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Abstract: Electromagnetic pulse propagation in the slow light regime and near a zero group
velocity point is relevant to a plethora of potential applications, and has analogies in numerous
other wave systems. Unfortunately, the standard frequency-based formulation for pulse propagation
is unsuitable for describing the dynamics in such regimes, due to the divergence of the dispersion
coefficients. Moreover, in the presence of absorption, it is not clear how to interpret the propagation
dynamics due to the drastic change induced by absorption upon the dispersion curves. As a
remedy, we present an alternative momentum-based formulation, which is rapidly converging
in these regimes, and naturally suitable for lossy and nonlinear media. It is specialized to
a waveguide geometry which provides a significant simplification with respect to existing
momentum-based schemes. Doing so, we provide a somewhat alternative, yet intuitive picture
of the seeming enhanced absorption and nonlinear response in these regimes, and show that
light-matter interactions are not enhanced in the slow/stopped light regimes.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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including semiconductors.
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1. Introduction

Electromagnetic waves with slow propagation velocities (slow light) were observed and used in the
microwave range as early as the 1940s [1]. In recent decades, slow light was demonstrated also at
optical frequencies [2–7], and it was even shown that the light can nearly be brought to a standstill
(“stopped light”) [8–10]. As a result, various potential applications emerged, including in particular
optical memory in optical communication systems [6, 11–13], nonlinear optics [7, 14–21],
Brillouin scattering [22, 23], and more recently, quantum computing [10, 24–29], e.g., based on
electromagnetic induced transparency [2, 3, 8, 9, 30–32]; Additional potential applications are
tissue imaging [33], sensing [34], low threshold lasing [35–39], photochemistry [40,41] and even
tabletop cosmology [42]. Slow and stopped light regimes occur also in other wave systems like
acoustic waves [43–45], spin waves [46], water waves [47], quantum/matter waves [48, 49] etc..

Slow light has been demonstrated in various platforms, including atomic vapours [2, 3, 30, 31],
solids [50], and various photonic structures, such as Bragg gratings, photonic crystal fibers and
waveguides etc., see [4–7,51, 52].

In many studies (especially, in the context of atomic vapours), pulse propagation in the slow
light regime was studied via a somewhat phenomenological transport equation for the pulse
envelope [27–29], i.e., neglecting second- and higher-order dispersion terms. More accurate
models (usually, for pulse propagation in waveguides or photonic crystals) were based on envelope
equations like the nonlinear Schrödinger equation, see Section 2 and [53]. However, the validity
of these models is limited to moderate levels of slow light. Otherwise (especially close to a zero
group velocity point (ZGVP)), an exceeding number of dispersion terms (in the form of high-order
time derivatives) has to be taken into account, because the various dispersion coefficients are
proportional to the inverse of the group velocity (and its powers) and/or because of the slowly
convergence of the series of higher-order derivatives of the propagation constant with respect to
the frequency [54]. As a result, standard pulse propagation schemes (see e.g., [53, 54]), as well
as coupled mode models (see e.g., [55, 56], which are all frequency-based expansions) become
inefficient. In these cases, one is forced to resort to numerical solutions of the full Maxwell
equations (e.g., using the Finite Differences Time Domain (FDTD) approach) which is far more
demanding in terms of computational resources and run times [11–13,37,38,57–59]; such an
approach also hampers physical insights.
This computational burden could have been circumvented by using the efficient envelope

formulations developed in the context of Bragg gratings. Initially assuming a shallow grating
contrast, a scheme has been derived for pulse propagation near the ZGVP on the band edge,
and most consequent work focused on the dynamics of nonlinear phenomena such as gap
solitons [60–63] and their applications [64]. This formulation was then extended for deeper
grating contrasts by de Sterke et al. [65] (and then, further extended to higher dimensions [66–68]
and pump-probe configurations [69, 70]) by employing a k · p (i.e., momentum-based) expansion
of the (diffraction [67] and) structural dispersion (sometimes referred to as waveguide dispersion)
based on non-paraxial directional fluxes and Bloch carrier waves; the resulting expansion consists
of a series of spatial (longitudinal) derivatives, instead of the standard time derivatives. In
particular, in this derivation, the expansion coefficients are proportional to the group velocity (or
its powers), rather than to its inverse. As a result, this formulation is especially efficient in the
slow light and stopped light regimes, where the derivative series converges rapidly.
Unfortunately, despite the generality and accuracy of these rigorous models [65, 67], they

are far from being in wide use. This is related, most likely, to their relative complexity. In the
same vein, the (momentum-based) envelope formulations of [65, 67, 69, 70] were limited to
configurations involving only a small number of not-so-short interacting pulses, in order to
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avoid further complexity in the formulation arising from the need to account for adjacent bands.
Finally, these formulations were limited to material constituents of weak dispersion. However,
material dispersion can have an important role for semiconductor and plasmonic structures, and
can become comparable to the structural dispersion. Such systems are also frequently lossy,
so that there is also an ambiguity regarding the convenient way to include the absorption in
the formulation [71]. Thus, overall, there are still no efficient (slowly-varying) envelope-based
formulations that enable the study of pulse propagation in strongly dispersive and absorptive
media, and specifically, in the slow and stopped light regimes.

In this paper, we aim to bridge this gap in the existing pulse propagation schemes. Specifically,
in Section 3 we develop a (momentum-based) envelope formulation for pulse propagation in a
system with translation invariance along one direction, i.e., a general waveguide system. We,
thus, exploit the translation invariance along z to avoid the need for a Bloch carrier wave, hence,
we work with the more convenient (and popular) Fourier carrier wave basis. Our approach shares
the advantages of previous (momentum-based) formulations, but is more general than previous
works [65,67,69,70] as it is suitable also for non-periodic transverse dielectric structure, e.g.,
the abundant layered structures, photonic crystal fibers [72] etc.; these typically do not involve
additional spectrally-adjacent bands.

In Section 4, we demonstrate the convergence of the derived model for the two generic cases -
stopped and slow light. In order to emphasize the suitability of our approach to the deep slow
light regime and for strongly dispersive materials, we model possibly the simplest geometry that
supports a ZGVP and a slow light regime, namely, a plasmonic slot waveguide (metal-dielectric-
metal (MDM) layer structure), see Fig. 1(a). The dispersion of the metallic constituent is indeed
strong, and the metal constituent involves significant absorption. We demonstrate convergence of
the derivative series upon the analytical solution. We also show that unlike the standard approach,
where the nonlinearity and loss seem to diverge near the ZGVP, in our formulation, they are
regular. This is explained by noting that the relevant criterion for the loss and nonlinear effect
is the time rather than distance of propagation, such that the propagation time through a finite
length waveguide segment diverges near a ZGVP [7, 14, 15]. More generally, we identify effects
known from weakly dispersive systems, and discuss the interplay of dispersion, nonlinearity and
absorption. We summarize the main findings and discuss future steps in Section 5.

