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Annular ballast resistor: Symmetry breaking, pinning, and coarsening
in a globally constrained reaction-diffusion system

Baruch Meerson and Yoav Tsori
The Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 2 September 1997!

The wire ballast resistor~BR! is one of the simplest physical systems that exhibit bistability and pattern
formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuni-
formity of the electric current density in the annular BR leads to translational symmetry breaking in the
temperature domain dynamics. As a result, the steady-state position of the domain wall is ‘‘pinned’’ and the
system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR
are investigated analytically and numerically.@S1063-651X~98!02701-9#

PACS number~s!: 82.40.Ck, 44.30.1v
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I. INTRODUCTION

The wire ballast resistor~BR! represents a current
carrying iron wire put in a gas-filled cylinder, and this devi
has been known for a long time~see Refs.@1–5# and refer-
ences therein!. A closely related system is an electrical
heated catalytic ribbon@6#. For a nonlinear physicist, the BR
is one of the simplest and reasonably well controllable s
tems that exhibit pattern formation. Temperature dynam
along the wire is described by a reaction-diffusion equat
with a small thermal diffusion term, the ‘‘reaction’’ term
being the difference between the Joule heating and New
cooling rates. Because of the characteristicS-shaped tem-
perature dependence of the wire resistivity, the BR exhi
thermal bistability. In the constant-current regime either
or cold domains expand until they occupy the whole wi
On the contrary, in the constant-voltage regime, domain
the two ‘‘phases ’’ can coexist in a stable manner under
well-known ‘‘area rule’’ or ‘‘Maxwell construction’’ that
sets in self-consistently owing to a global constraint impo
on the dynamics by the constant voltage@1–5,7#. The
constant-voltage BR is therefore able to sustain long-liv
patterns ~temperature domains!. However, these domain
~and, more generally, domains in a globally constrain
bistable reaction-diffusion equation! are to some extent de
generate, as they are only neutrally stable with respec
translations.

To the authors’ knowledge, no attempts have been m
until now to extend the BR to higher dimensions. Such
tensions are not straightforward, as related two- and th
dimensional scalar reaction-diffusion equations, investiga
recently in other contexts@7–10#, are not applicable here
Instead, one has to introduce an additional scalar field,
electric potential, that enters the thermal balance equa
through the Joule heating term. The electric potential in t
is affected by the temperature field through the tempera
dependence of the electric resistivityr(T). Employing
Ohm’s law and assuming that the current is quasistatic,
can reduce the problem to a set of two coupled partial
ferential equations: a nonlinear parabolic equation for
temperatureT(r ,t) and an elliptic equation for the potentia
f(r ,t) that should be solved with proper initial and boun
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ary conditions~see a formulation of the problem in Sec. II!.
Since both equations are nonlinear and the equation forf is
also nonlocal, the problem is quite complicated, even in
standard limit of a slow thermal diffusion that we will adhe
to throughout the paper. As a simple first step, we will co
sider an annular geometry and assume azimuthally s
metrical dynamics. In this casef can be represented as a
integral of r(T) and most of the conveniences of a on
dimensional BR model are restored. However, the curr
density and therefore Joule heating are nonuniform now
the central zone of the BR is heated more than the periph
As we will show, this translational symmetry breaking lea
to important effects that are not present in the ‘‘conve
tional’’ reaction-diffusion equation with bistability@2,4,5,7–
10#. As an additional simplification, we will employ a ste
function for the temperature dependence of the resisti
r(T). In this case one gets a set oflinear equations forT in
each domain, the nonlinearity entering only via the movi
boundaries~‘‘domain walls’’!. This simplifies the analysis
considerably and enables one to investigate the annular
dynamics analytically, even far from equilibrium. Section
addresses a two-phase steady state of the annular BR.
main result here is a unique position~pinning! of the steady-
state domain wall. Because of the intrinsic nonuniformity
heating, the celebrated area rule@5# becomes irrelevant and
domain wall curvature insignificant~in contrast to the con-
ventional reaction-diffusion equation@7–10#!. Section IV ad-
dresses relaxation to this two-phase steady state. Of co
the azimuthally symmetric model of the annular BR, whi
we employ throughout most of the paper, is meaningful o
if the domain wall is stable with respect to small azimuth
perturbations. Linear stability of the azimuthally symmet
mode of the domain wall dynamics with respect to sm
azimuthal perturbations is indeed proved in Sec. V. Sec
VI shows that the annular BR exhibits coarsening: A te
perature profile with two domain walls becomes simplifi
and only one domain wall remains. Section VII describ
numerical simulations with the model and Sec. VIII summ
rizes the results.

II. GOVERNING EQUATIONS

Let us start with a general two-dimensional BR. Usi
Ohm’s law and assuming quasistationarity of the current d
159 © 1998 The American Physical Society
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160 57BARUCH MEERSON AND YOAV TSORI
tribution, we obtain the well-known elliptic equation for th
electric potential:

¹•S ¹f

r D50. ~1!

