 0.2 0.4 0.6 0.8 1.0
The left-hand side of Eq.16) is a monotonically increasing €
function of R, ; therefore, if a solution witta<R, <b ex- . :
ists, it is single. One can check that such a solution exists i{sh';ﬁ]' i:'gr':;?éotr;]eoglae;'esﬁngsm?;l t;;ﬂi{i;ﬁ ;‘teady state
the scaled voltag®, obeys the double inequality z

2\ 1/2 112 ral result following from the large-scale solution. We will
2¢ b 2 b : . . .
In—<P,< Zn=. (17)  @ssume in the following that is not too close to unity.
1t+e a 1+e] a a The second limite=0 is much more meaningful, as it

simulates a transition from a normal metal to superconductor
For P, outside the interval specified by the double inequality[2]. In the annular BR, the normal phase will be represented
(17), R, formally goes beyond the system boundaries, whictpy the central domain and superconducting phase by the pe-
means nonexistence of a two-phase steady state. The regi@igheral domain. Fore=0, Eq. (16) for the domain wall
of the plane of the control parameters,P,) where a two-  |gcation can be rewritten as
phase steady state exists is shown in Fig. 3. Equdtién
implies that, in contrast to the wire BR, the steady-state do- R, R, P,
main wall is “pinned”: The wall position depends solely on a In? = E (19
the system parametefscaled voltage, resistivity ratio, and
geometric dimensionsnd is independent, within broad lim-
its, of the initial temperature profile.

Equations(14) and (15), with R, found from Eq.(16),

imply coexistence of the hot and cold domains only if each b b
of the equations describes a monotonically decreasing func- P,< V2= In—. (20
tion of r. These conditions can be represented as a double a a
inequality, imposed oIR, :

The left inequality in Eq(17) is satisfied automatically now,
while the right one takes the form

Also, in view of Eqg.(19), the double inequality18) is sat-

isfied automatically in this case.

P 1/2<R—* |nR—*+ |n£ <P (18)
2& a a & R 2.

*

IV. RELAXATION TO STEADY STATE

Now let us briefly discuss two limiting cases=1 ande Now let us turn to relaxation of a single domain wall
=0. The first limit is not very interesting, as it correspondstowards the two-phase steady state. As we will check later,
to a temperature-independent resistiviynd hence no bista- our basic inequality,, <L (in the physical unitsmeans that
bility). One must expect here a single one-phase domain athere are two different time scales in the dynamics and the
over the systenfwith boundary layers at the endst is easy  relaxation consists of two stages, similar to the conventional
to check that the composite approximatiofigl) and (15) reaction-diffusion equation, exhibiting bistabilit{4,5,7].
indeed yield this result, as the domain wall terms vanish inThe cooling(heating time scalec/A is “fast.” During the

both equations, while the large-scale terms become identicaflast first stage, the annular BR develops hot and cold regions,
Also, Eq.(16) predictsR, =aP,/In(b/a) in this case: a natu- corresponding to the initial condition, and a domain wall
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parts of the temperature profiles of each of the domains arg(r >R(t),t)=
described by the steady-state res¢®sand(10), but with a
time-dependenR(t). We are mainly interested in the subse-

between them. By the end of the fast stage, the large-scale ( azpi )
Tout b

T b2[In(Ria) + eIn(b/R)J?) -

guent, much slower, diffusion stadeith a time scale of 1 asz S (—R)
1/2. . _ e

order Lc/(kA)*% see late}, when R(t) approa_ches _|ts R2[In(R/a) + eIn(b/R) ]2

steady-state valu®, , and the temperature profile adjusts

accordingly. The moving domain wall can be described by a 22p2

traveling-wave solution with a slowly varying speedt): 1 (24)

+ :
T(r,t)=0(¢), whereé=r— ['v(t")dt’. The speed is related r?[In(R/a)+¢In(b/R)]?
to the domain wall positionR(t)=v. Let us start with the

; : - Naturally, in the case of =0 (that is,u™=+1) andR=R
hot part of th . Aft bstitut Eq. *
(70a) F;:;d(; e moving domain wa er substitution, £q we recover our steady-state resuyltd) and(15).

