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Thermo-optic nonlinearity of single metal nanoparticles under intense continuous wave illumination
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Over the last few decades, extensive previous studies of the nonlinear response of metal nanoparticles (NPs)
report a wide variation of nonlinear coefficients, thus, revealing a highly confused picture of the underlying
physics. This naturally prevents rational design of these systems for practical devices. Here we provide a
systematic study of the nonlinear response of metal spheres under continuous wave (CW) illumination within a
purely thermal model, i.e., whereby the illumination only acts to modify the optical and thermal parameters via
their dependence on the temperature. We characterize the strong dependence of the temperature rise and overall
thermo-optic nonlinear response on the particle size and permittivity, on the optical and thermal host properties,
as well as on the thermo-derivatives of these properties. This dependence on the nonintrinsic parameters explains
why it is inappropriate to extract an intrinsic nonlinear coefficient from a specific system; equivalently, it explains
the large differences in reported values for such systems, as well as for more complicated metal-dielectric systems
and even pulsed illumination schemes. Despite the revealed complex multiparameter dependence, we managed
to uncover a rather simple behavior of the nonlinear response. In particular, we show that the nonlinearity
coefficients exhibit a dependence on the illumination intensity which mimics the dependence of the temperature
itself on the illumination intensity, namely, it grows for small NP sizes, reaches a maximum and then decreases
monotonically for larger NPs. The improved modeling allows us to demonstrate an overall nonlinear response
which is about a 1000 times higher than in other strongly nonlinear systems (e.g., ε-near-zero systems); it also
provides an excellent match to experimental measurements of the scattering from a single metal NP, thus,
confirming the dominance of the thermal nonlinear mechanism. Our work lays the foundations for an overall
evaluation of previous studies of the nonlinear response of metal-dielectric system under general conditions.
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I. INTRODUCTION

Metals are well known for their ability to absorb light
efficiently and for the consequent heating [1]. Understand-
ing how the generated heat affects the thermal and optical
properties of metals to intense illumination is, thus, of fun-
damental importance, and is also significant for a wide range
of applications, especially in biology and energy harvest-
ing, e.g., photo-thermal imaging [2–4], photothermal therapy
[5–7], thermo-photovoltaics [8,9], plasmonic-heating-induced
nanofabrication [10,11], water boiling and bubble generation
[12–16], nanoscale phase transition [17,18], and plasmon-
assisted photocatalysis [19–25].

The thermo-optic response to illumination depends on two
elements. First, on the dependence of the metal permittivity on
the temperature, clearly an inherent material property. Second,
on the dependence of the temperature rise itself on nonin-
trinsic parameters such as the illumination parameters, the
particle geometry, and the optical and thermal properties of
its surroundings; this dependence becomes nontrivial for suf-
ficiently high illumination intensities and large nanoparticles
(NPs) [1,26,27]. The heating can be particularly efficient if the
illumination is tuned to a resonance of the metal NP where the
strong field confinement gives rise to strong absorption.
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Early studies of this problem were concerned with ensem-
bles of NPs under illumination at various different durations
(see, e.g., [28] for a review). Later, the attention was directed
to the study of single NPs [29]. The vast majority of previous
studies focused on the thermo-optic nonlinear response of
metal nanostructures under ultrafast illumination [30–32]. In
this case, the temperature rise due to absorption of light is
inversely proportional to the heat capacity of the electrons,
and is determined by the interplay between absorption of
incident photons by electrons, thermalization due to electron-
electron interactions and energy exchange with the phonons.
Standard experimental signatures include differential reflec-
tivity, transmissivity, scattering, and so on, or even transient
frequency changes due to permittivity changes. In the first
picosecond or so, the nonlinear response is dominated by
the electron dynamics; accordingly, it is typically weak. At
later stages, the stronger sensitivity of the permittivity to
the (indeed smaller) rise of the phonon temperature becomes
dominant. The overall nonlinear response is proportional to
the particle volume and is nonlocal (delayed) in time [32,33]
and in space [34,35]; the later effect (namely, heat diffusion) is
very strong within the metal structure, causing the temperature
of the nanostructure to become uniform on a subpicosecond
timescale [1,35,36]. In contrast, the heat transfer from the
metal to the surrounding is slower, such that it was usually
neglected in ultrafast studies. A comprehensive theoretical
and experimental description of the nonlinear thermo-optic
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response in this regime is provided in [30,32,37–41]. In this
ultrafast regime, there is also an instantaneous coherent non-
linear response that is not usually associated with heat, but
rather with nonthermal electrons. It, in general, leads to fre-
quency conversion [42–45]; these (generally weaker) effects
will not be studied in the current paper.

For timescales of 10 picoseconds to several hundreds of
picoseconds, the electronic response is of lesser importance,
and the heat dissipation from the NP to its environment cannot
be neglected [46–49]. The cooling dynamics also causes the
NP to expand, such that rapid acoustic oscillations are induced
[50–53] and complex bubble formation may ensue [14,15].
The analysis of these effects will also not be studied in the
current paper.

In contrast, under CW illumination, the temperature dy-
namics in metals is independent of the heat capacity, and
instead, is determined by the interplay between absorption
of incident photons and heat diffusion away from the NP
[1]. In that sense, the temporal nonlocality is irrelevant but
the spatial nonlocality is dominant. One of the consequences
of this is that the dependence of the nonlinear response on
the NP size differs from that under ultrafast illumination—it
scales as the surface area for small NPs, and then exhibits a
complex oscillatory behavior for larger NPs, see [27]. In this
regime, nonthermal effects (hence, coherent nonlinearities)
are negligible compared to effects associated with thermalized
electrons [20,54]; this justifies the use of the permittivity data
under external heating.

The plethora of studies discussed so far provide a wide
range of very different values for the nonlinear response,
see, for example, [55]. This reveals a highly confused picture
of the underlying physics which naturally prevents rational
design of these systems for practical applications. At least
partially, the variation in reported nonlinear coefficients has
its root in the large differences of NP sizes and shapes, as
well as in the illumination wavelength, intensity, and duration
and host properties. It is the goal of this paper to explain this
variability in results, and to provide a simpler systematic way
to the characterize the nonlinear response of metal NPs.

Recently, it was shown experimentally that single-metal
NPs exhibit strong and nontrivial nonlinear scattering and
absorption under CW illumination [56–62]. Specifically, the
authors demonstrated that the normalized scattering and
absorption decreased when the illumination intensity in-
creased. These effects were referred to as saturation of
scattering/absorption [56–60]. It was also demonstrated that
the amount by which the scattering/absorption decreased
strongly depended on the substrate medium and on the con-
tact geometry between the NP and the substrate [61,62]. The
intensity dependence of the scattering has demonstrated po-
tential for applications in superresolution imaging [56,59,63]
and all-optical switching [59]. When the illumination intensity
is sufficiently high, the decrease of the scattering/absorption
changes to an increase, an effect referred to as “reverse satu-
ration of scattering.”