2. Standard formulation - frequency-based expansion

The starting point of most derivations of pulse propagation schemes is the wave equation for a
scalar electric field

∇2E(®r, t) − µ0
∂2

∂t2 (R(®r⊥, t) ∗ E(®r, t)) −
1
c2

∂2

∂t2 (RNL(®r, t)E(®r, t)) = 0. (1)

Here, E is the electric field, ∇2 = ∂2
z + ∂

2
⊥, µ0 is the vacuum permeability, t is time, ®r is the

position vector.
In this work, we focus on a waveguide geometry, so that the position vector, ®r, is split into

z, the propagation direction, and ®r⊥, the transverse direction; thus, the response function of
the media R(®r⊥, t) and its Fourier transform, namely, the permittivity ε(®r⊥, ω), are functions of
the transverse coordinate only. Lastly, RNL(®r, t) is a nonlinear response function (see e.g. [53]
for explicit expressions) and the asterisk, ’∗’, specifies a convolution. Eq. (1) is valid for slab
waveguides (including free space) for TE polarization only. In more general cases, the field has
more than one component and the first term of the left hand side of Eq. (1) has to be replaced by
®∇ × ®∇ × ®E(®r, t). At this stage, we simplify the derivation by ignoring absorption; this effect will
be fully accounted for when we present our alternative expansion.
In order to eliminate the fast oscillations on the scale of the optical period and wavelength,

the electric field is written as a convolution of the transverse field profile and a slowly-varying
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Fig. 1. (a) Cross section of a one dimensional plasmonic MDM waveguide of width d.
The solid line features a transverse profile of the magnetic field propagating in z direction,
corresponding to the antisymmetric branch. (b) Dispersion curve of antisymmetric plasmonic
modes in a MDM slab waveguide where the core width is 35 nm, the permittivity of the
dielectric is εD = 2.5 and the parameters of the permittivity of the silver (see Eq. (45))
are ε∞ = 5, ωP = 1.4 × 1016s−1 and γ = 3.2 × 1013s−1 [73]. In cases where we ignore
absorption, we set γ = 0. The red segment on the left is a stopped light regime where
forward and backward modes coexist. Here, β0 = 1.51 × 108m−1 (λ0 ≈ 363.6nm) and
∆β = 0.15 × 108m−1, where β0 lies exactly at the ZGVP. The second red segment lies
in a slow light regime where β0 = 3 × 108m−1 (λ0 ≈ 362.9nm) and ∆β = 0.3 × 108m−1

. Here β0 lies at a point where the group velocity is 5.51 × 10−4c. The green line on
the left represents the light line, corresponding to c/√εD . In the presence of absorption,
the dispersion curve (and the ZGVP) is shifted slightly (not shown). (c) The values of
Tabs = 1/=(ω0) corresponding to the mode shown in (b).

envelope [56], both written as sums of (strictly real) frequency components, i.e.,

E(®r, t) = eiβ0zFt
ω

[(∫
dt ′A(z, t ′)ei(ω−ω0)t′

) (∫
dt ′′Ft′′

ω

[
ê(®r⊥, ω)

]
eiωt′′

)]
, (2)

where A(z, t ′) is a dimensionless amplitude, and ê(®r⊥, ω) is the transverse mode profile (custom-
arily, associated with units of electric field), i.e., the solution of the Helmholtz equation,

∇2
⊥ê(®r⊥, ω) − β2(ω)ê(®r⊥, ω) + µ0ε(®r⊥, ω)ω2ê(®r⊥, ω) = 0. (3)

Further, ω is the angular frequency, ω0 is the center frequency of the pulse, β0 = β(ω0) =
ω0ne f f /c is the corresponding (potentially complex) propagation constant and Ft

ω is a Fourier
transform from the frequency to the time domain. (Note that in some works, ê(®r⊥, ω) is replaced
by ê(®r⊥, ω0). While for single mode propagation, there is just insignificant differences between
the two approaches, the latter approach leads to some spurious mode coupling [15].) Eq. (1) is
now transformed into the frequency domain, yielding

â(z, ω − ω0)∇2
⊥ê(®r⊥, ω) + 2iβ0µ0ε(®r⊥, ω)ê(®r⊥, ω)

∂â(z, ω − ω0)
∂z

−β2
0µ0ε(®r⊥, ω)ê(®r⊥, ω)â(z, ω − ω0) + ω2µ0ε(®r⊥, ω)ê(®r⊥, ω)â(z, ω − ω0)

−1
c
(ω − ω0)2Fωt (RNL(®r, t)E(®r, t)) = 0, (4)

where Fωt represents the inverse Fourier transform from the time domain to the frequency domain,
and the convolution is transformed to frequency domain as follows

R(®r⊥, t) ∗ E(®r, t) = Ft
ω

[
ε(®r⊥, ω)ê(®r⊥, ω)â(z, ω − ω0)eiβ0z

]
. (5)
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Finally, the spectral envelope, â(z, ω − ω0) is related to the time domain envelope via [53, 56],

Fωt
[
A(z, t)e−iω0t

]
= â(z, ω − ω0). (6)

Now, one Taylor expands β2(ω) around ω0 as follows

β2(ω) =
∞∑

m=0

1
m!

dm(β2)
dωm

����
ω0

(ω − ω0)m. (7)

Substituting Eqs. (3) and (7) in Eq. (4), considering instantaneous Kerr nonlinear response,
i.e., RNL = εNL |E |2, where εNL is the nonlinear part of the permittivity, and transforming back
to time domain gives

i
2β0

∂2 A(z, t)
∂z2 +

∂A(z, t)
∂z

+

∞∑
m=1

D̂m
∂nA(z, t)
∂tm

+
i

LNL
|A(z, t)|2 A(z, t) = 0, (8)

where the dispersion coefficients D̂m are defined as

D̂m =
1

2β0

(−i)m−1

m!
dm(β2)
dωm

����
ω0

, (9)

and where
LNL =

2P0

εNLω0
∫
|ê(®r⊥, ω0)|4d®r⊥

, (10)

is the characteristic length scale for the manifestation of the nonlinear effect, where

P0 =
β0
µ0ω0

∫
|ê(®r⊥, ω0)|2d®r⊥, (11)

is the power of the mode at ω0 [74].
Further simplification is achieved by transforming to a frame of reference co-moving with the

pulse such that
z∗ = z, t∗ = t − z/vg . (12)

Eq. (8) then becomes

i
2β0

∂2 A(z∗, t∗)
∂z∗2

+
∂A(z∗, t∗)
∂z∗

− i
2β0vg

∂2 A(z∗, t∗)
∂z∗∂t∗

− i
2
β′′0

∂2 A(z∗, t∗)
∂t∗2

+

∞∑
m=0

D̂m
∂mA(z∗, t∗)

∂t∗m
A(z∗, t∗) + i

LNL
|A(z∗, t∗)|2 A(z∗, t∗) = 0, (13)

where β′′0 ≡
d2β
dω2

��
ω0

(not to be confused with the popular notation for an imaginary value; the
latter is denoted below explicitly.), and

vg ≡
(

dβ
dω

)−1 ����
ω0

= β′0
−1, (14)

is the group velocity of the mode at ω0.
In order to understand the relative magnitude of the various terms in Eq. (13) we transform

once again the coordinates as follows

ẑ =
z∗

Ldisp
, (15a)

t̂ =
t∗

TP
, (15b)
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where TP is the pulse duration and Ldisp = T2
P/β′′0 is the dispersion length. The new coordinates

are now dimensionless, and the derivatives by these coordinates are O(1). Eq. (13) now reads

i
2β0Ldisp

∂2 A(ẑ, t̂)
∂ ẑ2 +

∂A(ẑ, t̂)
∂ ẑ

− i
2β0vgTP

∂2 A(ẑ, t̂)
∂ ẑ∂ t̂

− i
∂2 A(ẑ, t̂)
∂ t̂2 + Ldisp

∞∑
m=3

D̂m
∂mA(ẑ, t̂)
∂t∗m

+i
Ldisp

LNL
|A(ẑ, t̂)|2 A(ẑ, t̂) = 0. (16)

Since the wavelength of the center mode is λ0 =
2πne f f

β0
and the pulse spatial width is Z ∼ vgTP ,

the first (non-paraxial) term and third (mixed derivative) term in Eq. (16) scale as λ0
Ldisp

and
λ0
Z , respectively. When comparing the magnitudes of all terms, the non-paraxial and the mixed
derivative terms are negligible in the standard scenario in which λ0 � Z � Ldisp . The dispersion
terms are proportional to D̂m

Tm
P
, such that the high-order terms in Eq. (16) can be neglected if

D̂m � TP D̂m−1. (17)

In general, this condition is satisfied for sufficiently long pulses. Then, if dispersion is accounted
for only up to second-order, Eq. (13) reduces to

∂A(z∗, t∗)
∂z∗

− i
2
β′′0

∂2 A(z∗, t∗)
∂t∗2

+
i

LNL
|A(z∗, t∗)|2 A(z∗, t∗) = 0, (18)

which is the well-known nonlinear Schrödinger equation [53, 54].
Although this approach is well-accepted and efficient in most cases, it becomes inefficient in

the slow light regime and completely breaks down at a zero group velocity point. The reason for
the failure of Eq. (18) lies in the neglect of the mixed derivative term in Eq. (13), as it is inversely
proportional to the group velocity. This term grows in magnitude in the slow light regime, and
becomes singular at the ZGVP. Additional singularities arise at the high-order derivatives D̂m

since the m’th term consist of terms which are proportional to v−mg . Therefore, when approaching
the slow light regime or a ZGVP, the derivative series cannot be truncated at the second-order
time derivative, and higher-order terms have to be considered, making the standard expansion
inefficient.
In order to circumvent these problems, we present below an alternative derivation.