This nonlocal equation is coupled, through the temperatu
dependent resistivityr(T), to the heat balance equation th
accounts for the Joule heating, Newton’s cooling, and th
mal conduction:

c
]T

]t
5

~¹f!2

r
2A~T2T0!1¹•~k¹T!, ~2!

wherec is the heat capacity per unit area,k is thermal con-
ductivity, T0 is a ~constant! temperature of the environmen
andA5 const.

In the following, we consider a planar annular BR: a th
conducting annulus whose inner and outer circumferen
have radiia andb and are kept at constant electric potenti
0 andV0, respectively~see Fig. 1!. If we assume azimutha
symmetry, Eq.~1! yields

f~r ,t !5V0

E
a

r

r@T~r 8,t !#~r 8!21 dr8

E
a

b

r@T~r 8,t !#~r 8!21 dr8

, ~3!

wherer is the radial coordinate. The Joule heating term
tering Eq.~2! takes the form

~¹f!2

r
5

V0
2r@T~r ,t !#

r 2F E
a

b

r@T~r 8,t !#~r 8!21 dr8G2 ~4!

and we are left with Eq.~2!, a nonlinear integro-differentia
equation in partial derivatives. The nonlocality enters n
through the integral of the temperature-dependent resist
r all over the system. A further simplification is achieve
when the characteristicS-type temperature dependence
the resistivityr(T) is approximated by a step function

FIG. 1. Schematic of the annular ballast resistor.
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r~T!5H r1 when T,Tc

r2 otherwise,
~5!

wherer2.r1 andTc.T0. In this case the Joule heating ter
~4! can be calculated explicitly, separately for the two te
perature intervals, and Eq.~2! decomposes into a number o
linear partial differential equations, each for the individu
domain. The matching conditions on each of the dom
walls require continuity of the temperature and of its fi
derivative with respect tor . The simplest two-phase stead
state of the BR is that with only one pointr 5R(t), where
T(R,t)5Tc , and this point is located far enough from th
boundaries atr 5a andb. In this case

~¹f!2

r
55

r1V0
2

r 2@r2ln~R/a!1r1ln~b/R!#2
, a,r ,R~ t !

r1V0
2

r 2@r2ln~R/a!1r1ln~R/b!#2
, R~ t !,r ,b.

~6!

Therefore, we obtain two equations, one for the cen
~‘‘hot’’ ! zone, the other for the peripheral~‘‘cold’’ ! zone.
Rewriting these equations in a dimensionless form, we g

Tt5Trr 1
1

r
Tr2T1

a2P2
2

r 2@ ln~R/a!1« ln~b/R!#2
,

a,r ,R~ t ! ~7a!

Tt5Trr 1
1

r
Tr2T1

a2P1
2

r 2@ ln~R/a!1« ln~b/R!#2
,

R~ t !,r ,b, ~7b!

where indicest and r mean the corresponding derivative
We have setk5const; introduced the following scaled var
ables: radiusr̂ 5r /dw , time t̂5At/c, and temperatureT̂
5(T2T0)/(Tc2T0) and the following scaled parameter
«5r1 /r2 , P15P2A«, dw5(k/A)1/2, and

P25
V0

a@kr2~Tc2T0!#1/2
; ~8!

and omitted the carets. The inner and outer radiia andb of
the annular BR and the domain wall positionR are normal-
ized accordingly. For concreteness, let the inner and o
circumferences be kept at constant temperatures. In
scaled units,T(r 5a,t)5Tin.1 and T(r 5b,t)5Tout,1.
The matching conditions require continuity ofT and Tr at
r 5R with T(r 5R,t)51.

III. TWO-PHASE STEADY STATE

A two-phase steady-state solution of Eqs.~7! ~depicted in
Fig. 2! corresponds to a hot central domain and cold peri
eral domain being in equilibrium, with a fixed domain wa
position R5R* . In general, there are two boundary laye
close to the boundariesr 5a andr 5b. Because of linearity,
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57 161ANNULAR BALLAST RESISTOR: SYMMETRY . . .
Eqs. ~7! with Tt50 can be solved exactly in terms of th
Bessel functions. Instead, we will obtain a simpler appro
mate solution by the matched asymptotic expansion@11#
based on the assumption that the characteristic domain
width dw ~which is of order unity in the scaled variables! is
much less than the ‘‘size of the system’’L, by which we will
usually mean the domain size.