Following these experimental works, we embarked upon a
study of the thermo-optic nonlinearity based on the thermo-
optic effect. In [64], we demonstrated a qualitative agreement
between the experimental data and a numerical calculation
performed under the quasistatic approximation (namely, for

uniform field and subwavelength NPs). In [65], we comple-
mented the numerical simulations of [64] with some analytic
insights and characterized various physical configurations.
These studies showed that few nm metal spheres exhibit
extremely large nonlinear thermo-optic response under con-
tinuous wave (CW) illumination which beyond a ∼100 K
rise in temperature has to be described by a nonperturbative
model. We studied the interplay between the optical parame-
ters of the metal (e.g., the resonance quality), its geometry and
the optical and thermal properties of the host.

Here, encouraged by the success of [64], we go beyond
the quasistatic approximation, by modeling the thermo-optic
response for larger NPs without any approximation of the
electromagnetic response. We calculate the temperature, per-
mittivity, local-field, and scattering cross-section of the NPs
by using the best available experimentally measured data
of the temperature-dependent permittivity [66,67]. Then,
we characterize the thermo-optical nonlinearity of a single
metallic NP, namely, by combining the dependence of the
temperature and scattering response on the illumination in-
tensity with the thermo-derivatives of the various optical and
thermal properties (Hereafter, we refer to the nonlinear scat-
tering response as the nonlinear dependence of the scattering
intensity/scattered power on the illumination intensity). This
analysis points to reasons for the variety of reported values of
the nonlinear optical response of metal NPs and shows that
ultrafast analysis should be handled with care when used to
explain the CW response.

This study is not only an important step towards verifying
the hypothesis [64,65] that the thermo-optical nonlinearity
is responsible for the strong nonlinear scattering observed
in [56–59] for NPs of large size, but also an indispensable
step towards showing the importance of the thermo-optical
nonlinearity in plasmon-assisted photocatalysis [22–24]. In
particular, these results are a first step towards elucidating the
errors in the claims in [68] about the origin of the nonlinear
thermo-optic response in plasmon-assisted photocatalysis ex-
periments, see a detailed discussion in [22,69]. Finally, our
analysis is also relevant for other absorbing materials like
graphene, semiconductors [70–73], and so on.

The paper is organized as follows. In Sec. II, we first
describe the configuration and the basic assumptions of the
model. In Sec. III, we develop the model equations for the
temperature within the NP. In Sec. IV, we describe how to
characterize the thermal-optic nonlinearity. We then proceed
by several numerical examples (Sec. V) and complement the
numerical results with a detailed analysis in Sec. VI. This
analysis elucidates the main result of this work, namely, that
the nonlinear response reaches a maximal value for NP sizes
of several tens of nms. It also identifies the role of each of the
thermo-derivatives of the parameters in the heated NP system.
Finally, we provide a discussion of the results and an outlook
in Sec. VII.

II. CONFIGURATION

We consider a single spherical metal NP of radius a with
temperature-dependent permittivity εm(T ) in a loss-less di-
electric host εh illuminated by a high intensity CW plane
wave. The absorption of incoming photons causes the NP to
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heat up, an effect which is balanced by heat transfer to the
environment such that the temperature reaches a steady state.
In this case, the heat equation reduces to the Poisson equation

∇ · [κ (r, T (r))∇T (r)] = −pabs(ω, r, T (r)), (1)

where κ (r, T (r)) is the thermal conductivity (which is, in
general, temperature-dependent, and hence, space-dependent)
and pabs(ω, r, T (r)) is the absorbed power density. Here, we
only consider one-photon absorption and neglect potential
multiphoton absorption so that the absorbed power density is
given by pabs(ω, r, T (r)) = ω

2 ε0ε
′′
m(ω, T (r))|E(ω, r)|2, where

E(ω, r) is the complex total (local) electric field amplitude
[74] with the convention of the time dependence exp(−iωt ).
We also ignore the small differences between the electron
and lattice temperatures for simplicity, see justification in
[20,54,75].

The illumination-induced heating of the NP causes a modi-
fication of the optical and thermal properties of the NP and its
surroundings. This thermo-optic effect couples the equations
for the temperature and electric fields, thus, giving rise to a
nonlinear dependence of the absorption and scattering from
the NP on the incident intensity. In the current work, we
calculate the particle temperature and study the thermo-optic
nonlinearity of a single NP as a function of its size, of the
illumination wavelength, and of the optical and thermal prop-
erties.

Since we would like to concentrate on the interplay
among temperature, particle size, and thermo-optic nonlinear-
ity, we avoid using sophisticated solid-state physics models
of the temperature dependence of these properties (these are
available in, e.g., [32,34,41]). Instead, we perform all the cal-
culations below by utilizing the best available empirical data
for the temperature-dependent permittivities extracted from
recent ellipsometry measurements of single crystalline thin
Au films (up to 600 K in the wavelength range of 200–1680
nm [66]) and thin Ag films (up to 900 K in the wavelength
range of 330–2000 nm [67]); similar data sets can be found in
[76–79]. Specifically, labeling the ambient properties (i.e., the
vanishing incident intensity limit) by a subscript 0, we model
the dependence of the metal permittivity on the temperature
by a second-order polynomial, namely,

εm(ω, T ) = ε′
m,0(ω) + B′

m(ω)(T − Th,0) + D′
m(ω)(T − Th,0)2

+ i[ε′′
m,0(ω) + B′′

m(ω)(T − Th,0)

+ D′′
m(ω)(T − Th,0)2], (2)

where Th,0 is the ambient temperature, Bm = B′
m + iB′′

m and
Dm = D′

m + iD′′
m are the first- and the second-order thermo-

derivatives of the permittivity, respectively. Comparing to the
linear dependence of the permittivity on the temperature as-
sumed in [65], the second-order polynomial is able to fit the
data to a higher level of accuracy. Similarly, we assume for the
host thermal conductivity that κh(T ) = κh,0 + Bκ,h(T − Th,0)
[80] (see, e.g., the data in [61]). In the calculations below, we
limit ourselves to a maximum temperature rise smaller than
400 K such that the detailed assumptions above hold, and so
that sintering and melting of the metal, as well as damage or
phase transitions in the host are avoided [10,11,14,81,82].