3. Alternative formulation - momentum-based expansion

3.1. Derivation

The starting point of our derivation is the vectorial wave function

®∇ × ®∇ × ®E(®r, t) − µ0
∂2

∂t2

(
R(®r⊥, t) ∗ ®E(®r, t)

)
− 1

c2
∂2

∂t2

(
RNL(®r, t) ®E(®r, t)

)
= 0. (19)

where ®E = (Ex, Ey, Ez) is the electric field vector. Eq. (19) is the vectorial version of Eq. (1); thus,
it is valid for any waveguide cross section and any polarization. For lossy media, all coefficients
in the following derivation attain complex values.
As in former approaches, the convolution is transformed to the frequency domain. However,

unlike the standard approach, we do not proceed by separation of variables, replacement of the
permittivity with the propagation constant, and Taylor expanding the latter around the central
frequency. Instead, inspired by the momentum-based formulations [65,67], we aim to decompose
the fields into a sum of spatial frequencies, i.e., in momentum space. First, however, we expand
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the permittivity around the central frequency, ω0, and then transform back to the time domain,
giving

R(®r⊥, t) ∗ ®E(®r⊥, z, t) =
∞∑
n=0

in

n!
dnε(®r⊥, ω)

dωn

����
ω0

∂n ®E(®r⊥, z, t)
∂tn

. (20)

Now, we can rewrite the electric field and related physical quantities in terms of their spatial
Fourier transforms, namely,

®E(®r⊥, z, t) = Fz
β [ ®̃E(®r⊥, β, t)] = F

z
β

[
ã(β − β0, t)ẽ(r⊥, β) ®̃e−iω(β)t

]
, (21)

where as in the standard derivation (Section 2), ã(β − β0, t) is a dimensionless amplitude and
®̃e(®r⊥, ω) is the transverse mode profile, associated with units of electric field. Here, and in what
follows, we denote the spatial Fourier transforms by a tilde symbol (̃), in order to distinguish them
from the (more standard) temporal Fourier transforms used in the standard derivation (Section 2),
which are denoted by a hat symbol (̂).

We emphasize that as we consider a spatial (rather than a temporal) Fourier transform, we
inherently work with real β values. Thus, in the presence of absorption (i.e., when the permittivity
of the constituents is complex), the frequency ω obtains complex values. In this case, the
dispersion curve remains similar to the curve in the loss-free case (see Fig. 1) and therefore, the
ZGVP and slow light regime are preserved [37, 38, 71]. This means that the evaluation of the
modal frequencies and various other coefficients is done with complex arguments. This is an
unavoidable complication of the use of complex frequencies [75].
Once the amplitude ã(β − β0, t) is found, the electric field can be written as

®E(®r⊥, z, t) = e−iω0tFz
β

[(∫
dz′A(z′, t)e−i(β−β0)z′

) (∫
dz′′Fz′′

β

[
®̃e(®r⊥, β)

]
e−iβz

′′
)]

= e−iω0t

∫
dζA(z − ζ, t)eiβ0ζFζβ

[
®̃e(r⊥, β)

]
, (22)

where ω0 = ω(β0), where

A(z, t) = 2πe−iβ0zFz
β [a(β − β0, t)] , (23)

a(β − β0, t) = ã(β − β0, t)e−i[ω(β)−ω0]t, (24)

and where ®̃e(®r⊥, β) = (ẽx, ẽy, ẽz) satisfies the vector Helmholtz equation[ (
∂2ẽy
∂x∂y

− ∂
2ẽx
∂y2 + β

2ẽx + iβ
∂2ẽz
∂x

)
x̂ +

(
∂2ẽx
∂x∂y

−
∂2ẽy
∂x2 + β

2ẽy + iβ
∂2ẽz
∂y

)
ŷ

+

(
iβ

(
∂ẽx
∂x
+
∂ẽy
∂y

)
− ∂

2ẽx
∂x2 −

∂2ẽy
∂y2

)
ẑ

]
+ µ0ε(®r⊥, β)ω2 ®̃e(®r⊥, β) = 0. (25)

For simplicity, we omitted in Eq. (25) the arguments in the components of ®̃e(®r⊥, β).
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Substituting Eqs. (20) and (24) in Eq. (19), and transforming into momentum space gives[ (
∂2ẽy
∂x∂y

− ∂
2ẽx
∂y2 + β

2ẽx + iβ
∂2ẽz
∂x

)
x̂ +

(
∂2ẽx
∂x∂y

−
∂2ẽy
∂x2 + β

2ẽy + iβ
∂2ẽz
∂y

)
ŷ

+

(
iβ

(
∂ẽx
∂x
+
∂ẽy
∂y

)
− ∂

2ẽx
∂x2 −

∂2ẽy
∂y2

)
ẑ

]
a(β − β0, t) + µ0ω

2
0ε(®r⊥, ω0) ®̃e(®r⊥, β)a(β − β0, t)

+iµ0 ®̃e(®r⊥, β)
(
2ω0ε(®r⊥) + ω2

0
dε(®r⊥, ω)

dω

)
∂a(β − β0, t)

∂t

+µ0 ®̃e(®r⊥, β)
∞∑
n=2

in
(

1
(n − 2)!

dn−2ε(®r⊥, ω)
dωn−2

����
ω0

+
2

(n − 1)!ω0
dn−1ε(®r⊥, ω)

dωn−1

����
ω0

+
1
n!
ω2

0
dnε(®r⊥, ω)

dωn

����
ω0

)
∂na(β − β0, t)

∂tn
+ eiω0t

∂2

∂t2F
β
z

[
RNL(®r⊥, z, t) ®E(®r⊥, z, t)

]
= 0. (26)

Substituting Eq. (25) in Eq. (26) allows us to replace the first two terms by ε(®r⊥, ω)ω2a(β −
β0, t) ®̃e(®r⊥, β). We now get(

ε(®r⊥, ω)ω2 − ε(®r⊥, ω0)ω2
0

)
a(β − β0, t) ®̃e(®r⊥, β)

−i ®̃e(®r⊥, β)
(
2ω0ε(®r⊥, ω) + ω2

0
dε(®r⊥, ω)

dω

����
ω0

)
∂a(β − β0, t)

∂t

−®̃e(®r⊥, β)
∞∑
n=2

in
(

1
(n − 2)!

dn−2ε(®r⊥, ω)
dωn−2

����
ω0

+
2

(n − 1)!ω0
dn−1ε(®r⊥, ω)

dωn−1

����
ω0

+
1
n!
ω2

0
dnε(®r⊥, ω)

dωn

����
ω0

)
∂na(β − β0, t)

∂tn
− eiω0t

∂2

∂t2F
β
z

[
RNL(®r⊥, z, t) ®E(®r⊥, z, t)

]
= 0. (27)

In order to remove the dependence on the transverse coordinate, we now multiply by ®̃e∗(®r⊥, β)
and integrate over ®r⊥. Then, Eq. (27) becomes

∂a(β − β0, t)
∂t

+
i

ω0U(β, β0)

[∫ (
ε(®r⊥, ω)ω2 − ε(®r⊥, ω0)ω2

0

)
| ®̃e(®r⊥, β)|2d®r⊥

]
(β − β0, t)

+
i

ω0U(β, β0)