To complete the solution, we should fif{t). An equa-
202 tion for R is obtained from the requirement that the deriva-
a’P3 =0. (21 tive T, is continuous atr =R(t). Again, only the domain
r[In(R/a)+eIn(b/R)]? wall terms contribute significantly to the derivative. In this
way we obtain

Treating the slowly varying (t) and R(t) as constant, we (

can easily solve this linear equation. In much the same way +
as for the two-phase steady state, the domain wall solutio
has to match the large-scale solution. Therefore, one of the

- a’P3 )
R?[In(R/a)+ &In(b/R)]?

two arbitrary constants vanishes, while the other is deter- a2p?
mined by the conditior® (¢£=0)=1. Returning to the origi- =u | 1-— 5| (25
nal variablesr andt and settingr ~R(t), we arrive at the RIn(R/a)+&In(b/R)]
following temperature profile for the hot part of the domain Let us define an auxiliary variable
wall:
a’p?
T 1 ang u(r—-R) - Rz[ln(R/a)JrsIn(b/R)]Z
=|1- e - _
bw R[In(R/a)+ In(b/R) ]2 f(R)= 222 - (29
2p2 1= 2
N aP; 22 R In(R/a) +&In(b/R)]
R7[In(R/a)+&In(b/R)]? Now, solving Eq.(25) for v, we obtain
where R=up(R)=f"12—f12 (27)
A steady state of Eq27) isv=0 or f(R)=1. It is easy to
_ [.2
wt= vEVuTH4 check that this value of indeed corresponds to the steady-
2 state solutionR=R, of Eqg. (16). Notice that Eq.(27) is

meaningful only if 0<f(R)< +. These conditions can be
For the hot-side boundary layer we obtain the same result agpresented as a double inequality
in Sec. lll, but with a time-dependef(t) instead ofR, . R/ R b
Finally, we can write the following co_mposi_te approximation P,e 1/2<_< In— + sln—) <P, (28)
for the slowly evolving central domain regiasr<R(t): a R

that coincides in its form with the criteriofi8) of monoto-
nicity of the temperature profile. However, this time it is
applied to a time-dependent value of the radusOne can
check that the first-order ordinary differential equati@7)
describes relaxation oR(t) towards the fixed pointR
a2P§ WH-R) =R, . In the “physical” space, the domain wall approaches
1= R2[In(R/a) + sIn(b/R) ] its (pinned steady-state position. As ER7) is solvable in
quadrature folR(t), this completes, in principle, an analyti-

P
[In(R/a)+&In(b/R)]?

Tr<R(t),t)={ Tj,—

a?p2 cal description of a single domain wall relaxation. Notice
5 > (23)  that we have not used any close proximityPto the fixed
re[In(R/a)+eIn(b/R)] point R, . If we want to use it, we can linearize ER7)
aroundR=R, :

The reader can easily follow the same steps and get the so-
lution for the peripheral domaiR(t)<r=<b. In this case, the

d
resulting composite approximation reads gt (R™Re)=~T(R=R,), (29)
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8(1)<1 andm=1,2,... is theazimuthal number of the
perturbation.

As before, we start with finding the electric potential from
Eqg. (1). The potential is zero at=a, while the whole region
between the domain wall locatioR(6,t) and external
boundaryr=b represents an equipotential surfage=V,.
Therefore, in the step-function approximatit) for the re-
sistivity, the problem is reduced to solving the Dirichlet
problem for Laplace’s equation in a slightly deformed annu-
lus. Using the smallness af, we are looking for a small
0-dependent correction to the potential that is linear with

d)(r,@) = d)O(r) + 5¢1(r!0)1 Where
_Voln(r/a)
%" In(Ry/a)

is the unperturbed potential. Obviouskp; must vanish at
FIG. 4. Annular BR with a small deviation from the azimuthal r=a. At the domain wall location we have

symmetry.
d(r=R(0))= do(r =R(0))+ 5¢1(r=R(6))=V,.

where (32

This can be expanded in smallto yield, in the first order of

_4(1+8)[|n(R* /a)+eln(b/R,)+1—¢] 30 5,
 (1—¢)R,[In(R, /a)+eIn(b/R,)] (30
It is seen thal’>0, soR=R, is indeed a stable fixed point. ! 0 In(Ro/a) "