To generate a complete picture of the nonlinear thermo-
optic response of metals, it is required to solve Eq. (1) together
with Maxwell’s equations self-consistently since the electric
field, the temperature, the absorbed power density, and all
temperature-dependent material parameters inside the NP are
spatially nonuniform. However, while the electric field (hence,
the absorbed power density) nonuniformity might be signifi-
cant (especially, as occurs for NPs of more than a few nm in
size, for which high-order multipoles are excited), a compar-
ison to exact simulations has shown that the nonuniformity
of the temperature inside the NP is quite small (see [26,27]).
The reason for this is that the thermal conductivity of the
metal is typically much greater than the thermal conductivity
of the host, κm � κh; we observe that this assumption is
also valid in the presence of the thermo-optic nonlinearity.
Furthermore, for the sake of simplicity, we neglect the tem-
perature dependence of the host permittivity [83]. This will
allow us to simplify the problem significantly and to obtain an
approximate analytic solution of Eq. (1).

III. TEMPERATURE OF A SINGLE NP UNDER CW
ILLUMINATION

The above assumptions allow us to approximate the spa-
tially nonuniform material parameters inside the NP, εm(T (r))
and κm(T (r)), by their values on the NP surface, εm(TNP) and
κm(TNP), where TNP denotes the surface temperature of the
NP. Next, we replace the spatially nonuniform absorbed power
density in Eq. (1) by its volume average [26], p̄abs(ω; TNP) ≡

3
4πa3

∫
ωε0

2 ε′′
m(ω, TNP)|E(ω, r)|2d3r; it is more convenient to

refer to this expression as 3
4πa3 Cabs(ω, TNP)Iinc, where Cabs is

the absorption cross-section calculated with the uniform metal
permittivity εm(TNP) and Iinc is the intensity of the incoming
illumination. Then, one can obtain an approximate analytic
solution of Eq. (1), namely,{

T (r) = TNP + p̄abs(ω;TNP )a2

6κm

(
1 − r2

a2

)
for, r < a,∫ T (r)

Th,0
κh(T )dT = p̄abs (ω;TNP )a3

3r , for r � a.
(3)

In Eq. (3), TNP is now an unknown variable which needs to be
determined by fixed point iterations at r = a, namely,∫ TNP

Th,0

κh(T )dT = p̄abs(ω; TNP)a2

3
= Cabs(ω, TNP)Iinc

4πa
. (4)

In contrast to previous studies [1,26,61], Eq. (4) correctly
takes account of the temperature dependence (and hence the
spatial dependence) of the host thermal conductivity. In partic-
ular, the integration in the left-hand side of Eq. (4) indicates
that the relative importance of the first-order thermoderiva-
tives of κh is reduced by a factor of 2, as we shall see later
[e.g., in Eq. (8) below]. This is because only a small region of
the host medium is heated up by the NP.

For weak illumination, one can neglect the temperature
dependence of all parameters. In this case, Eq. (4) provides
a closed-form solution for the NP temperature [26]

TNP,I = Th,0 + Cabs(ω, Th,0)Iinc

4πκha
. (5)

Equation (5) is the linear (first-order) approximation of
Eq. (4), hence, its solution is denoted by the subscript I.
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IV. HOW TO CHARACTERIZE THE THERMO-OPTIC
NONLINEARITY?

With a formulation for determining the temperature depen-
dence on the incoming intensity in hand, we can now combine
this knowledge with the temperature-dependent parameter
models [Eq. (2) for the permittivity and the corresponding
model for the thermal conductivity of the host] to characterize
the overall nonlinear thermo-optic response of the metal to the
optical illumination.

Before doing so, one has to clarify two somewhat over-
looked complications. First, for materials with a temporally
and spatially local response (e.g., materials with a pure elec-
tronic response), the nonlinear response is conventionally
defined via ε(|E|2) where E is the local field and all the
relevant coefficients in ε(|E|2) include only intrinsic param-
eters associated with the NP material. However, in systems
in which there is significant contrast between the dielectric
constants of the scatterer (the NP, in our case) and the host, the
electric field inside the scatterer is strongly affected also by the
illumination pattern, the NP geometry and the optical proper-
ties of the host. As a result, the nonlinear optical response to a
given illumination level is no longer a purely intrinsic property
of the metal and can be very sensitive to these properties. This
effect contributes to the wide variations of reported nonlin-
earity values, as seen, e.g., through the local-field correction
usually introduced to the nonlinear response of small NPs, see,
e.g., [84].

A second complication in the definition of the nonlin-
ear optical response of metal NPs originates from the fact
that they have a strong nonlocal thermal response in time
[32,33,41] and space [34,35] which prevents one from being
able to directly link the permittivity and local field at all.
Instead, the nonlinearity has to be determined indirectly (e.g.,
through the dependence of the temperature on the local field),
and now involves additional nonintrinsic properties such as
the thermal properties of the host material [85]. Furthermore,
while the temporal nonlocality is of little consequence when
the illumination involves just a single temporal frequency
(i.e., for the CW illumination case studied in this paper),
the nonuniformity of the permittivity in space causes the
distributions of the electric field and temperature to be quite
different—indeed, while the field is, in general, nonuniform
across the NP, the temperature is nearly uniform [26,27].
Thus, with the exception of small spherical NPs (see relevant

discussion in [65]) and potentially also ultrafast illumination,
the formulation of the nonlinear optical response as εm(|E|2)
is inaccurate. In that sense, one should refrain from assigning
a χ (3) or n2 values as these are considered to be intrinsic
properties of the metal. This frequently ignored fact is the
second main source for the wide variability of reported values
for the nonlinear optical response of metals.

In light of the above, in what follows we choose instead
to characterize the nonlinearity through the dependence of
the NP temperature, of the metal permittivity εm and of the
scattered power Psca on the incoming intensity Iinc. Indeed, one
can obtain a direct relation to the incoming intensity (rather
than to the local field) if it consists only of a single spatial
frequency component, i.e., a plane wave. More generally, it
will be easy to appreciate that since the nonlinearity of metals
is so strong, it is “visible by eye” when plotted, and can
be characterized in percentage with respect to the ambient
response, with no need for writing rigorous coefficients for
the nonlinearity.

V. RESULTS

Following the experiments of [56–58,58,60,63], we study
the thermo-optic nonlinearities of Au and Ag NPs of different
sizes immersed in oil (with permittivity εh = 2.235, thermal
conductivity κh,0 = 0.2873 W m−1 K−1 and its thermoderiva-
tive Bκ,h = 1.297 × 10−4 W m−1 K−2). In particular, we will
focus on the on-resonance case.