It can be checked that the terms includingTr can always
be neglected~in contrast to the conventional globally con
strained reaction-diffusion equation with bistability, whe
the curvature correction proves to be important@7–10#!. Far
from the domain wall and from the boundaries one can a
neglect theTrr terms. The resulting ‘‘large-scale’’ steady
state solutionTLS is

TLS
, 5

a2P2
2

r 2@ ln~R/a!1« ln~b/R!#2
~9!

for the central domain and

TLS
. 5

a2P1
2

r 2@ ln~R/a!1« ln~b/R!#2
~10!

for the peripheral domain. In the dimensional variables
temperature profiles~9! and ~10! are independent of the
value of thermal diffusivityk. They develop during the rapid
first stage of the dynamics, whose duration is of orderc/A
~see Sec. IV!.

FIG. 2. Annular BR with a single azimuthally symmetric d
main wall. Regions I and VI are the inner and outer bound
layers, and regions II and V correspond to the large-scale temp
ture profiles, regions III and IV are the inner and outer parts of
domain wall.
-

all

o

e

Now consider the hot part of the domain wall. Mathema
cally, we assume thatR2r !R and replacer by R in the
denominator of the Joule heating term. Equation~7a! be-
comes

Trr 2T1
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2
50. ~11!

This equation is immediately solved and the solution has
arbitrary constants. We set one of them equal to zero in o
to match the solution with the large-scale solution~9! and
eliminate the divergence at large negativer 2R. The second
constant is found from the conditionT(r 5R)51. The result
is

TDW
, 5S 12

a2P2
2

R2@ ln~R/a!1« ln~b/R!#2D er 2R

1
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2
. ~12!

Similarly, we solve the equation for the steady-state bou
ary layer nearr 5a. Here we replacer by a in the heating
term of Eq.~7a!, solve the resulting equation, and find tw
arbitrary constants by matching the solution with the larg
scale solution~9! and using the boundary conditionT(r
5a)5Tin . The result is

TBL
, 5S Tin2

a2P2
2

R2@ ln~R/a!1« ln~b/R!#2D ea2r

1
P2

2

@ ln~R/a!1« ln~b/R!#2
. ~13!

The composite approximation@11# makes it possible to com
prise the three~overlapping! asymptotics~9!, ~12!, and~13!
in a single approximation, valid for the whole central doma
a<r<R:

Tr ,R5S Tin2
P2

2

@ ln~R/a!1« ln~b/R!#2D ea2r

1S 12
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2D er 2R

1
a2P2

2

r 2@ ln~R/a!1« ln~b/R!#2
. ~14!

The same procedure for the peripheral domainR<r<b
yields the composite approximation

y
ra-
e
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162 57BARUCH MEERSON AND YOAV TSORI
Tr .R5S Tout2
a2P1

2

b2@ ln~R/a!1« ln~b/R!#2D er 2b

1S 12
a2P1

2

R2@ ln~R/a!1« ln~b/R!#2D eR2r

1
a2P1

2

r 2@ ln~R/a!1« ln~b/R!#2
. ~15!

The first term corresponds to the boundary layer nearr 5b,
the second one to the cold part of the domain wall, and
third to the large-scale solution. The expressions forTr .R
andTr ,R satisfy the continuity of the temperature atr 5R.

Now we use the continuity ofTr and find the equilibrium
position of the domain wallR5R* . The main contribution
to the derivativeTr in this region is from the domain wal
terms. Therefore, differentiating Eqs.~14! and ~15! with re-
spect tor and equating them atr 5R* , we arrive at the
algebraic equation

R* S ln
R*
a

1« ln
b

R*
D5aP2S 11«

2 D 1/2

. ~16!

The left-hand side of Eq.~16! is a monotonically increasing
function of R* ; therefore, if a solution witha,R* ,b ex-
ists, it is single. One can check that such a solution exis
the scaled voltageP2 obeys the double inequality

S 2«2

11« D 1/2

ln
b

a
<P2<S 2

11« D 1/2b

a
ln

b

a
. ~17!

For P2 outside the interval specified by the double inequa
~17!, R* formally goes beyond the system boundaries, wh
means nonexistence of a two-phase steady state. The re
of the plane of the control parameters («,P2) where a two-
phase steady state exists is shown in Fig. 3. Equation~16!
implies that, in contrast to the wire BR, the steady-state
main wall is ‘‘pinned’’: The wall position depends solely o
the system parameters~scaled voltage, resistivity ratio, an
geometric dimensions! and is independent, within broad lim
its, of the initial temperature profile.

Equations~14! and ~15!, with R* found from Eq.~16!,
imply coexistence of the hot and cold domains only if ea
of the equations describes a monotonically decreasing fu
tion of r . These conditions can be represented as a do
inequality, imposed onR* :

P2«1/2,
R*
a S ln

R*
a

1« ln
b

R*
D,P2 . ~18!