I' is the characteristic relaxation rate of the system. The r
laxation time is of orderl "=0O(L !)>1. In physical
units, T "*~Lc/(«A)¥2 which, in view of our basic as-
sumptioné,,/L<1, is indeed much longer than the cooling
(heating time c/A. This strong inequality justifies our treat- Mo ~2m.—m
ment of R(t) andv(t) as slow variables while deriving Egs. &i(r,0)=— Vo(r™+a™r _T)cosmd )
(23) and (24). (Ry—a?R, MIn(Ry/a)
Let us return to the double inequali(28). Actually, it is ) )
satisfied automatically by the end of the fast first stage of thd he next step is to calculate the heating te¥i)?/p. (We
dynamics, when terms including can be neglected. To will omit the indices inp, and P, in this section. We obtain
prove it, one should formally solve Eq&), with all r de- 2 2 2 2
rivatives neglected, for an arbitrary initial temperature profile(v¢) - (Vo t V1) - (Vo) "+ 26V o Ve + O(57) .
and then proceed to the limit of-. Finally, in the case of p p p
£=0 (coexistence of a normal metal and superconductor (35
the left inequality is always satisfied, while the right one
takes the form

e- . .
The problem is therefore reduced to solving Laplace’s equa-
tion for ¢, in the circular annuluaa<r<R,, but with a
#-dependent boundary condition rat R,. The solution is

(34

In polar coordinatesV ¢, has only a radial component, so
only the radial component df ¢, survives the dot product.
Therefore, keeping only terms linear with respectstand

EInE< P, (31) writing the result in a scaled form as before, we arrive at
a a '
(Vg)?  a’P? [ (r™+a?"r ~™)cosné
V. AZIMUTHAL STABILITY P rAn%(Ry/a)? RI—a?"R,™
(36)

Until now we have dealt with the azimuthally symmetric
steady state and dynamics of the annular BR. A questioifhe second term on the right-hand side of E3§) describes
arises whether these are stable with respect to small devia reduction of the Joule heating, as a function of the polar
tions from this symmetry. To answer this question, we con-angle, in the regions where the external boundary is more
sider the same azimuthally symmetric annulus, keep thdistant. This is understandable, as for the same voNgga
same boundary conditions for the voltage, but impose amore distant boundary means a larger resistance and hence a
small azimuthal perturbation on the temperature profile. Fosmaller electric current and Joule heating. At this stage, we
simplicity, we will limit ourselves to the case @f=0 (co- can intuitively predict the resulting temperature dynamics.
existence of a normal metal and supercondyctoonsider a Let the domain wall slightly protrude outward for some
small, time-dependent harmonic perturbation of the azimuthvalue of the polar angle. As we have just seen, the protrusion
ally symmetric domain wall locatioRy(t) (see Fig. 4 In  zone gets less heat. As a result, the cold peripheral domain of
polar coordinates R(6,t) =Ry(t)[1+ &(t)cosnd], where the BR will invade this region, forcing the protrusion to re-
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treat. Therefore, we can expect the azimuthally symmetric Hot phase
domain wall dynamics to be stable. f

To show it more formally, let us turn to the heat balance :
equation Cold:

phase

1 1 (Vo)?
Tt:Trr+FTf+_2T“_T+ P r<R(6) (37)
r

__ Cold phase__,.

1 1
Tt:Tfr+FTr+ _zng_T, r>R(0),
r

Temperature
o

with the (V¢)?/p term from Eq.(36). As before, all the
diffusion terms are negligible outside thfeveakly curved
domain wall. Inside the domain wall, the curvature terms are
negligible, as well as the new term, containifig,, that
includes a large parameter of ordef in the denominator
[12]. The resulting equation does not include ahgeriva-
tives, so# (entering the Joule heating terrserves as a pa- : :
rameter only. Therefore, relaxation towards the two-phase a R R b
steady state proceeds in much the same way asfo®, but Radius

this time the domain wall speed and profile @dependent.
We will limit ourselves to the domain wall dynamics. They
can be described by a traveling-wave solutid(r, 6,t)

=0(r— [t dt’), where v=v(6,t)=R(6,t)=Ry+(Ryd

FIG. 5. Annular BR with two concentric domain walls, located
atr=R; andr=R,.

R _ o Ry+a2™R; ™ aP |
Rod)cosmé. The substitution yields ®(Ry)=| 1+m— 0
R(r)n_ aZmRO m\ RgIn(Ry/a)
[Vo(r=Ry,6)]
(39 B Roln(Ry/a) e “n

O+ v0,~0=0, r<R(6).
A negative would mean instability, a positivg stability.