A. Numerical results: Au NPs

Figure 1 shows the solutions of Eq. (4) for particle sizes
a = 20, 30, and 50 nm. For a fair comparison, the wavelengths
of the illumination are set to their respective electric dipole
resonance wavelengths (550, 564, and 610 nm). One can
see that for low intensities, the particle temperature increases
monotonically with the incoming intensity, with a slope that
depends on the particle size, wavelength, and material prop-
erties (see discussion in [27]). At higher intensities, this slope
changes, depending on the particle size. Specifically, for a =
20 and 30 nm, the rate of the temperature increase is sublinear
(i.e., it slows down as the incoming intensity increases with
respect to the low intensity response), in good agreement
with the quasistatic calculations in [65]; for a = 50 nm, by
contrast, the temperature increase rate is superlinear (i.e., it
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FIG. 1. The NP temperature [solution of Eq. (4); black solid lines] as a function of the illumination intensity for Au NPs of different sizes
and wavelengths. (a) a = 20 nm and λ = 550 nm, (b) a = 30 nm and λ = 564 nm, and (c) a = 50 nm and λ = 610 nm. The linear approximate
solutions 	TNP,I are shown by blue dotted lines.
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FIG. 2. Same as Fig. 1 for the permittivity (real part and imaginary part) of Au.

grows with the incoming intensity due to the increase of
absorption with temperature). This last effect is not captured
by the quasistatic approximation used in [65] (see more details
in Sec. VI). For a temperature rise of 400 K, the deviations of
the solution (4) from the linear (first-order) approximation (5)
are ∼ − 30% for a = 20 nm, ∼ − 15% for a = 30 nm, and
∼ + 10% for a = 50 nm. Such a nonlinear response is unusu-
ally large for the deep subwavelength scales and moderately
high incident intensities involved.

Figure 2 shows the corresponding changes of the real and
imaginary parts of the Au permittivity. One can see that the
relative change of ε′

Au is ∼5% but the relative change of ε′′
Au

is 25–70% depending on the NP size. As mentioned, this is
an unusually large nonlinearity for the associated subwave-
length scales involved. As noted already in [65], the greater
sensitivity of the scattered intensity on the imaginary part of
the permittivity is in accord with the experimental findings
reported in [59].

In Fig. 3, we show the corresponding normalized scattered
power (Psca/Psca,0) from the NP, where Psca,0 is the scattered
power obtained when the NP is kept at the ambient temper-
ature. One can see that for a = 20 and 30 nm, the exact
numerical results decrease more slowly than their first-order
approximation Psca,I due to the slowing down of the rate of
the temperature rise [see Figs. 1(a) and 1(b)]; for a = 50 nm,
the opposite happens because TNP increases faster than TNP,I,
see Fig. 1(c).

B. Numerical results: Ag NPs

We now replace the Au NP with a Ag NP, while all other
conditions remain the same as in Sec. V A. Figure 4 shows the
results of the temperature rise for particle sizes a = 10, 20,
and 30 nm. Again, we set the wavelengths of the illumination

to be their electric dipole resonance wavelengths (420, 435,
and 460 nm). The results of Ag NPs shown in Fig. 4 are
qualitatively similar to the case of Au NPs (Fig. 1). The most
striking difference between the results shown in Fig. 4 with
respect to Au NPs is the much stronger nonlinearity.

For the case of a = 10 nm [Fig. 4(a)], when the incoming
intensity increases from 0 to 0.1 MW/cm2 (	TNP < 100 K),
the exact solution deviates from its linear approximation by
∼ − 50%; when the the incoming intensity is larger than
0.1 MW/cm2 (200 K < 	TNP < 300 K), the slowdown of
the temperature becomes even more significant. For the case
of a = 20 nm [Fig. 4(b)], the exact solution coincides with its
linear approximation. For the case of a = 30 nm [Fig. 4(c)],
the temperature growth of the exact solution speeds up and
deviates from its linear approximation by ∼40% for a temper-
ature rise of 300 K. Accordingly, the relative change of the
ε′

Ag is ∼7–10% and the relative change of ε′′
Ag is ∼120–160%

depending on the NP size, see Fig. 5. This, again, indi-
cates a stronger nonlinearity of Ag NPs than that of Au
NPs; this is a direct result of the much smaller imaginary
part of the Ag permittivity compared to that of Au (see
Sec. VI).

The behavior of the scattered power from the Ag NPs is
qualitatively the same as for Au (see Figs. 3 and 6) except that
the nonlinear behavior is quantitatively stronger, as well as for
the temperature rise and the permittivity change.

VI. ANALYSIS

A. Analysis of the temperature and of the nonlinear response
and εm(�T )

The nonlinear response of the single spherical NP can be
characterized via the permittivity εm(TNP(Iinc)). Thus, it has an
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FIG. 3. Same as Fig. 1 for the normalized scattered power.
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FIG. 4. Same as Fig. 1 for Ag NPs (a) a = 10 nm and λ = 420 nm, (b) a = 20 nm and λ = 435 nm, and (c) a = 30 nm and λ = 460 nm.

intensity dependence similar to that of 	TNP, so that we can
characterize both simultaneously. Notably, due to the implicit
nature of Eq. (4), it is difficult to extract physical insights from
its self-consistent solution. Therefore, to obtain such insights,
we approximate Eq. (4) by a polynomial expansion in 	TNP ≡
TNP − Th,0. It turns out that this approximation yields quite
satisfactory results even for the maximal heating range of
	TNP ≈ 400 K (see Supplemental Material, Ref. [86]). This
approximation allows us to employ the Padé approximants
[87,88] so that the absorption cross-section is written as a
rational function of x ≡ ka = 2π

√
εha/λ (see details in [27,

Appendix B]), namely,

Cabs(ω, TNP) ∼= 12π

k2

ε′′
m(ω, TNP)εh(ω)x3(1 + 2x2/5)

Q(εm(ω, TNP), εh(ω), x)
, (6)

where

Q(εm(ω, T ), εh(ω), x) = q2
1(εm(ω, T ), εh(ω), x)

+ q2
2(εm(ω, T ), εh(ω), x), (7)

and where q1 and q2 are, respectively, given by
q1(εm(ω, T ), εh(ω), x) = ε′

m(ω, T )(1 − 3
5 x2) + 2εh(ω)

(1 + 3
5 x2) + 2

3ε′′
m(ω, T )x3 and q2(εm(ω, T ), εh(ω), x) =

ε′′
m(ω, T )(1 − 3

5 x2) − 2
3 [ε′

m(ω, T ) − εh(ω)]x3. Here, we
neglect the magnetic responses since they are much weaker
than the electric responses. For the same reason, we also
neglect the electric multipoles of order higher than the
electric dipole [27] since we focus on the electric dipole
resonance conditions. The electric dipole resonance condition
is determined by q1 = 0 and the quality factor of the
resonance is quantified by q2. In the quasistatic limit (x → 0),
q1 reduces to ε′

m + 2εh and the resonance condition is

determined by the well-known expression ε′
m = −2εh. The

x2 and x3 terms are, respectively, recognized as the dynamic
depolarization [89] and radiation damping [90] effects.