Now let us briefly discuss two limiting cases:«51 and«
50. The first limit is not very interesting, as it correspon
to a temperature-independent resistivity~and hence no bista
bility !. One must expect here a single one-phase domain
over the system~with boundary layers at the ends!. It is easy
to check that the composite approximations~14! and ~15!
indeed yield this result, as the domain wall terms vanish
both equations, while the large-scale terms become ident
Also, Eq.~16! predictsR* 5aP2 /ln(b/a) in this case: a natu
e
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ral result following from the large-scale solution. We w
assume in the following that« is not too close to unity.

The second limit«50 is much more meaningful, as
simulates a transition from a normal metal to supercondu
@2#. In the annular BR, the normal phase will be represen
by the central domain and superconducting phase by the
ripheral domain. For«50, Eq. ~16! for the domain wall
location can be rewritten as

R*
a

ln
R*
a

5
P2

A2
. ~19!

The left inequality in Eq.~17! is satisfied automatically now
while the right one takes the form

P2<A2
b

a
ln

b

a
. ~20!

Also, in view of Eq.~19!, the double inequality~18! is sat-
isfied automatically in this case.

IV. RELAXATION TO STEADY STATE

Now let us turn to relaxation of a single domain wa
towards the two-phase steady state. As we will check la
our basic inequalitydw!L ~in the physical units! means that
there are two different time scales in the dynamics and
relaxation consists of two stages, similar to the conventio
reaction-diffusion equation, exhibiting bistability@4,5,7#.
The cooling~heating! time scalec/A is ‘‘fast.’’ During the
fast first stage, the annular BR develops hot and cold regi
corresponding to the initial condition, and a domain w

FIG. 3. Region of existence of the two-phase steady s
~shown in gray! in the plane of control parameters« andP2.
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57 163ANNULAR BALLAST RESISTOR: SYMMETRY . . .
between them. By the end of the fast stage, the large-s
parts of the temperature profiles of each of the domains
described by the steady-state results~9! and~10!, but with a
time-dependentR(t). We are mainly interested in the subs
quent, much slower, diffusion stage@with a time scale of
order Lc/(kA)1/2; see later#, when R(t) approaches its
steady-state valueR* , and the temperature profile adjus
accordingly. The moving domain wall can be described b
traveling-wave solution with a slowly varying speedv(t):
T(r ,t)5Q(j), wherej5r 2* tv(t8)dt8. The speed is related
to the domain wall position:Ṙ(t)5v. Let us start with the
hot part of the moving domain wall. After substitution, E
~7a! reads

Qjj1vQj2Q1
a2P2

2

r 2@ ln~R/a!1« ln~b/R!#2
50. ~21!

Treating the slowly varyingv(t) and R(t) as constant, we
can easily solve this linear equation. In much the same w
as for the two-phase steady state, the domain wall solu
has to match the large-scale solution. Therefore, one of
two arbitrary constants vanishes, while the other is de
mined by the conditionQ(j50)51. Returning to the origi-
nal variablesr and t and settingr'R(t), we arrive at the
following temperature profile for the hot part of the doma
wall:

TDW
, 5S 12

a2P2
2

R2@ ln~R/a!1« ln~b/R!#2D em1~r 2R!

1
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2
, ~22!

where

m65
2v6Av214

2
.

For the hot-side boundary layer we obtain the same resu
in Sec. III, but with a time-dependentR(t) instead ofR* .
Finally, we can write the following composite approximatio
for the slowly evolving central domain regiona<r<R(t):

T„r ,R~ t !,t…5S Tin2
P2

2

@ ln~R/a!1« ln~b/R!#2D ea2r

1S 12
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2D em1~r 2R!

1
a2P2

2

r 2@ ln~R/a!1« ln~b/R!#2
. ~23!

The reader can easily follow the same steps and get the
lution for the peripheral domainR(t)<r<b. In this case, the
resulting composite approximation reads
le
re

a

y
n
e

r-

as

o-

T„r .R~ t !,t…5S Tout2
a2P1

2

b2@ ln~R/a!1« ln~b/R!#2D er 2b

1S 12
a2P1

2

R2@ ln~R/a!1« ln~b/R!#2D em2~r 2R!

1
a2P1

2

r 2@ ln~R/a!1« ln~b/R!#2
. ~24!

Naturally, in the case ofv50 ~that is,m6561) andR5R*
we recover our steady-state results~14! and ~15!.

To complete the solution, we should findR(t). An equa-
tion for Ṙ is obtained from the requirement that the deriv
tive Tr is continuous atr 5R(t). Again, only the domain
wall terms contribute significantly to the derivative. In th
way we obtain

m1S 12
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2D
5m2S 12

a2P1
2

R2@ ln~R/a!1« ln~b/R!#2D . ~25!

Let us define an auxiliary variable

f ~R!52

12
a2P1

2

R2@ ln~R/a!1« ln~b/R!#2

12
a2P2

2

R2@ ln~R/a!1« ln~b/R!#2

. ~26!