Notice that after the substitution of=R,, the Joule heating ©One can see thab,(R,) is a quadratic function of the ar-
term in the first of Eq(38) becomes independent, while the gument{aP/[RoIn(Ry/a)]}* and this function is always posi-
6 dependence is preserved. The next steps are identical tye. Therefore,3>0 and azimuthal symmetry is restored
those implemented in Sec. IIl. We fiff}~ gy andT,—g  after a small perturbation.
from Eq.(38), determine the.™ exponents, and require con-
tinuity of T,. Solving the resulting algebraic relation for

we obtain VI. TWO-INTERFACE DYNAMICS AND COARSENING
(V)2 A “natural” state of the wire BR observed in experiment
) is that with a hot domain sandwiched between two cold do-
p (39) mains[1-3|. The presence of two domain walls in the wire

BR lasts for an exponentially long time with respect to
L/é, . A question arises whether two domain walls can co-
exists in an annular BR. We will show in this section that the

with the heating term from Eq(36), evaluated at=R,. As  answer to this question is negative.

we are interested in a small deviation from the azimuthal Consider an azimuthally symmetric initial temperature
symmetry, we expand the right-hand side of E89) in profile with two domain walls, concentric with the annulus
small 5. The zeroth-order term yields Eq7) for Ry, as  (see Fig. 5 The domain walls’ locations are denoted Ry

expected. In first order we obtain after some algebra th@ndR;, whereR;<R;. The hot phase zone now lies between
equations+ 88=0, where two cold phases. The domain walls can move inward or out-

ward in the annulus, each with its own speed. As a result, the
2 _ap hot zone can expand, shrink, or move as a whole. For sim-
_ 1} P, (Ry) (40) plicity, we will assume that the cold phase is superconduct-
ing (p1=0 and hence=0 andP;=0). The Joule heating
takes place only in the hot zone and each of the two cold
and zones has a trivialzero-temperatujdarge-scale behavior.

U=WQ1

p

IB:RlH aP
0 |\ RyIn(Ry/a)
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The heating terni4) takes the form 3.0 , . : .
R' =R’ exp(-V2/R") SRS
aZPZ
(V) | 35—, RuO<r<Ry(0) \ [ NN
=9 ran(R,/Ry)? (42) 25l |
"Ik —r? , SN
0 otherwise. R'=R"exp(-/R',)

S

The (slowly varying domain wall speeds are given hy A

=R; andv,=R,. Accordingly, there are twg variables in 2or 1
the traveling-wave solutions. To get the full solution of the SRR

problem, one needs to solve three simple linear equations for s/ R'ERY

the temperature, for each of the three zones, and implement o sk i

separate matched asymptotics expansion procedures for each ir S

of the domain walls and for the two boundary layers. We

will limit ourselves to finding the domain walls’ speeds. This

time one has two pairs gi exponents, one pair for each of 10
the domain walls:

. —vli\/vlz+4 . —vzi\/v§+4

SN

SN

5SS\

M=% 2T 0.5 .
In the region of the first domain wall the temperature profile L
is
0-00 0 0I5 1I0 1I5 2I0 2I5 3.0
22p? - 22p? . . .R' . ) . .
Tep=|1-———|eqal"ROIy — 1
1 RZIN(R,/R;)? RZIn(R,/R;)?
(43 FIG. 6. Phase portrait of the dynamical systetb).
R The scaled dynamical syst_em5) _does not include any
Ti<r,=€M v parameters. It can be conveniently investigated on the phase
plane R;,R;) (see Fig. 6. SinceR,>R;, we are only in-
For the second domain wall terested in the 45°—90° sector of the first quadrant. Because
of symmetry of Egs.(45), the phase trajectories cross the
a’p? S Ry(0)] a’p? straight lineR,=R] at a right angle. Next, not the whole
Tr<g,=| 1~ R2N(R,/R,)> e 2t R2N(R,/R,)?’ 45°-90° sector is legitimate, since the expression under the
N 2ih 2 1(44) square root in the denominator of E¢5b) must be positive.
This implies that the relevant part of the phase plane is
S Tr—Ry(D] bounded from above by the lii®, = Ryexp(— v2/R}), along
Tr=g, =2t 720 which all “arrows” point vertically down. Another impor-

tant line is that for which R,=0, that is, R;
=Rjexp(—-1/Rj), and the arrows point horizontally to the
Aeft along this line. The resulting phase portrait is shown in

Fig. 6. After an initial period of timgduring whichR, may
, , S, temporarily increase with timeall generic phase points ap-
ﬂ: _ 1- Rlzan(RZ/Rl) proach a universal trajectory, on whi&j andR; both de-
dr R; In(Ré/Ri)[Z—RiZ InZ(RélRi)]m' crease with time. In the physical space it corresponds to mo-
(453 tion of the hot domain as a whole inward along a universal
path. It is clear from this analysis that no steady state with