A few points can be noted already. First, the change of
the value of ε′′

m has two competing effects on the absorption
cross-section: on one hand, the ε′′

m in the numerator of Eq. (6)
(hence, the absorption itself) increases linearly with ε′′

m; on
the other hand, the ε′′

m in the denominator of Eq. (6) causes the
value of Q to increase with ε′′

m, thus, it causes the resonance
quality factor (hence, the absorption) to decrease as well [see
the definition of Q in Eq. (7)]. However, by how much the
resonance quality factor (hence, the absorption) is reduced
depends on the NP size. Specifically, when the NP size is
small, q2 → ε′′

m, so that the absorption cross-section is in-
versely proportional to ε′′

m and decreases with the temperature
rise; on the other hand, when the NP size is large enough (such
that the x3 term dominates), q2 (hence, the quality factor)
becomes much more weakly-dependent on ε′′

m, so that the
absorption cross-section becomes proportional to ε′′

m (through
the numerator) and increases with the temperature rise; we
shall see this explicitly later.

Second, at resonance, the change of ε′
m generically causes

a decrease of the absorption due to a shift of resonance wave-
length (such that |q1| increases). It has been shown in [65] that
when the temperature rise is small, the effect of this resonance
shift is secondary for sufficiently small NPs. As we show
below, the resonance shift is even smaller for large NPs, yet,
when the temperature rise is higher, the effect of the resonance
shift can be significant, especially for small metal NPs with
low-loss, e.g., Ag.

With the assumptions described in Sec. II and the Padé
approximations, the NP temperature (4) can be rewritten as
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FIG. 5. Same as Fig. 4 for the permittivity (real part and imaginary part) of Ag.
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FIG. 6. The normalized scattered power from Ag NPs as a function of the illumination intensity. The particle sizes and the wavelengths
are the same as Fig. 4.

an implicit equation in 	TNP, namely,

	TNP

(
1 + Bκ,h

2κh,0
	TNP

)⎧⎨
⎩

1 + Q1
Q0

	TNP + Q2
Q0

	T 2
NP + · · ·

1 + B′′
m

ε′′
m,0

	TNP + D′′
m

ε′′
m,0

	T 2
NP

⎫⎬
⎭

= 	TNP,I, (8)

where Q0 = Q(εm,0(ω), εh(ω), x), Q1 = ∂Q
∂T |Th,0

and Q2 =
1
2

∂2Q
∂T 2 |Th,0

are the Taylor expansion coefficients of Q. Equa-
tion (8) is a generalization of Eq. (4) of [65] for NPs more
than a few nm in size (note the similarity of notations).
Specifically, under the quasistatic approximation (x → 0),
q1 → ε′

m + 2εh, and q2 → ε′′
m. In this case, Q0 → (ε′

m,0 +
2εh)2 + ε′′2

m,0, Q1 → 2(ε′
m,0 + 2εh)B′

m + 2ε′′
m,0B′′

m, and Q2 →
B′2

m + B′′2
m . After some lengthy algebra, one can verify that

Eq. (8) reduces to the fourth-order polynomial equation in
	TNP appearing in Eq. (4) of [65].

We notice that Eq. (8) has the form 	TNP,I(	TNP) rather
than the more desired form 	TNP(	TNP,I(Iinc)). This can be
fixed by applying the Lagrange inversion theorem to Eq. (8) so
that 	TNP can be expanded into a sum of a power series in Iinc.
However, we find that (see Supplemental Material, Ref. [86])
the resulting expansion of 	TNP(Iinc) converges to the exact
solution Eq. (4) only for a small range of values of 	TNP,
especially for small metal NPs with low losses; for example,
for an Ag NP of 10 nm in radius, it converges only when
	TNP < 100 K. Moreover, in the more desirable expansion

	TNP(Iinc), the physical effects are mixed in the coefficients,
making it difficult to extract meaningful physical insights.
In contrast, the solution of Eq. (8) turns out to be nearly
indistinguishable from the exact solution (4) even for large
temperature rises. In addition, relation (8) provides direct
physical insights into the origins of the nonlinear response.
Specifically, the first factor 	TNP in Eq. (8) represents the
linear temperature response when the intensity (and hence
	TNP) is small; the second factor (1 + Bκ,h

2κh,0
	TNP) corresponds

to the nonlinearity associated with the temperature-dependent
host thermal conductivity [i.e., it can be traced back to the
term

∫ TNP

Th,0
κh(T )/κh(Th,0)dT in Eq. (4)]. This effect of the host

thermal conductivity is disentangled from the other physi-
cal effects. The terms in the curly brackets in Eq. (8) refer
to the contributions from the temperature-dependent metal
permittivity of the NP. For these reasons, we study the less
conventional but more accurate and physically meaningful
Eq. (8) to provide a more detailed analysis of the numerical
results above.

To further elucidate the relative importance of the various
physical effects on the NP temperature, we expand the quo-
tient in the curly brackets in Eq. (8) in a Taylor series of
	TNP, so that Eq. (8) can be rewritten as a sum of a power
series in 	TNP. It can be shown that all the coefficients of
this power series can be expressed in terms of the normalized
thermoderivatives of the absorption cross-section [91], e.g.,

1
Cabs

dCabs
dT |

Th,0
, 1

Cabs

d2Cabs
dT 2 |

Th,0
, · · · (see details in the Appendix),

namely,

	TNP

(
1 + Bκ,h

2κh,0
	TNP

){
1 +

(
Q1

Q0
− B′′

m

ε′′
m,0

)
	TNP +

[
Q2

Q0
+

(
B′′

m

ε′′
m,0

)2

− Q1

Q0

B′′
m

ε′′
m,0

− D′′
m

ε′′
m,0

]
	T 2

NP + O
(
	T 3

NP

)}

= 	TNP

(
1 + Bκ,h

2κh,0
	TNP

){
1 −

( 1

Cabs

dCabs

dT

)
Th,0

	TNP − 1

2

[
1

Cabs

d2Cabs

dT 2
− 2

( 1

Cabs

dCabs

dT

)2]
Th,0

	T 2
NP +O

(
	T 3

NP

)}=	TNP,I.