Now, solving Eq.~25! for v, we obtain

Ṙ5v~R!5 f 21/22 f 1/2. ~27!

A steady state of Eq.~27! is v50 or f (R)51. It is easy to
check that this value off indeed corresponds to the stead
state solutionR5R* of Eq. ~16!. Notice that Eq.~27! is
meaningful only if 0, f (R),1`. These conditions can b
represented as a double inequality

P2«1/2,
R

aS ln
R

a
1« ln

b

RD,P2 ~28!

that coincides in its form with the criterion~18! of monoto-
nicity of the temperature profile. However, this time it
applied to a time-dependent value of the radiusR. One can
check that the first-order ordinary differential equation~27!
describes relaxation ofR(t) towards the fixed pointR
5R* . In the ‘‘physical’’ space, the domain wall approach
its ~pinned! steady-state position. As Eq.~27! is solvable in
quadrature forR(t), this completes, in principle, an analyt
cal description of a single domain wall relaxation. Noti
that we have not used any close proximity ofR to the fixed
point R* . If we want to use it, we can linearize Eq.~27!
aroundR5R* :

d

dt
~R2R* !52G~R2R* !, ~29!
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where

G5
4~11«!@ ln~R* /a!1« ln~b/R* !112«#

~12«!R* @ ln~R* /a!1« ln~b/R* !#
. ~30!

It is seen thatG.0, soR5R* is indeed a stable fixed poin
G is the characteristic relaxation rate of the system. The
laxation time is of orderG215O(L21)@1. In physical
units, G21;Lc/(kA)1/2, which, in view of our basic as
sumptiondw /L!1, is indeed much longer than the coolin
~heating! time c/A. This strong inequality justifies our trea
ment ofR(t) andv(t) as slow variables while deriving Eqs
~23! and ~24!.

Let us return to the double inequality~28!. Actually, it is
satisfied automatically by the end of the fast first stage of
dynamics, when terms includingk can be neglected. To
prove it, one should formally solve Eqs.~7!, with all r de-
rivatives neglected, for an arbitrary initial temperature pro
and then proceed to the limit oft→`. Finally, in the case of
«50 ~coexistence of a normal metal and superconduct!,
the left inequality is always satisfied, while the right o
takes the form

R

a
ln

R

a
,P2 . ~31!

V. AZIMUTHAL STABILITY

Until now we have dealt with the azimuthally symmetr
steady state and dynamics of the annular BR. A ques
arises whether these are stable with respect to small de
tions from this symmetry. To answer this question, we c
sider the same azimuthally symmetric annulus, keep
same boundary conditions for the voltage, but impose
small azimuthal perturbation on the temperature profile.
simplicity, we will limit ourselves to the case of«50 ~co-
existence of a normal metal and superconductor!. Consider a
small, time-dependent harmonic perturbation of the azimu
ally symmetric domain wall locationR0(t) ~see Fig. 4!. In
polar coordinates R(u,t)5R0(t)@11d(t)cosmu#, where

FIG. 4. Annular BR with a small deviation from the azimuth
symmetry.
e-

e

n
ia-
-
e
a
r

-

d(t)!1 and m51,2, . . . is theazimuthal number of the
perturbation.

As before, we start with finding the electric potential fro
Eq. ~1!. The potential is zero atr 5a, while the whole region
between the domain wall locationR(u,t) and external
boundaryr 5b represents an equipotential surfacef5V0.
Therefore, in the step-function approximation~5! for the re-
sistivity, the problem is reduced to solving the Dirichl
problem for Laplace’s equation in a slightly deformed ann
lus. Using the smallness ofd, we are looking for a small
u-dependent correction to the potential that is linear withd:
f(r ,u)5f0(r )1df1(r ,u), where

f05
V0ln~r /a!

ln~R0 /a!

is the unperturbed potential. Obviously,f1 must vanish at
r 5a. At the domain wall location we have

f„r 5R~u!…5f0„r 5R~u!…1df1„r 5R~u!…5V0 .
~32!

This can be expanded in smalld to yield, in the first order of
d,

f1~r 5R0!.2
V0cosmu

ln~R0 /a!
. ~33!

The problem is therefore reduced to solving Laplace’s eq
tion for f1 in the circular annulusa,r ,R0, but with a
u-dependent boundary condition atr 5R0. The solution is

f1~r ,u!52
V0~r m1a2mr 2m!cosmu

~R0
m2a2mR0

2m!ln~R0 /a!
. ~34!

The next step is to calculate the heating term (¹f)2/r. ~We
will omit the indices inr2 andP2 in this section.! We obtain

~¹f!2

r
5

~¹f01d¹f1!2

r
5

~¹f0!212d¹f0•¹f11O~d2!

r
.

~35!