Now we use the continuity of, for each of the two domain

we arrive at two coupled equations

dRr. 1-R}2 IN2(R,/R)) two domain walls is possible. The first domain waharac-
2o _ 2 — 2 ~ S —, (45b  terized byR;) enters the inner boundary layer first. Of
d7 R} In(RY/R)[2—Ry? IN*(RY/RY)] course, the equation fd®, ceases to be valid when the dif-

ference R;—a approachessd,,. At that time one should

where we have introduced new scaled raRﬁi= R; /aP\/E, switch to Eq.(27) for the single-wall dynamics.
i=1 and 2, and timer= \/Et/aP. Also, we have denoted Overall, we can interpret the results of this section as
P,=P. universal coarsening in the annular BR. Indeed, for most

Equations(45) describe interaction between two domain initial conditions, the coarsening proceeds along a universal
walls. The interaction is relatively strong, as its characteristigpath in the phase plane. Finally, only the second domain wall
time is of the same order as the one-wall relaxation timesurvives, while the first one is “absorbed” by the inner
I'"1. This time is proportional td./5,,, in contrast to the boundary layer and disappears. This coarsening process was
wire BR where the corresponding interaction time is expo-verified by numerical simulations with the full thermal bal-
nentially long with respect to this parameter. ance equatiorisee the next sectipn
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FIG. 7. Numerical simulations of a single domain wall forma- | =
tion and dynamics in the annular BR. Shown are the normalized
temperature profiles of the BR versus time. The dashed line repre-
sents the initial profile, while the solid lines correspond 00.75 110
(profile 1), 1.5(2), 2.25(3), and 18.75(4). Time is measured in
normalized units. The theoretical steady-state profile is shown by
circles. The parameters aRy=0.33 ande =0.3.

VII. NUMERICAL SIMULATIONS 100 L 1 L
0 5 10 15 20

The aim of numerical simulations was to verify the pre- Time
dictions of the asymptotic theory of the annular BR that was
presented in the previous sections. The first set of simula- FIG. 8. Same as in Fig. 7, but shown are the dynamics of the
tions included a single domain wall. Here we worked with adomain wall position found numericallfsolid line) and predicted
scaled thermal balance equati6f in each of the two re- by theory(dotted line.
gions and employed an implicit scheme of finite differences.
At each time step we foun® [from the conditionT(R,t) large-scale temperature profile develops, while the domain
=1], and then calculated the heating terms for each of thavall acquires the shape predicted by the theory. It is seen that
regionsT<1 andT>1. Then we propagated the temperatureat long times the temperature profile approaches the theoret-
profiles in each of the regions, updated the valuRodind so  ical steady-state profile described by E(s}) and(15) with
on. The process continued until a steady state was reachdd, from Eq.(16) (this profile is indicated by circlgsFigure
In the simulations with two domain wall¢he second set of 8 shows the domain wall positidR(t) as found in the simu-
simulations we employed a similar equation with three lations(solid line) and by solving Eq(27) (dotted ling. The
separate regions. Here we fouRd and R,, calculated the results agree within 1%we usedN=100 in this example
heating terms in each of the three regions, propagated the The second set of simulations dealt with the dynamics of
solution, updated the values Bf andR,, and so on. Fixed- two domain walls. Results of one simulation are shown in
temperature boundary conditions were used in all simulaFig. 9. The initial temperature profile is shown by the dashed
tions. line, the profiles at subsequent times by solid lines. Similar

As all lengths in the problem were scaled by, we to the one-wall case, the large-scale profile develops rapidly.
chose the inner and outer radii and b of order 1¢ (to  Correspondingly, two pronounced domain walls appear. The
satisfy the inequality/5,>1). The number of divisionsl ~ walls are moving to the leftinward. Finally, the “left”
was also of order ) with typical values 100, 150, and 200. domain wall (the one withR,) is absorbed by the inner
In most simulations an increase Nffrom 150 to 200 did not boundary layer and disappears as predicted. A more quanti-
result in a noticeable increase of accuracy. We used differerigtive comparison with the theory includes the dynamics of
values of the parameter. The value of the heating param- the domain wall radiR,(t) andR,(t) as seen in the phase
eter P, was chosen to comply with the double inequality Plane R;,R;). Figure 10 showsR;, as a function ofR; as
(17) so as to allow the steady-state domain wall to reside ofiound in the simulationgsolid line) and predicted by the
the interval @,b). dynamical system(45) with the proper initial conditions