(9)

As one could expect, the solution of Eq. (9) converges to the
exact solution Eq. (4) for a moderately high temperature rise
only (see Supplemental Material, Ref. [86]). Therefore, in the
following, we choose to analyze the coefficients instead of the
solution of Eq. (9) itself. We also examine how each of the
thermo-derivatives affects the NP temperature and study the
dependence of the nonlinear response on the NP size.

1. Effects of the thermoderivatives of the permittivity
on the temperature rise

In this subsection, we focus on the coefficients in the curly
brackets in Eq. (9) and examine the effects of the thermo-
derivatives of the permittivity on the absorption cross-section
and on the temperature rise. Applying the chain rule to the co-
efficient ( 1

Cabs

dCabs
dT )

Th,0
, one can see that the relative importance
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FIG. 7. The normalized derivatives of the absorption cross-section respect to ε′
m (orange dashed line: 1

Cabs

∂Cabs
∂ε′

m
and green dash-dotted line:

1
2Cabs

∂2Cabs
∂ε′ 2

m
) and to ε′′

m (blue solid line: 1
Cabs

∂Cabs
∂ε′′

m
) for (a) Au and (b) Ag NPs of different sizes, all evaluated at Th,0. The circle, square, and triangle

dots in (a) and (b) label the cases shown in Figs. 1 and 4, respectively.

of B′
m and B′′

m is weighted by the sensitivity of Cabs to ε′
m and

to ε′′
m, i.e.,( 1

Cabs

dCabs

dT

)
Th,0

=
(

1

Cabs

∂Cabs

∂ε′
m

)
Th,0

B′
m+

(
1

Cabs

∂Cabs

∂ε′′
m

)
Th,0

B′′
m.

(10)

A similar expression has already been used to study the
ultrafast nonlinearity of single NPs in [31,32,47], even though
for a fixed NP size; these studies showed that ∂Cext/∂ε′

m and
∂Cext/∂ε′′

m are strongly enhanced at resonance such that they
dictate the nonlinear response of the NP around its plasmonic
resonance wavelength. It was also found that the wavelength
dependence of ∂Cext/∂ε′

m has a Lorentzian-like profile similar
to ∂Cext/∂λ and always crosses the horizontal axis near the
plasmonic resonance wavelength [92].

We now would like to add insights to the results of
[31,32,47] by exploring the size dependence of the nonlinear
response. To do that, we calculate the normalized derivatives
of Cabs with respect to ε′

m and ε′′
m under the electric dipole

resonance condition at Th,0, i.e., when the resonance wave-
length depends on the NP size via q1(εm,0(ω), εh(ω), ka) = 0.
Under these conditions, we get(

1

Cabs

∂Cabs

∂ε′
m

)
q1 = 0,

TNP = Th,0

= 4

3

x3

q2(εm,0, εh, x)
, (11a)

(
1

Cabs

∂Cabs

∂ε′′
m

)
q1 = 0,

TNP = Th,0

= − 1

ε′′
m,0

[
1 − 4

3

|ε′
m,0 − εh|

q2(εm,0, εh, x)
x3

]
.

(11b)

The size dependence of these terms for Au and Ag is shown
in Fig. 7. We can now study these coefficients in two ranges
of particle sizes.

Small NPs (i.e., x � 1, a < 20 nm for Au NPs; a < 10
nm for Ag NPs). In this case, ( 1

Cabs

∂Cabs
∂ε′′

m
) q1=0,

TNP=Th,0

→ − 1
ε′′

m,0
< 0;

this occurs because of the increase of ε′′
m with the temperature

causes a reduction of the resonance quality factor. On the other
hand, ( 1

Cabs

∂Cabs
∂ε′

m
) q1=0,

TNP=Th,0

→ 0, so that B′
m has a negligible effect

on the temperature rise, in agreement with a previous report on

the weak (second-order) effect of ε′
m on the temperature [65].

In this case, Eq. (10) reduces to ( 1
Cabs

dCabs
dT ) q1=0,

TNP=Th,0

≈ − B′′
m

ε′′
m,0

.

However, the effect of B′
m on the temperature rise becomes

nonnegligible beyond the perturbative regime studied in [65],
i.e., for temperature rise of more than about 100 K. Indeed,
when the temperature rise is moderately high (	TNP > 200 K
for Au NPs and 	TNP > 100 K for Ag NPs), the coefficient
of 	T 2

NP in the curly bracket in Eq. (9) can be rewritten by

− 1

2

[
1

Cabs

d2Cabs

dT 2
− 2

( 1

Cabs

dCabs

dT

)2]
q1 = 0,

TNP = Th,0

x → 0 − 1

2

(
1

Cabs

∂2Cabs

∂ε′ 2
m

)
q1 = 0,

TNP = Th,0

× B′ 2
m −

(
1

Cabs

∂2Cabs

∂ε′ 2
m

)
q1 = 0,

TNP = Th,0

D′′
m =

[(
B′

m

ε′′
m,0

)2

+ D′′
m

ε′′
m,0

]
.

(12)

The first term (B′
m/ε′′

m,0)2 in Eq. (12) causes the absorption
cross-section to decrease with the NP temperature via a shift
away from resonance, regardless of the sign of B′

m. This
further slows down the temperature rise. Notably, the normal-
ization by ε′′

m,0 (rather than by ε′
m,0) causes the resonance shift

to be stronger for NPs with lower loss.
Large NPs (i.e., when the x3 term dominates; specifi-

cally, for a > 40 nm for Au NPs and a > 30 nm for Ag
NPs). Different from the case of small NPs, the resonance
quality (∼q2) is weakly dependent on ε′′

m so that Cabs ∼ ε′′
m

[rather than to its inverse, as noted in Eq. (6)]. As a re-
sult, ( 1

Cabs

∂Cabs
∂ε′′

m
) q1=0,

TNP=Th,0

→ + 1
ε′′

m,0
> 0 (instead of −1/ε′′

m,0). This

can also verified from Eq. (11b). Another difference is that
( 1

Cabs

∂Cabs
∂ε′

m
) q1=0,

TNP=Th,0

→ 2
|ε′

m,0−εh| , i.e., it does not vanish anymore,

so that the effect of B′
m on the temperature rise is nonnegligi-

ble.
Furthermore, in analogy to Eq. (12), the coefficient of

	T 2
NP in the curly bracket in Eq. (9) becomes (see the
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Appendix)

− 1

2

[
1

Cabs

d2Cabs

dT 2
− 2

( 1

Cabs

dCabs

dT

)2]
q1 = 0,

TNP = Th,0

≈
(

B′
m

|εm,0 − εh| + B′′
m

ε′′
m,0

)2

− D′
m

|ε′
m,0 − εh| − D′′

m

ε′′
m,0

. (13)

Specifically, the effect of B′ 2
m on the temperature rise is nor-

malized by |εm,0 − εh|2 so that the effect of the shift away
from resonance on this coefficient is much weaker than that in
the case of small NPs.