In polar coordinates,¹f0 has only a radial component, s
only the radial component of¹f1 survives the dot product
Therefore, keeping only terms linear with respect tod and
writing the result in a scaled form as before, we arrive at

~¹f!2

r
5

a2P2

r 2ln2~R0 /a!2F122dm
~r m1a2mr 2m!cosmu

R0
m2a2mR0

2m G .

~36!

The second term on the right-hand side of Eq.~36! describes
a reduction of the Joule heating, as a function of the po
angle, in the regions where the external boundary is m
distant. This is understandable, as for the same voltageV0 a
more distant boundary means a larger resistance and he
smaller electric current and Joule heating. At this stage,
can intuitively predict the resulting temperature dynami
Let the domain wall slightly protrude outward for som
value of the polar angle. As we have just seen, the protrus
zone gets less heat. As a result, the cold peripheral doma
the BR will invade this region, forcing the protrusion to r
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treat. Therefore, we can expect the azimuthally symme
domain wall dynamics to be stable.

To show it more formally, let us turn to the heat balan
equation

Tt5Trr 1
1

r
Tr1

1

r 2
Tuu2T1

~¹f!2

r
, r ,R~u! ~37!

Tt5Trr 1
1

r
Tr1

1

r 2
Tuu2T, r .R~u!,

with the (¹f)2/r term from Eq. ~36!. As before, all the
diffusion terms are negligible outside the~weakly curved!
domain wall. Inside the domain wall, the curvature terms
negligible, as well as the new term, containingTuu , that
includes a large parameter of orderL2 in the denominator
@12#. The resulting equation does not include anyu deriva-
tives, sou ~entering the Joule heating term! serves as a pa
rameter only. Therefore, relaxation towards the two-ph
steady state proceeds in much the same way as form50, but
this time the domain wall speed and profile areu dependent.
We will limit ourselves to the domain wall dynamics. The
can be described by a traveling-wave solutionT(r ,u,t)
5Q(r 2* tv dt8), where v5v(u,t)5Ṙ(u,t)5R0̇1(R0̇d
1R0ḋ)cosmu. The substitution yields

Qjj1vQj2Q1
@¹f~r 5R0 ,u!#2

r
50, r ,R~u!

~38!

Qjj1vQj2Q50, r ,R~u!.

Notice that after the substitution ofr 5R0, the Joule heating
term in the first of Eq.~38! becomesr independent, while the
u dependence is preserved. The next steps are identic
those implemented in Sec. III. We findTr .R(u) andTr ,R(u)
from Eq.~38!, determine them6 exponents, and require con
tinuity of Tr . Solving the resulting algebraic relation forv,
we obtain

v5

~¹f!2

r
22

F ~¹f!2

r
21G1/2, ~39!

with the heating term from Eq.~36!, evaluated atr 5R0. As
we are interested in a small deviation from the azimut
symmetry, we expand the right-hand side of Eq.~39! in
small d. The zeroth-order term yields Eq.~27! for R0, as
expected. In first order we obtain after some algebra
equationḋ1bd50, where

b5R0
21F S aP

R0ln~R0 /a! D
2

21G23/2

Fm~R0! ~40!

and
ic

e

e

to

l

e

Fm~R0!5S 11m
R0

m1a2mR0
2m

R0
m2a2mR0

2mD S aP

R0ln~R0 /a! D
4

23S aP

R0ln~R0 /a! D
2

12. ~41!

A negativeb would mean instability, a positiveb stability.
One can see thatFm(R0) is a quadratic function of the ar
gument$aP/@R0ln(R0 /a)#%2 and this function is always posi
tive. Therefore,b.0 and azimuthal symmetry is restore
after a small perturbation.

VI. TWO-INTERFACE DYNAMICS AND COARSENING

A ‘‘natural’’ state of the wire BR observed in experimen
is that with a hot domain sandwiched between two cold
mains@1–3#. The presence of two domain walls in the wi
BR lasts for an exponentially long time with respect
L/dw . A question arises whether two domain walls can c
exists in an annular BR. We will show in this section that t
answer to this question is negative.

Consider an azimuthally symmetric initial temperatu
profile with two domain walls, concentric with the annulu
~see Fig. 5!. The domain walls’ locations are denoted byR1
andR2, whereR1,R2. The hot phase zone now lies betwe
two cold phases. The domain walls can move inward or o
ward in the annulus, each with its own speed. As a result,
hot zone can expand, shrink, or move as a whole. For s
plicity, we will assume that the cold phase is supercondu
ing (r150 and hence«50 andP150). The Joule heating
takes place only in the hot zone and each of the two c
zones has a trivial~zero-temperature! large-scale behavior.

FIG. 5. Annular BR with two concentric domain walls, locate
at r 5R1 and r 5R2.
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The heating term~4! takes the form

~¹f!2

r
5H a2P2

2

r 2ln~R2 /R1!2
, R1~ t !,r ,R2~ t !