∞∑
n=2

in
[ ∫ (

1
(n − 2)!

dn−2ε(®r⊥, ω)
dωn−2

����
ω0

+
2

(n − 1)!ω0
dn−1ε(®r⊥, ω)

dωn−1

����
ω0

+
1
n!
ω2

0
dnε(®r⊥, ω)

dωn

����
ω0

)
| ®̃e(®r⊥, β)|2d®r⊥

]
∂na(β − β0, t)

∂tn

+
ieiω0t

2ω0U(β, β0)
∂2

∂t2

∫
Fβz

[
RNL(®r⊥, z, t) ®E(®r⊥, z, t)

]
®̃e∗(®r⊥, β)d®r⊥ = 0, (28)

where
U(β, β0) =

∫ (
ε(®r⊥, ω) +

1
2
ω
ε(®r⊥, ω)

dω

) ����
ω(β0)
| ®̃e(®r⊥, β)|2d®r⊥. (29)

Note that the terms in parentheses are evaluated at ω0 ≡ ω(β0) (rather than the other way around
in the standard approach), but ®̃e(®r⊥, β) is evaluated at a general β. Thus, one can see that (in the
absence of absorption, Otherwise, U [76] becomes a non-trivial complex function.) U(β0, β0) is
related to the energy density of the carrier mode β0 (see Appendix A), but U(β, β0) equals this
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quantity only to leading-order. As noted many times in the past, the energy represents the most
convenient (and natural) norm for solutions of the vector Helmholtz equation for the electric field
(see e.g., discussion in [77]).

Since ω = ω(β), we can Taylor expand the ω-dependent coefficients in terms of β, in analogy
to the expansion of β2 in terms of ω in the standard approach (7). Thus, Eq. (28) becomes

∂a(β − β0, t)
∂t

+ i
∞∑

m=1
D̃m(β − β0)ma(β − β0, t) +

∞∑
n=2

∞∑
m=0

in+1D̃n,m(β − β0)m
∂na(β − β0, t)

∂tn

+
ieiω0t

2ω0U(β, β0)
∂2

∂t2

∫
Fβz

[
RNL(®r⊥, z, t) ®E(®r⊥, z, t)

]
®̃e∗(®r⊥, β)d®r⊥ = 0, (30)

where

D̃m =
1

m!
1

2ω0

dm

dβm

[ ∫ [
ω2(β)ε(®r⊥, ω(β)) − ω2

0ε(®r⊥, ω0)
]
| ®̃e(®r⊥, β)|2d®r⊥

U(β, β0)

] �����
β0

, (31)

and

D̃n,m =
1

m!
1

2ω0

dm

dβm

[
1

U(β, β0)

∫ ( 1
(n − 2)!

dn−2ε(®r⊥, ω)
dωn−2 +

2
(n − 1)!ω0

dn−1ε(®r⊥, ω)
dωn−1

+
1
n!
ω2

0
dnε(®r⊥, ω)

dωn

)
| ®̃e(®r⊥, β)|2d®r⊥

] �����
ω0

. (32)

Note that both D̃m and D̃m,n account for the dispersion of the material parameters, the mode
and the “energy density” U; The index n represents the order of material dispersion, and the
index m represents the order of the combined effect of material and structural dispersion. Note
that our formulation involves a differentiation of the mode profiles themselves ( ®̃e(®r⊥, β)), a
complication which is avoided in the standard formulation. Such complication arises because the
initial temporal Fourier transform (Eq. (20)) does not allow one to get rid of the mode profiles, as
in the standard derivation.
Transforming Eq. (30) back to real space gives

iD̃2,0
A(z, t)
∂t2 +

∂A(z, t)
∂t

+ ω′0
∂A(z, t)
∂z

− iD̃2
∂2 A(z, t)
∂z2

+

∞∑
m=3
(−i)m−1D̃m

∂mA(z, t)
∂zm

+

∞∑
n=2

∞∑
m=0

m,0 if n=2

(−1)min+m+1D̃n,m
∂n+mA(z, t)
∂tn∂zm

+i
eiω0t

2ω0
Fz
β

[
1

U(β, β0)
∂2

∂t2

∫
Fβz

[
RNL(®r⊥, z, t) ®E(®r⊥, z, t)

]
®̃e∗(®r⊥, β)d®r⊥

]
= 0, (33)

where
D̃2 =

ω′′0
2
+ D̃2,0ω

′2
0 , (34)

and

D̃2,0 =
1

2ω0U(β0, β0)

∫ (
2ε(®r⊥, ω0)+4ω0

dε(®r⊥, ω)
dω

����
ω0

+ω2
0

d2ε(r⊥, ω)
dω2

����
ω0

)
| ®̃e(®r⊥, β)|2d®r⊥. (35)
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In Eqs. (34)-(35), we used Eqs. (31)-(32), where it follows from the chain rule that dε (®r⊥,ω)
dβ

��
β0
=

dε (®r⊥,ω)
dω

��
ω0

dω
dβ

��
β0
. The coefficients ω′0 and ω

′′
0 stand for dω

dβ

��
β0

and d2ω
dβ2

��
β0
, respectively.

Eq. (33) is our main result; it is an exact reduction of Maxwell’s equations, analogous to the
standard derivation, Eq. (8), but with the roles of z and t exchanged (as in previous momentum-
based expansions [65, 67]). Thus, for example, it accounts for non-paraxiality via a second-order
derivative in time rather than in space, i.e., in z, and for dispersion via a series of derivatives in
space rather than time. (In a 3D configuration, the spatial derivatives also account for diffraction
effects [67].) Another manifestation of the exchange of roles of time and space is seen through
D̃2, which represents the group velocity dispersion (GVD). It consists of two terms. The first is
the second derivative of the dispersion curve, whereas the second term is the group velocity at
the central wavenumber β0 in the current approach, similarly to Eq. (14), defined as

vg ≡ <
(
ω′0

)
. (36)

For materials with negligible absorption, the second term in Eq. (34) is proportional to v2
g, in

analogy to the GVD coefficient in the standard derivation (where the second term is proportional
to v−2

g , see Eq. (9) and [53, 54]). As in the standard (frequency-based) derivation, the relative
magnitude of the two terms in Eq. (34) depends on the position of the central mode on the
dispersion curve. However, near a ZGVP/in the slow light regime, the second contribution to the
GVD vanishes, in contrast to the standard derivation, where the second term diverges, again, due
to the exchanged roles of time and space.

The first two orders of dispersion are analogous to those in the standard derivation (8), however,
the higher-order dispersion terms in (33) involve additional mixed derivative terms. In that respect,
our derivation yields a more complicated model compared with the standard one.
Eq. (33) generalizes the final results of the previous momentum-based expansions [65, 67]

to lossy and strongly dispersive media, including in particular, the slow light regime and near
ZGVPs. Importantly, in these regimes, Eq. (33) has a major advantage. Indeed, the series of
dispersion terms which diverges in the standard derivation (18) as v−mg is replaced by a series of
terms that scale with vmg , hence, is rapidly converging. In addition, the high-order derivatives of
ω, are also small in the slow light regime.