2. Comparison of thermoderivatives of the permittivity and
thermal conductivity of the host

As we can see from Eq. (8) [or from Eq. (9)], when the ther-
moderivative of the host thermal conductivity (Bκ ) is positive
(negative), the temperature growth rate decreases (increases)
as the NP temperature increases. This host dependence is
unique to the thermo-optical response to the CW illumination,
i.e., it complements the dependence on the thermo-derivatives
of the metal permittivity which dominate the ultrafast re-
sponse. In the numerical examples above, Bκ,h

2κh,0
> 0 for oil.

Thus, for the case of small NPs, Bκ,h

2κh,0
has the same sign

as −( 1
Cabs

∂Cabs
∂ε′′

m
) q1=0,

TNP=Th,0

B′′
m ≈ B′′

m
ε′′

m,0
and the resonance shift ef-

fect [∼(B′
m/ε′

m,0)2], so that these three effects act jointly to
cause a substantial slowdown of the temperature growth, see
Figs. 1(a) and 4(a). The slowdown of the temperature growth
of small Ag NPs is much more significant than that of small
Au NPs because ε′′

Ag 
 ε′′
Au.

On the other hand, for large NPs, −( 1
Cabs

∂Cabs
∂ε′′

m
) q1=0,

TNP=Th,0

B′′
m ≈

− B′′
m

ε′′
m,0

is of different sign from Bκ,h

2κh,0
and the resonance shift

effect [∼(B′ 2
m /|ε′

m,0 − εh|2)]. Thus, the effect of Bκ,h

2κh,0
and of

B′′
m/ε′′

m,0 can counteract each other. This happens for the 40 nm
Au NP studied in Sec. V A. The slightly faster NP temperature
growth rate shown in Fig. 1(c) is indeed due to the positive

value of B′
Au used in the simulation and due to the higher-order

correction Dm/ε′′
m,0 in Eq. (13). In contrast, for the example

of 30 nm studied in Sec. V B, B′′
Ag/ε

′′
Ag,0 is much larger than

Bκ,h/(2κh,0) and the resonance shift effect so that the temper-
ature growth speeds up substantially. In this case, the speedup
of the temperature growth is hardly affected by the tempera-
ture dependence of the host thermal conductivity.

B. Analysis of the apparent nonlinear response

To provide a more complete picture of the nonlinear re-
sponse, in what follows, we chose to study also another,
nonintrinsic yet potentially more accessible observable of the
nonlinear response, namely, the nonlinear response of the
local field to the incoming intensity. It is more complicated
than the proper nonlinearity (i.e., εm(T (Iinc))) as it incorpo-
rates, again, its own nontrivial dependence on the metal and
host permittivities; it is representative also of the intensity
dependence of the scattered and absorbed power (not further
analyzed).

For plane-wave illumination polarized along x and propa-
gating in the z direction, necessarily, m = 1 [93]. According
to Mie theory, the field enhancement is given by E/Einc =∑∞

n=0 in 2n+1
n(n+1) (cnM(1)

o1n − idnN(1)
e1n). Here, we use the same no-

tation for the electromagnetic modes of the spherical particle
as in [93]. The electric dipole Mie coefficient in the Padé
approximation is

d1 = 3
[
εh+ 1

10 (εm,0 + εh)x2
] + 3

10 Bmx2	T{
q1(εm,0, εh, x) + [

B′
m

(
1 − 3

5 x2
)+ 2

3 B′′
mx3

]
	T

+ iq2(εm,0, εh, x) + i
[
B′′

m

(
1 − 3

5 x2
) − 2

3 B′
mx3

]
	T

} .

(14)

Figure 8 shows d1 under the condition that
q1(εm,0(ω), εh(ω), x) = 0, i.e., it follows the dipolar
resonance (as in Fig. 7).

We associate the apparent nonlinear response to the de-
viation of d1 from its low intensity (i.e., room temperature)
value. Thus, the apparent cubic nonlinearity is represented by
the first-order derivative of d1 with respect to the incoming
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FIG. 8. (a) The Mie coefficient |d1| for q1(λ) = 0 (i.e., when the illumination wavelengths is set to the respective electric dipole resonance
wavelength) as a function of the illumination intensity for Au NPs with a = 10 nm and λ = 540 nm (blue circles), a = 25 nm and λ = 555 nm
(orange diamonds), a = 40 nm and λ = 585 nm (green squares), a = 50 nm and λ = 610 nm (red down-pointing triangles), and a = 60 nm
and λ = 640 nm (magenta up-pointing triangles). The thermo-derivatives B′

Au and B′′
Au are positive within this wavelength range, see [66]. The

dashed lines denote the corresponding fits by second-degree polynomials in Iinc at Iinc → 0, analogous to an apparent cubic-quintic thermo-optic
nonlinearity. (b) The corresponding apparent cubic and (c) the quintic nonlinear coefficients for q1(λ) = 0 as a function of ka (black solid line).
The markers correspond to the specific cases shown in (a).
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intensity. Whenever d1 is nonlinear, the nonlinear thermo-
optic response has contributions higher than the cubic de-
scription, i.e., the nonlinear response is nonperturbative. The
second-order derivative of d1 with respect to the incoming in-
tensity is hence referred to as the quintic nonlinearity. One can
see that for small spheres, the local-field enhancement d1 de-
creases with growing incident field, i.e., (∂|d1|/∂Iinc)Iinc→0 <

0, hence, d1 decreases with growing (average) NP temper-
ature. This is mostly because the NP temperature grows as
a2, see [27]. In turn, this causes an increase in the imagi-
nary part of the Au permittivity, which leads to a decrease
of the quality factor of the plasmonic resonance, hence, to
a broadening of the spectral response and a decrease of the
field at resonance. This is inline with the results of [65] which
were obtained under the quasistatic approximation. Then, for
larger NPs, the deterioration of the optical response becomes
more modest, until it essentially vanishes. Similarly to the
temperature dependence on the NP size, this behavior can be
associated with radiative damping which causes a decrease of
the linear thermal response (compare to Fig. 5 in [27]). In
terms of the nonlinear thermo-optic response, this gives rise
to an optimal size (here, a ≈ 25 nm) for which the cubic and
quintic corrections to the local field are maximal (in absolute
value) such that a nonperturbative description is required; this
is, indeed, reminiscent of the thermal response itself, see [27].