In the first set of simulations we started with a linear (dashed ling The comparison shows a good agreement.
temperature profile and, after a short transient, compared thlso, we checked that different initial conditions with two
numerically found domain wall position as a function of time domain walls approach during coarsening the same “univer-
R(t) and the overall temperature profile with those predictedsal” path in the phase planeR{,Ry).
by our theory. Special emphasis was put on checking the
steady-state position of the domain wRl] . Typical simu-
lation results are shown in Fig. 7, where the initial tempera-
ture profile (dashed ling and profiles at subsequent times  We have studied an annular ballast resistor: a simple but
(solid lineg are shown. After a transient, a characteristicnontrivial physical system that shows bistability and pattern

VIIl. SUMMARY



168 BARUCH MEERSON AND YOAV TSORI 57

4.5 -

(o]
-
3
et
@ . : gt
(0] :
Q. ! o
& :
(¢b] .
l— 6|[514 3 21 !
RIS | 8 SO RO SO RO FRUURUURUURUURUUIOS | W NUUUR LS OO i
0 C 1 ‘ 4.0 1
100 110 120 130 140 150 3.0 3.5 40
- )
Radius R,

FIG. 9. Numerical simulations of two domain walls’ formation FIG. 10. Same as in Fig. 9, but shown are the dynamics in the
and dynamics. Shown are the normalized temperature profiles of thehase planeR;,R,) of the domain wall positions found numeri-
BR versus time. The dashed line represents the initial profile, whileally (solid line) and predicted by theorgdotted line.
the solid lines correspond to=14.06 (profile 1), 18.75(2), 42.2
(3), 45.6 (4), 75.0 (5), and 103.1(6). The parameters ar®,  pylus is absorbed by the inner boundary layer and disap-
=0.43 ande =0. pears. The coarsening dynamics proceeds along a universal

path in the phase pland’(,R;), whereR; andR; are the
formation. The nonuniformity of the electric current density (scaled domain walls’ radii.
in the annular BR breaks translational symmetry of the tem- Our choice of a simple, steplike function for the tempera-
perature domains. This leads to a number of important efture dependence of the resistivity has enabled us to study all
fects. First, the steady-state position of the domain wall ighese effects analytically. The main results of the theory were
pinned, that is, uniquely determined by the parameters of theerified by numerical simulations. It would be interesting to
system. Second, this steady state is nonlinearly stable witbtudy these effects in experiment.
respect to radial displacements and a domain wall ap-
proachgs it as a traveling wave .with a slowly vgrying speed. ACKNOWLEDGMENT
In addition, the steady state is linearly stable with respect to
azimuthal perturbations. Third, the annular BR exhibits This work was supported in part by a grant from Israel
coarsening. Two domain walls cannot be in equilibrium andScience Foundation, administered by the Israel Academy of
the domain wall that is closer to the inner radius of the an-Sciences and Humanities.

[1] V.V. Barelko, V.M. Beibutyan, Yu.E. Volodin, and Ya.B. Zel- 93, 733(1989.
dovich, Dokl. Akad. Nauk SSSR57, 339(1981) [Sov. Phys. [7] B. Meerson and P.V. Sasorov, Phys. Re\63: 3491(1996.
Dokl. 26, 335(1981)]. [8] L. Schimansky-Geier, Ch. Zicke, and E. Schiy Z. Phys. B
[2] A.VI. Gurevich and R.G. Mints, Rev. Mod. Phy&9, 941 84, 433(199)).
(1989. [9] J. Rubinstein and P. Sternberg, IMA J. Appl. Ma#8, 249
[3] N. Bujanos, J. Pearson, W.D. McCormick, and W. (1992.
Horsthemke, Phys. Lett. A27, 138(1988. [10] B. Meerson and I. Mitkov, Phys. Rev. ¥, 4644(1996.
[4] F.-J. Elmer, Phys. Rev. A1, 4174(1990. [11] E.J. Hinch, Perturbation Methods(Cambridge University
[5] A.S. Mikhailov, Foundations of Synergetics I. Distributed Ac- Press, Cambridge, 1991
tive Systems$Springer-Verlag, Berlin, 1990 [12] One can check that this new term gives an additional contri-

[6] L. Lobban, G. Philippou, and D. Luss, J. Phys. Chem. bution to damping of the azimuthal perturbations.