3.2. Dimensional analysis

We now assume that the nonlinear response is spatially-local, i.e., that RNL represents a cubic
(Kerr-like) response, RNL = εNL | ®E|2; Furthermore, U (29) is evaluated at β0 in the nonlinear
term. In order to further simplify the analysis, we also would like to adopt the slowly-varying
envelope approximation. However, this has to be done with care. Indeed, the first term in Eq. (33)
(the second derivative in time) is not necessarily small, even if the envelope is slowly varying - it
consists of slow changes in time (∼ Tdisp , see below), but also a (vg/Z)2 scale change due to the
propagation; this term is comparable to D̃2,0ω

′
0

2 (which is dominant, as explained in Section 3.1,
see Eq. (34)), as in the standard derivation [54]. Yet, the latter contribution can be removed after
the coordinates are transformed to a frame co-moving with the pulse, namely,

z∗ = z − vgt, (37a)
t∗ = t . (37b)

Accordingly, the derivatives of the coordinates transform as

∂

∂z
=

∂

∂z∗
, (38a)

∂

∂t
=

∂

∂t∗
− vg

∂

∂z∗
. (38b)
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Then, Eq. (33) becomes

iD̃2,0
∂2 A(z∗, t∗)

∂t∗2
+
∂A(z∗, t∗)

∂t∗
+ i=

(
ω′0

) ∂A(z∗, t∗)
∂z∗

−
[

i
2
ω′′0 −

(
2=

(
ω′0

)
vg + i=

(
ω′0

)2
)

D̃2,0

]
∂2 A(z∗, t∗)

∂z∗2

−2ivgD̃2,0
∂2 A(z∗, t∗)
∂z∗∂t∗

+

∞∑
m=3
(−i)m−1D̃m

∂mA(z∗, t∗)
∂z∗m

+

∞∑
n=2

∞∑
m=0

m,0 if n=2

n∑
k=0

(
n
k

)
in+1(−i)m(−vg)k D̃n,m

∂n+mA(z∗, t∗)
∂t∗n−k∂z∗m+k

+
i

TNL
|A(z∗, t∗)|2 A(z∗, t∗) = 0, (39)

where
TNL =

2U(β0, β0)
εNLω0

∫
| ®̃e(®r⊥, β0)|4d®r⊥

, (40)

is the characteristic time for the nonlinear effect to become significant. For lossy media, ω′0 is
complex, so that the ∂/∂t term does not vanish, but rather, leaves behind its imaginary part,
=

(
ω′0

)
; note that it does not represent a velocity, but rather the dispersion of the absorption.

Similarly, the D̃2,0ω
′
0

2 term does not cancel completely either.
In order to reveal the hierarchy of the terms in Eq. (39), we normalize the coordinates as

follows

z̃ =
z∗

Z
, (41a)

t̃ =
t∗

Tdisp
, (41b)

where Z is the initial pulse width and Tdisp = Z2/ω′′0 is the dispersion time, the analogue of the
dispersion length Ldisp . Then, Eq. (39) obtains the dimensionless form

i f
∂2 A(z̃, t̃)
∂ t̃2 +

∂A(z̃, t̃)
∂ t̃

− 2ig
∂2 A(z̃, t̃)
∂ z̃∂ t̃

+ iq
∂A(z̃, t̃)
∂ z̃

− i
2
∂2 A(z̃, t̃)
∂ z̃2

+s
∂2 A(z̃, t̃)
∂ z̃2 +

∞∑
m=3
(−i)m−1Tdisp

D̃m

Zm

∂mA(z̃, t̃)
∂ z̃m

+

∞∑
n=2

∞∑
m=0

m,0 if n=2

n∑
k=0

(
n
k

)
in+1(−i)m

( (−vg)
Z

)k D̃n,m

Tn−k−1
disp

1
Zm

∂n+mA(z̃, t̃)
∂ t̃n−k∂ z̃m+k

+
Tdisp

TNL
|A(z̃, t̃)|2 A(z̃, t̃) = 0, (42)
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where the dimensionless coefficients are

f ≡ D̃2,0

Tdisp
, (43a)

g ≡
vgD̃2,0

Z
, (43b)

q ≡
=

(
ω′0

)
Tdisp

Z
=
=

(
ω′0

)
ω′′0

Z, (43c)

s ≡
=

(
ω′0

)
ω′′0

D̃2,0
(
2vg + i=

(
ω′0

) )
. (43d)

The second and fifth terms in Eq. (42) are of the order of unity, and typically the dominant.
Now, in order to estimate the dispersion terms, we assume that the waveguide includes highly

dispersive constituents (e.g., metal layers as in Fig. 1(a)). Thus, the estimates that follow provide
an upper bound for the magnitude of these terms, while for dielectric materials, the dispersion
terms would be typically smaller. Thus, D̃2,0 can be estimated as 1/ω0 (see Appendix B). Then,
f ∼ T0/Tdisp and g ∼ T0/TP where we defined the period T0 = 2π/ω0, and the pulse duration,
TP , which scales as Z/vg. Thus, in the typical case where T0 � TP � Tdisp, we can omit the
first (non-paraxiality) and the third (mixed derivative) terms in Eq. (42); this is analogous to the
standard derivation (Section 2).

The fourth and the sixth terms represent the effect of the complex ω terms on the propagation
in the presence of absorption, namely, they account for the first- and second-order dispersion of
the absorption. Generically, the absorption dispersion is a weak effect even for strongly absorbing
media, like metals; accordingly, it is safe to neglect these terms.

Taking into account the scaling of D̃m and D̃n,m (see Appendix B), one can see that the seventh
and eighth terms scale as (Tdisp/T0) (β0Z)−m and (Tdisp/T0) (β0Z)−m (vgTdisp/Z)k (Tdisp/T0)−n,
respectively. Typically, Tdisp/T0 is much greater than unity; β0Z and (vgTdisp/Z) are also larger
than unity, but not as much. Thus, since m ≥ 3 in the seventh term, it is typically smaller than
unity; further, since n ≥ k and Tdisp/T0 is larger than vgTdisp/Z , it is possible to show that the
eighth term is typically smaller than the seventh term in the slow and stopped light regimes. In
the specific case of propagation at the ZGVP (slow light regime), all terms proportional to vg
vanish (are small). In all other cases, one has to carefully map the relative magnitudes of the
many higher-order terms.

The scaling of the ninth (nonlinear) term turns naturally to be by U(β0, β0) (rather than as P0,
as in the standard derivation, see Eq. (40)). In lossy media, TNL becomes complex as it contains
the complex values U(β0, β0) and ω0. Overall, the nonlinear term becomes important in cases
where TNL is comparable or shorter than Tdisp .

If all mixed terms are indeed small, Eq. (39) becomes

∂A(z, t)
∂t

− i
ω′′0
2
∂2 A(z, t)
∂z2 +

∞∑
m=3
(−i)m−1D̃m

∂mA(z, t)
∂zm

+
i

TNL
|A(z, t)|2 A(z, t) = 0, (44)

where the ∗ symbol was removed for brevity such that z and t are the (dimensional) coordinates
of the moving frame (37). In that sense, the additional complexity of the model does not exceed
that of the standard model for pulse propagation (Section 2 and [53]).

3.3. Scaling with the group velocity

Many previous studies showed that linear effects such as absorption scale with v−1
g and that

cubic nonlinear effects scale with v−2
g , see e.g., [7, 14, 15, 67]. The former effect appears only

implicitly in the scaling of the linear loss term with the group velocity, e.g., via the dispersion
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relations [71]; the latter is seen from the natural scaling of the cubic nonlinearity with the power
P0 (see Eq. (11)), or explicitly in the momentum-based expansions of de Sterke, Sipe et al.
(e.g., [65, 67]) where the dynamics is described by directional fluxes.

This inverse proportionality with the group velocity implies that these effects are enhanced
in the slow light regime, and diverge near a ZGVP! This behaviour motivated many studies
of nonlinear effects in the slow light regime [7, 14–21, 67]. Yet, rather remarkably, our final
equation does not show any particular enhancement of (linear and) nonlinear effects in the slow
and stopped light regimes. The solution to this seeming paradox is that the strength of the various
effects is related to the time of propagation, rather than to the distance of propagation. Thus, if
the dynamics is monitored in time, there is no particular sensitivity of the strength of nonlinear
effects on the group velocity. In other words, the nonlinear effects are enhanced for low group
velocities since a longer time of propagation is required to traverse a given distance in space, but
per unit time, the nonlinear effect has the same strength. This is seen implicitly in Fig. 1(c) that
shows that Tabs is only weakly dependent on β, such that the attenuation scales linearly with t
(and is independent of z). Furthermore, the nonlinear term in our formulation scales with the
energy density rather than with the power, hence, is independent of vg.
This result also shows that the enhancement of the nonlinear effects reported before were a

result of the experimental configuration - the pulse is injected into a finite length nonlinear media,
and the nonlinear effect is measured at the output. Thus, unlike many previous claims, light-matter
interactions are not enhanced in the slow/stopped light regimes, and the observed enhancements
of the (linear and) nonlinear effects is unrelated to the source of the strong dispersion, be it
material or structural dispersion [78,79]. An alternative experimental configuration where the
absorption or nonlinearity are measured in systems with different group velocities for the same
duration is expected to show the insensitivity to the group velocity we predict here.
The disappearance of the dependence on vg is a result of two rather subtle mathematical

differences our derivation has in comparison to previous studies. First, our formulation is based
on momentum modes (rather than frequency modes). Second, unlike [67], we adopt a frame
moving in space (see Eq. (37)) rather than in time (12).