0 otherwise.

~42!

The ~slowly varying! domain wall speeds are given byv1

5Ṙ1 andv25Ṙ2. Accordingly, there are twoj variables in
the traveling-wave solutions. To get the full solution of t
problem, one needs to solve three simple linear equations
the temperature, for each of the three zones, and implem
separate matched asymptotics expansion procedures for
of the domain walls and for the two boundary layers. W
will limit ourselves to finding the domain walls’ speeds. Th
time one has two pairs ofm exponents, one pair for each o
the domain walls:

m1
65

2v16Av1
214

2
, m2

65
2v26Av2

214

2
.

In the region of the first domain wall the temperature pro
is

Tr>R1
5F12

a2P2

R1
2ln~R2 /R1!2Gem1

2
@r 2R1~ t !#1

a2P2

R1
2ln~R2 /R1!2

,

~43!

Tr<R1
5em1

1
@r 2R1~ t !#.

For the second domain wall

Tr<R2
5F12

a2P2

R2
2ln~R2 /R1!2Gem2

1
@r 2R2~ t !#1

a2P2

R2
2ln~R2 /R1!2

,

~44!

Tr>R2
5em2

2
@r 2R2~ t !#.

Now we use the continuity ofTr for each of the two domain
walls and obtain two algebraic relations. After some algeb
we arrive at two coupled equations

dR18

dt
52

12R18
2ln2~R28/R18!

R18 ln~R28/R18!@22R18
2 ln2~R28/R18!#1/2

,

~45a!

dR28

dt
5

12R28
2 ln2~R28/R18!

R28 ln~R28/R18!@22R28
2 ln2~R28/R18!#1/2

, ~45b!

where we have introduced new scaled radiiRi85Ri /aPA2,
i 51 and 2, and timet5A2t/aP. Also, we have denoted
P25P.

Equations~45! describe interaction between two doma
walls. The interaction is relatively strong, as its characteri
time is of the same order as the one-wall relaxation ti
G21. This time is proportional toL/dw , in contrast to the
wire BR where the corresponding interaction time is exp
nentially long with respect to this parameter.
or
nt

ach

,

c
e

-

The scaled dynamical system~45! does not include any
parameters. It can be conveniently investigated on the ph
plane (R18 ,R28) ~see Fig. 6!. SinceR28.R18 , we are only in-
terested in the 45° –90° sector of the first quadrant. Beca
of symmetry of Eqs.~45!, the phase trajectories cross th
straight lineR285R18 at a right angle. Next, not the whol
45° –90° sector is legitimate, since the expression under
square root in the denominator of Eq.~45b! must be positive.
This implies that the relevant part of the phase plane
bounded from above by the lineR185R28exp(2A2/R28), along
which all ‘‘arrows’’ point vertically down. Another impor-
tant line is that for which Ṙ2850, that is, R18
5R28exp(21/R28), and the arrows point horizontally to th
left along this line. The resulting phase portrait is shown
Fig. 6. After an initial period of time~during whichR28 may
temporarily increase with time!, all generic phase points ap
proach a universal trajectory, on whichR18 andR28 both de-
crease with time. In the physical space it corresponds to
tion of the hot domain as a whole inward along a univer
path. It is clear from this analysis that no steady state w
two domain walls is possible. The first domain wall~charac-
terized by R1) enters the inner boundary layer first. O
course, the equation forR1 ceases to be valid when the di
ference R12a approachesdw . At that time one should
switch to Eq.~27! for the single-wall dynamics.

Overall, we can interpret the results of this section
universal coarsening in the annular BR. Indeed, for m
initial conditions, the coarsening proceeds along a unive
path in the phase plane. Finally, only the second domain w
survives, while the first one is ‘‘absorbed’’ by the inne
boundary layer and disappears. This coarsening process
verified by numerical simulations with the full thermal ba
ance equation~see the next section!.

FIG. 6. Phase portrait of the dynamical system~45!.
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VII. NUMERICAL SIMULATIONS

The aim of numerical simulations was to verify the pr
dictions of the asymptotic theory of the annular BR that w
presented in the previous sections. The first set of sim
tions included a single domain wall. Here we worked with
scaled thermal balance equation~7! in each of the two re-
gions and employed an implicit scheme of finite differenc
At each time step we foundR @from the conditionT(R,t)
51#, and then calculated the heating terms for each of
regionsT,1 andT.1. Then we propagated the temperatu
profiles in each of the regions, updated the value ofR, and so
on. The process continued until a steady state was reac
In the simulations with two domain walls~the second set o
simulations! we employed a similar equation with thre
separate regions. Here we foundR1 and R2, calculated the
heating terms in each of the three regions, propagated
solution, updated the values ofR1 andR2, and so on. Fixed-
temperature boundary conditions were used in all simu
tions.