4. Examples

We now demonstrate the validity of our derivation by solving Eq. (44). By its very nature, Eq. (44)
is solved as an initial value problem (IVP) in time. Specifically, the initial condition is set as

a(β, t = 0) = Ce−
(
β−β0
∆β

)2

where β0 is the center of the spectrum, ∆β is the spectral width of the
pulse and C is a normalization constant such that A(z = 0, t = 0) = 1. This is similar to how the
Schrödinger equation appears in quantum mechanics, but is in contrast to the standard approach
in optics, where the equation of propagation is solved as an IVP in space, see e.g., [53] and
Section 2. Due to the above, it is also not straightforward to compare the two methods directly.

In order to demonstrate the dynamics of short pulses in the slow light regime and near a ZGVP,
we consider the simplest geometry that supports such regimes, namely, an MDM waveguide (see
Fig. 1(a)). The permittivity of the metal is assumed to be given by the Drude model,

εM (ω) = ε∞ −
ω2

P

ω2 + iγω
, (45)

where ε∞ is a constant which determines the value of the permittivity when ω→∞, ωP is the
plasma frequency and γ is a constant real number which relates to the absorption in the metal.

Determination of the coefficients in Eq. (44) requires calculating the dispersion relations, ω(β)
and the mode profiles. If absorption is neglected (γ = 0), one finds a unique set of solutions
which satisfy the dispersion relation, where both β and ω attain real values. However, in the
presence of absorption, there are two generic sets of solutions to the dispersion relations [80].
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The first possibility is to account for the absorption via complex-β values, as in the standard
derivation (Section 2). In this case, the dispersion curve splits at the ZGVP, resulting in two
branches of fast light [71]; in addition, the dispersion relation curve backbends near plasmon
resonance [80]. We note that the standard approach does not totally fail in this case since the
terms that include factors such as 1/vmg are large but do not diverge anymore. However, the slow
light regime becomes limited, and it is not a-priory clear how to link the resulting complex modal
structure and the original ZGVP that disappeared.
The second possibility is to account for the absorption via complex ω values. In this case,

the dispersion curve remains similar to the curve in the loss-free case (see Fig. 1(a)-(b)) and
therefore, the ZGVP and slow light regime are preserved [37, 38]. As noted above, our approach
is inherently based on complex frequency modes, which thus allows for a convenient description
of the pulse dynamics near a ZGVP [37, 38]. Note that while the mode profiles exhibit outgoing
energy flow away from the interface, they are also exponentially decaying due to the negative real
part of the metal permittivities in the cladding. In that respect, and unlike the structures studied
in [35–38], the modes we study are below the light line, hence, they do not suffer from radiation
losses. As a result, normalization of the modes is trivial, and free from the complications arising
frequently in the normalization of exponentially growing complex frequency modes [75].
Once ω(β) was computed, we ensured that the non-paraxiality and various mixed derivative

terms are indeed relatively small, so that Eq. (44) provides an excellent approximation for the
exact model, Eq. (42).

When simulating pulse propagation according to Eq. (44) and considering absorption, we have
to recall that e−iω0t in Eq. (22) also describes the attenuation of the pulse in time as ω0 consists
of an imaginary part. Therefore, in the following plots, we will present the value |A(z, t)e−iω0t |
instead of just the amplitude, A(z, t). In that sense, the characteristic time for absorption is
Tabs = 1/=(ω0).

4.1. Simulations of pulse propagation in the slow and stopped light regimes; linear
media

We first study the linear dynamics by solving Eq. (44) without the nonlinear term. In order to test
the convergence of the derivative series in Eq. (44), we set Ω(M)(β) ≡ ∑M

m=1 D̃m(β − β0)m, such
that the solution of Eq. (44) is

A(z, t) = 2πe−iβ0zFz
β

[
a(β − β0, t = 0)e−iΩM (β)t

]
. (46)

Here, M accounts for the order beyond which dispersion terms in Eq. (44) are truncated. For a
reference, we use the solution of the non-truncated series, found by repeating the procedure with
Ω(∞)(β) ≡ ω(β). Since there is no source for backward scattering in our case, it can be shown
that this approach is equivalent to solving exactly the vector wave equation (19), i.e., taking into
account even the non-paraxiality and various mixed-derivative terms; see e.g., [81]. Hence, we
can refer to the Ω(∞) solution as an exact reference.

Our first example presents pulse propagation in the stopped light regime, where β0 was chosen
to be at the ZGVP, see Fig. 1(b). The spectrum width is chosen to be ∆β ≈ 0.1β0, to ensure
convergence of the dispersion expansion. In Fig. 2(a), we demonstrate the rapid convergence of
Eq. (44) upon the exact solution in the absence of absorption. Indeed, the simulation results for
the field at t = Tdisp decently match the exact solution when M = 2, and becomes more accurate
when M = 3. Specifically, the relative difference of the outcome was tested according to

RM,Mmax (t) =
∫
|A(M)(z, t) − A(Mmax )(z, t)|2dz∫

|A(Mmax )(z, t)|2dz
, (47)

where A(Mmax ) is the reference (the most accurate simulation). In the linear simulation we set
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Fig. 2. Pulse propagation at (a) ZGVP and (b) slow light regime, where the spectral width
of the pulse, ∆β and the center value of the propagation constant, β0 are the corresponding
values shown in Fig. 1(b). The green dashed line is A(z, t = Tdisp) where M = 2, the blue
dotted line corresponds to M = 3 and the red solid line represents the exact solution M = ∞.

Mmax = ∞. Here, we measured R2,∞ = 1.1 and R3,∞ = 0.035. This demonstrate the rapid
convergence of Eq. (44) with low-order dispersion.

In the following simulations, we chose a narrower spectral regime such that ∆β = 0.01β0. The
solution of Eq. (44) in the absence of absorption is shown in Fig. 3(a). The pulse is centered
at z = 0 at all times, as expected, but broadens due to dispersion. In the presence of realistic
absorption (see Fig. 3(b)), Tabs turns out to be much shorter than Tdisp , such that the field decays
rapidly within t < Tdisp. Figs. 4(a)-(b) show the respective dynamics of the spatial spectrum
of the pulse in these two cases. The spectrum does not change over time if we only consider
dispersion, however, its intensity is attenuated in the presence of absorption, as expected.
In order to show the validity of Eq. (44) in the slow light regime, we repeated the process

above for β0 centered at the slow light regime where vg = 5.5 × 10−4c (see Fig. 1(b)). Here, as
earlier, we choose ∆β ≈ 0.1β0. However, although ∆β here is nominally wider than the spectral
width chosen in the case of the ZGVP (since the value of β0 is higher), the GVD and higher-order
dispersion coefficients are much smaller. As a result, satisfactory accuracy is obtained even for
M = 2, as shown in Fig. 2(b), where R2,∞ = 0.1 and R3,∞ = 0.005. This is, again, in contrast to
the standard approach (Section 2), where due to the large factors ∼ v−mg in the mth-order terms,
many more terms are required for convergence.
Fig. 3(c) shows the pulse dynamics in the reference of the moving pulse. The results are

remarkably similar to the dynamics in the ZGVP (Fig. 3(a)). In that respect, it is worth emphasizing
that one aspect of this similarity is somewhat surprising. Indeed, Fig. 1(c) shows that Tabs in
the slow light regime is comparable to that at the ZVGP, although the latter is not as close to
the SPP resonance. This can be understood by noting that the well-known enhanced absorption
near SPP resonance is a result of the longer propagation time through a finite length waveguide
segment, i.e., it is a direct result of the fact that the propagation is typically formulated as an
IVP in space, an approach that makes the long propagation distance implicit (see also discussion
in Section 3.3). Nevertheless, Tabs indeed becomes shorter when the pulse spectrum is near
resonance. This is a result of the increasing portion of energy residing in the metal side. We will
see below a similar behaviour in the context of the nonlinear regime.

4.2. Simulations of pulse propagation in the slow and stopped light regimes; nonlinear
media

We now repeat the simulations shown in Section 4.1 in the presence of a nonlinear term, now
employing the split step method [53]. Under these circumstances, one has to consider the interplay
between dispersion, absorption and nonlinear dynamics via their characteristic time scales Tdisp ,
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Fig. 3. Spatio-temporal pulse dynamics of the amplitude of the electric field (color represents
the value of |A(z, t)|e−=(ω0)t ) in the linear case. Plots (a) and (b) represent the ZGVP regime
case in the absence and presence of absorption, respectively. Here, β0 = 1.51 × 108 1

m ,
∆β = 0.015 × 108 1

m , Tdisp = 7.7 × 10−10s; in (b), Tabs = 6.3 × 10−14s, such that
Tabs � Tdisp . Plots (c) and (d) represent the slow light regime case in the absence
and presence of absorption, respectively. Here, β0 = 3 × 108 1

m , ∆β = 0.03 × 108 1
m ,

Tdisp = 1.39 × 10−9s, Tabs = 6.26 × 10−14s in (d) such that Tabs � Tdisp . In both cases,
the total time of propagation is Tdisp and 10Tabs , respectively.

Fig. 4. The spatial spectrum associated with the results shown in Figs. 3(a)-(d).
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Fig. 5. Spatio-temporal dynamics of the amplitude of the electric field (color represents the
value |A(z, t)|e−=(ω0)t ) for a pulse in the non-linear case. Plots (a) and (b) represent pulse
propagation in the ZGVP regime in the absence and presence of absorption, respectively.
Here, the time scales of the dispersion time and the absorption time are exactly as in Figs 3(a)-
(b). The nonlinearity time scale is TNL = 0.2Tdisp in the absence of absorption (a) and
TNL = 0.1Tabs when absorption is present (b). Plots (c) and (d) represent pulse propagation
in the slow light regime in the absence and presence of absorption, respectively. Here,
the dispersion and absorption time scales are exactly as in Figs 3(c)-(d). The nonlinearity
time scale is TNL = 0.2Tdisp in the absence of absorption (c) and TNL = 0.1Tabs when
absorption is present (d). In both cases, the total time of propagation is TNL and 10Tabs ,
respectively.

Tabs and TNL; in the presence of absorption, we replace TNL →<[TNL].
Overall, the nonlinearity results in self-focusing in space and spectral broadening (due to

self-phase modulation). As a result, the higher-order dispersion terms become relatively more
important than in the linear cases studied above.

We first study pulse propagation at the stopped light regime. We assume a negative nonlinearity
which counters the effects of the normal dispersion occurring in this regime. The outcome of this
simulation in the absence of absorption, where we set TNL � Tdisp (Tabs is infinite) is presented
in Fig. 5(a), and the corresponding spectrum, is presented in Fig. 6(a). In this case, we set M = 2,
after we found that R2,3 = 0.008. The corresponding dynamics in the presence of absorption is
shown in Fig. 5(b), and Fig. 6(b). A comparison of Fig. 5(a) to Fig. 3(a) shows that since the
nonlinear effect is much stronger than the dispersion (for this choice of parameters), the pulse
exhibits rapid self-focusing. In momentum space, when comparing Fig. 6(a) to Fig. 4(a), we
observe the corresponding behavior where the spectral width broadens, and refocuses again [53].
When considering absorption, in order to observe a significant nonlinear effect, we choose

TNL to be much shorter than Tabs , thus, also much shorter than TNL in the absence of absorption.
If TNL was longer, the absorption would attenuate the pulse before any nonlinear effect can take
place. When comparing Fig. 5(b) and Fig. 3(b), it seems that in terms of duration, the nonlinear
process does not change the fate of the pulse, as the pulse is attenuated very quickly in both
cases. Nevertheless, in momentum space, when comparing Fig. 6(b) to Fig. 4(b), the spectrum is
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Fig. 6. The spatial spectrum associated with the results shown in Figs. 5(a)-(d).

broadened very quickly due to self-phase modulation.
Next, we study the influence of nonlinearity on pulse propagation in the slow light regime.

We choose the same initial pulse as in the slow light regime simulation in Section 4.1. In this
regime, the dispersion is anomalous, so we set a positive nonlinear term to counteract the effects
of the dispersion. As in the case of the ZGVP, we set TNL such that nonlinear effects are stronger
than the dispersion and omit the absorption. Such configuration results in TNL � Tdisp (Tabs

is infinite). The associated pulse dynamics is shown in Fig. 5(c) and the corresponding spatial
spectrum is presented in Fig. 6(c). We note that M = 2 is sufficient in this case as R2,3 = 0.001.
Fig. 5(b) and (d) (as well as in Fig. 6(b) and (d)) show the dynamics in the presence of absorption.
Overall, as in the linear case, the dynamics in the slow light regime is qualitatively (and even
quantitatively) similar to that in the ZGVP. Specifically, TNL in both cases is similar, and also
similar to cases where the mode has a “normal” velocity, see discussion in Section 3.3.

5. Discussion

In this paper, we developed an efficient formulation suitable for describing pulse propagation in
the slow and stopped light regimes. It enables simple simulations for far more extreme regimes
of dispersion than performed before. However, since the linear pulse propagation problem has an
analytical solution, the main contribution of this part of our work is in providing a somewhat new
point of view on pulse propagation in lossy and nonlinear media, which may in fact be intuitive.
Indeed, our formulation shows that the relevant quantity is the propagation time (rather than
propagation space) - if measured in time, the rate of phase accumulation is not different than in
weakly dispersive systems. Thus, the apparent enhanced phase accumulation (hence, nonlinear
effect) and absorption in the slow light regime are a direct result of the longer time spent in the
system. This is seen also in the nonlinear simulations (Section 4.2) which do not have an analytic
solution.

The rigorous derivation of our main equations is quite subtle, as the lengthy derivation shows,
especially, if one has to go beyond second-order dispersion. However, a-posteriory, the final form
is quite intuitive as its first- and second-order terms could have even be guessed due to the close
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analogy to the standard formulation. This familiar form allows us to enjoy the wide knowledge
accumulated from studies of its standard analogue, including, in particular, the availability of
analytical solutions for Gaussian pulses, effects associated with the pulse shape, the understanding
of the interplay between dispersion and Kerr nonlinearity (see [53]) and the nonlinear dynamics
within the (generalized) nonlinear model, in general. The formulation also shows how to
handle material absorption in a convenient manner, via complex frequencies. The advantage
of their use was not well understood at the time when the more complex momentum-based
formulations were derived. For example, the tedious FDTD calculations of the threshold-less
lasing configuration [35–38] and wave mixing and free carrier generation effects [15, 82, 83]
could now be replaced with simple, even analytic, solutions.