As all lengths in the problem were scaled bydw , we
chose the inner and outer radiia and b of order 102 ~to
satisfy the inequalityL/dw@1). The number of divisionsN
was also of order 102, with typical values 100, 150, and 200
In most simulations an increase ofN from 150 to 200 did not
result in a noticeable increase of accuracy. We used diffe
values of the parameter«. The value of the heating param
eter P2 was chosen to comply with the double inequal
~17! so as to allow the steady-state domain wall to reside
the interval (a,b).

In the first set of simulations we started with a line
temperature profile and, after a short transient, compared
numerically found domain wall position as a function of tim
R(t) and the overall temperature profile with those predic
by our theory. Special emphasis was put on checking
steady-state position of the domain wallR* . Typical simu-
lation results are shown in Fig. 7, where the initial tempe
ture profile ~dashed line! and profiles at subsequent time
~solid lines! are shown. After a transient, a characteris

FIG. 7. Numerical simulations of a single domain wall form
tion and dynamics in the annular BR. Shown are the normali
temperature profiles of the BR versus time. The dashed line re
sents the initial profile, while the solid lines correspond tot50.75
~profile 1!, 1.5 ~2!, 2.25 ~3!, and 18.75~4!. Time is measured in
normalized units. The theoretical steady-state profile is shown
circles. The parameters areP250.33 and«50.3.
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large-scale temperature profile develops, while the dom
wall acquires the shape predicted by the theory. It is seen
at long times the temperature profile approaches the theo
ical steady-state profile described by Eqs.~14! and~15! with
R* from Eq.~16! ~this profile is indicated by circles!. Figure
8 shows the domain wall positionR(t) as found in the simu-
lations~solid line! and by solving Eq.~27! ~dotted line!. The
results agree within 1%~we usedN5100 in this example!.

The second set of simulations dealt with the dynamics
two domain walls. Results of one simulation are shown
Fig. 9. The initial temperature profile is shown by the dash
line, the profiles at subsequent times by solid lines. Sim
to the one-wall case, the large-scale profile develops rapi
Correspondingly, two pronounced domain walls appear. T
walls are moving to the left~inward!. Finally, the ‘‘left’’
domain wall ~the one withR1) is absorbed by the inne
boundary layer and disappears as predicted. A more qua
tative comparison with the theory includes the dynamics
the domain wall radiiR1(t) andR2(t) as seen in the phas
plane (R2 ,R1). Figure 10 showsR2 as a function ofR1 as
found in the simulations~solid line! and predicted by the
dynamical system~45! with the proper initial conditions
~dashed line!. The comparison shows a good agreeme
Also, we checked that different initial conditions with tw
domain walls approach during coarsening the same ‘‘univ
sal’’ path in the phase plane (R1 ,R2).

VIII. SUMMARY

We have studied an annular ballast resistor: a simple
nontrivial physical system that shows bistability and patte

d
e-

y

FIG. 8. Same as in Fig. 7, but shown are the dynamics of
domain wall position found numerically~solid line! and predicted
by theory~dotted line!.
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168 57BARUCH MEERSON AND YOAV TSORI
formation. The nonuniformity of the electric current dens
in the annular BR breaks translational symmetry of the te
perature domains. This leads to a number of important
fects. First, the steady-state position of the domain wal
pinned, that is, uniquely determined by the parameters of
system. Second, this steady state is nonlinearly stable
respect to radial displacements and a domain wall
proaches it as a traveling wave with a slowly varying spe
In addition, the steady state is linearly stable with respec
azimuthal perturbations. Third, the annular BR exhib
coarsening. Two domain walls cannot be in equilibrium a
the domain wall that is closer to the inner radius of the

FIG. 9. Numerical simulations of two domain walls’ formatio
and dynamics. Shown are the normalized temperature profiles o
BR versus time. The dashed line represents the initial profile, w
the solid lines correspond tot514.06 ~profile 1!, 18.75 ~2!, 42.2
~3!, 45.6 ~4!, 75.0 ~5!, and 103.1~6!. The parameters areP2

50.43 and«50.
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nulus is absorbed by the inner boundary layer and dis
pears. The coarsening dynamics proceeds along a univ
path in the phase plane (R18 ,R28), whereR18 and R28 are the
~scaled! domain walls’ radii.

Our choice of a simple, steplike function for the tempe
ture dependence of the resistivity has enabled us to stud
these effects analytically. The main results of the theory w
verified by numerical simulations. It would be interesting
study these effects in experiment.
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FIG. 10. Same as in Fig. 9, but shown are the dynamics in
phase plane (R1 ,R2) of the domain wall positions found numer
cally ~solid line! and predicted by theory~dotted line!.
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