Our formulation can be generalized for a weak longitudinal grating, by adopting the approach
in [60–63]. The formulation will also be trivially valid for pulse propagation in (uniform) atomic
media [2, 3, 30,31] and quantum models of stopped light [26–28], which as noted, were so far
usually modelled with rather simplistic models in which second-order and higher-order dispersion
effects were neglected.
In addition, the importance of the current study is in performing the first step towards the

extension to more peculiar/demanding problems of (linear and especially nonlinear) pulse
propagation that do not have an analytical solutions like, e.g., photonic crystals with defects or
degenerate band edges [51], or plasmonic photonic crystals, which are absorptive and highly
dispersive [84, 85]. Further, our formulation is a starting point for the study of more complex
configurations involving the coupled dynamics of various modes. In this case, one would be able
to derive coupled mode analysis in the slow and stopped light regime, so far treated only with the
full Maxwell equations via FDTD algorithms [6, 11–13, 37, 38, 57–59]. Finally, our results could
also be used in many additional contexts such as acoustic waves [43–45], spin waves [46], water
waves [47], quantum/matter waves [48, 49] etc..

Appendix A Finding the energy density of the carrier mode

We start with Eq. (29) for β = β0, namely,

U(β0, β0) = s

(
ε(®r⊥, ω0) +

1
2
ω0

dε(®r⊥, ω)
dω

����
ω0

)
| ®̃e(®r⊥, β0)|2d®r⊥,

=
1
2

∫ (
ε(®r⊥, ω0) +

d
[
ωε(®r⊥, ω)

]
dω

����
ω0

)
| ®̃e(®r⊥, β0)|2d®r⊥. (48)

We now show that although the constituent materials are dispersive, the relation that
stands for the equality of the electric and magnetic energies in dispersionless media, namely,∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2 =

∫
µ| ®̃h(®r⊥, β0)|2, where ®̃h(®r⊥, β0) is the transverse magnetic field of mode

β0, is still valid in the presence of dispersion.
The term

∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2dxdy in Eq. (48) can be written as∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2dxdy =

∫
ε(®r⊥, ω0)(|ẽx |2 + |ẽy |2 + |ẽz |2)dxdy

=

∫
ε(®r⊥, ω0)

(
1

ω0ε(®r⊥, ω0)

(
−∂hz
∂y
+ iβ0hy

)
ẽ∗x +

1
ω0ε(®r⊥, ω0)

(
∂hz
∂x
− iβ0hx

)
ẽ∗y

+
1

ω0ε(®r⊥, ω0)

(
∂hy

∂x
− ∂hx

∂y

)
ẽ∗z

)
dxdy

=
1
ω0

∫ (
−∂hz
∂y

ẽ∗x + iβ0hy ẽ∗x +
∂hz
∂x

ẽ∗y − iβ0hx ẽ∗y +
∂hy

∂x
ẽ∗z −

∂hx

∂y
ẽ∗z

)
dxdy, (49)
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where we have used Maxwell-Ampéré law,

ẽx =
i

ω0ε(®r⊥, ω0)

(
iβ0hy −

∂hz
∂y

)
, (50a)

ẽy =
i

ω0ε(®r⊥, ω0)

(
∂hx

∂y
− iβ0hy

)
, (50b)

ẽz =
i

ω0ε(®r⊥, ω0)

(
∂hx

∂y
−
∂hy

∂x

)
. (50c)

Integrating by parts gives∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2dxdy =

1
ω0

∫ (
hz
∂ẽ∗x
∂y
+ iβ0hy ẽ∗x − hz

∂ẽ∗y
∂x
+ iβ0hy ẽ∗x − hy

∂ẽ∗z
∂x
+ hx

∂ẽ∗z
∂y

)
dxdy, (51)

where we used ∫
hri ẽrj drk

����ri=∞
ri=−∞

= 0, (52)

where i, j, k represent any spatial coordinate. We now substitute Faraday-Henri Law

∂ẽz
∂x
= iβ0ẽx + iω0µ0hy, (53a)

∂ẽz
∂x
= iβ0ẽx + iω0µ0hy, (53b)

in Eq. (51) and use Eq. (52) again. Eq. (51) becomes∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2dxdy =

1
ω0

∫ [
hz

(
∂ẽ∗x
∂y
−
∂ẽ∗y
∂x

)
+ iω0µ0

(
|hx |2 + |hy |2

)]
dxdy. (54)

In the final stage, we substitute

∂ẽ∗x
∂y
−
∂ẽ∗y
∂x
= iω0µ0h∗z, (55)

and get ∫
ε(®r⊥, ω0)| ®̃e(®r⊥, β0)|2dxdy =µ0

∫ (
|hx |2 + |hy |2 + |hz |2

)
dxdy

=µ0

∫
| ®h(®r⊥, β0)|2dxdy. (56)

This proves our claim. Substituting Eq. (56) in Eq. (48) gives

U(β0, β0) =
1
2

∫ (
d(ε(®r⊥, ω0)ω)

dω

����
ω0

| ®̃e(®r⊥, β0)|2 + µ0 | ®h(®r⊥, β0)|2
)

dxdy. (57)

Since | ®̃e(®r⊥, β0)| accounts for the total amplitude of the electric field (i.e., max(A) = 1), Eq. (57)
is the expression for energy of the carrier mode in dispersive, loss-free, non-magnetic media.
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Appendix B Estimate of D̃n,m and D̃m

In this Appendix, we estimate the magnitude of the coefficients D̃n,m (32) and D̃m (31).
Starting with index n, when n increases, according to Eq. (32), the relative magnitude of

consecutive terms in n, namely, D̃n+1,m/D̃n,m, can be estimated by

Rn ∼

∫
dε (®r⊥,ω0)(®r⊥,ω)

dω

��
ω0

d®r⊥∫
ε(®r⊥, ω)|ω0 d®r⊥

. (58)

For a Drude metal, when taking into account Eq. (45) and ignoring the details of the waveguide
width, we can estimate, Rn ∼ 1

ω0
. For a dispersive dielectric, Rn will be smaller, hence, the

following analysis can be regarded as an estimate for an upper limit. It follows that

D̃n,m ∼
1

ωn−1
0

D̃1,m. (59)

Continuing with index m, according to Eq. (32), one can evaluate

Rm ∼

∫
d | ®̃e(®r⊥,β) |2

dβ

��
β0

d®r⊥∫
| ®̃e(®r⊥, β)|2d®r⊥

, (60)

where Rm is the ratio of order of magnitude of two adjacent terms of D̃n,m in m, specifically,
D̃n,1/D̃n,0. The magnitude of Rm may vary when considering different waveguides, however, in
this work it will be reasonable to consider a plasmonic waveguide where

| ®̃e(®r⊥, β)| ∼ e−| ®k⊥ ·®r⊥ |, (61a)

| ®k⊥ | =
√
β2 − ε(®r⊥, β)(ω/c)2. (61b)

Substituting Eqs. (61) in Eq. (60) results in

Rm ∼
∫
®r⊥ | ®̃e(®r⊥, β)|2d®r⊥∫
| ®̃e(®r⊥, β)|2d®r⊥

. (62)

Notice that Eq. (62) is not a direct result of the substitution but rather a term which maintains
the magnitude in Eq. (60). It is deduced from Eq. (62) that Rm ∼ 〈®r⊥(β)〉, where 〈®r⊥(β)〉 is the
characteristic width of the waveguide mode ®̃e(®r⊥, β).

In cases where β0 ∼ |®k⊥ | at any of the constituents, 〈®r⊥(β)〉 scale as 1/β0 as β0 is the dominant
value in Eq. (61b). If we consider small values of β0 with respect to | ®k⊥ |, due to the nature of the
metal cladding in a MDM waveguide, 〈®r⊥(β)〉 cannot exceed a range which is much larger than
the core, thus Rm ∼ max(〈®r⊥(β)〉, 1/β0).
Considering the above, D̃n,1 ∼ D̃n,0

β0
, where similar analysis in the high-order terms gives,

D̃n,m ∼
D̃n,0

βm0
. (63)

Since D̃1,0 ≡ 1, according to Eqs. (59) and (63), the magnitude of D̃n,m is 1
ωn−1

0 βm
0
. For small

values of β0 the scale of D̃n,m is even smaller as β0 < | ®k⊥ |.
The structure of D̃m is similar of D̃n,m. Considering the same arguments as above, it can be

shown that the magnitude of D̃m is ω0/βm0 , where it can be smaller with large β0.
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