The resonance shift of the electric dipole mode (an ef-
fect which is removed from Fig. 8) causes the (linear [27]
and) nonlinear response to drop further (if the illumination
is resonant or if B′

m	T shifts the resonance away from the
illumination wavelength), and to increase if the system is
tuned into resonance. These effects are similar for Ag and Au
[94].

VII. DISCUSSION

Our numerical simulations and further analysis unfold the
complicated multiparameter, nonintrinsic dependence of the
thermo-optic response of metal NPs. In particular, the con-
tribution of NP size, illumination wavelength, and optical
and thermal properties of the host explain, at least partially,
the variations in reported values of nonlinear response (e.g.,
[56–58,61,62,64,65,84,95–98]). This, indirectly, also explains
the even more severe discrepancies in reported values of non-
linearity in ultrafast studies (see, e.g., [55]) where various
additional parameters play a role (most notably, the different
electron and phonon temperatures, and the associated heat ca-
pacities and e − ph coupling coefficient), and the parametric
dependence on the NP size is different. In particular, for small
NPs, it was shown in [36] that the temperature grows as a2

(sphere area) for CW illumination but as a3 (sphere volume)
for ultrafast illumination. All the above shows that it is, in
general, incorrect to deduce any scaling of the steady-state
solution from the ultrafast solution.

Our main finding is that the nonlinear steady-state thermo-
optical response of metal NPs has the same dependence on the
NP size exhibited by the temperature. Indeed, the nonlinearity
grows with the NP size, it is highest for NP sizes of a few
tens of nms, and then decreases for even larger NPs due to the
indirect effect of radiative damping. At the point of strongest
response, the numerical examples and consequent approxi-
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FIG. 9. Nonlinear dependence of the scattering intensity on the
incoming intensity for Au NP of 40 nm in radius. The wavelength of
the incident light is 560nm. Red dots represent the experimental data
from [57]; the black solid line and the green dashed line represent
the numerical results based on Eq. (4), in which the absorption
cross-sections are calculated by the Mie theory and by the quasistatic
approximation as in [64], respectively. Since the Au NP is immersed
in oil and is supported on a glass substrate in the experiments, we use
the same configuration as in Secs. II and V in the calculation except
that the effective thermal conductivity is set to be ≈0.35 W/(m K)
[61] to mimic the surrounding environment (medium and substrate)
in the experiments. As mentioned in Sec. II, the calculation is limited
to a temperature rise of 400 K (Iinc < 0.5 MW/cm2 in this case)
to avoid melting of the metal and damage in the host, see also the
discussion in Sec. VII.

mate analysis above show that the thermo-optical response
of metal NPs is remarkably strong, especially considering the
associated subwavelength scales involved. In particular, it can
reach several hundreds of percent. This strong nonlinearity
contrasts the previous pessimistic claims, made in the context
of ultrafast (local) nonlinearities [99] and is a thousand times
stronger than that reported previously in strongly nonlinear
systems such as ε-near-zero materials [100–102], in which the
real part of the permittivity increases by only 0.05% when the
incoming intensity is increased by 1 MW/cm2.

Potentially the greatest importance of the current study
is its ability to improve significantly the agreement between
experimental data and modeling of the scattering of intense
light from single metal NPs [56–60,64,65,95]; these studies
considered initially only backward scattering [56–59,63]. In-
deed, Fig. 9 shows [103] a remarkable quantitative agreement
between model and experiment that was absent in previous
theoretical studies performed within the limits of quasistatic
approximation. This shows that the thermal effect is the
most likely source of the optical nonlinearity of metals under
CW illumination, thus, resolving the open question raised
originally in [56]; it therefore overall justifies the analysis
performed in the current work in its entirety.

Notably, in a later study [60] the forward scattering was
measured as well, such that the dependence of absorption
on incoming intensity could be identified experimentally.
Specifically, that paper showed that the absorptivity decreases
with illumination (when Iinc > 1.5 MW/cm2 for NP size of
40 nm in radius). This effect is not captured by our model,

105201-10



THERMO-OPTIC NONLINEARITY OF SINGLE METAL … PHYSICAL REVIEW MATERIALS 4, 105201 (2020)

even when extending the modelled temperature regime sig-
nificantly. Thus, we believe that the reduced absorptivity at
high illumination intensities is associated with surface melting
that ensues at the edge of the temperature range we study
[104–110].

In the same vein, we should mention that the current
study of the thermo-optic nonlinearity may also not be suf-
ficient to address the so-called “reverse saturation” of the
scattering/absorption from metal NPs [56–58,95]. Specifi-
cally, the illumination intensity for the “reverse saturation” of
the scattering/absorption to occur (e.g., 1.5−2MW/cm2 for
Au NPs of a = 40 nm) is much higher than the illumination
level in the current study. A quantitative agreement thus prob-
ably requires taking account of the metal surface melting. For
even higher illumination intensities, surface melting leads to
NP size reduction [15,81].

Additional improvements to the modeling should include
accounting for the Kapitza resistance (unless the NPs are
relatively large, see [64]); and take account of the temperature
dependence of εh [32,46,47,62] when the thermal derivative
of εh is compatible to that of ε′

m. This is because the temper-
ature dependence of εh affects the nonlinear response via a
shift of resonance wavelength, similar to that of ε′

m. One can
further improve the modeling by taking account of whenever

the NPs are supported on a substrate, an exact knowledge of
the contact geometry [61]; this information is clearly nearly
inaccessible experimentally.

Finally, while we focused here on the study of sin-
gle metal nanospheres under CW illumination, our work is
relevant also for nanosecond illumination (and particularly
relevant to resolving the controversies associated with bub-
ble formation dynamics [14,15] and associated sharp spectral
features and potential superresolution [52,111,112]), for other
particle shapes (as, e.g., in [58,95]), as well as for other
absorbing materials (such as semiconductors [70–73] where
additional multipole resonances may become important) and
multiparticle configurations [113,114] and the study of their
homogenized properties [115–118]. For absorbing NPs with
low thermal conductivity, the temperature in the NPs may
become highly nonuniform. In these cases, one should take
account of the spatial dependence of the permittivity [119].
In the multiparticle cases, the temperature dependence of the
host permittivity may become dominant [120].
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APPENDIX: DETAILED ANALYSIS OF THERMO-OPTICAL NONLINEARITIES AND THEIR SIZE DEPENDENCE

In this Appendix, we provide the detailed expression of the coefficient of 	T 2
NP in Eq. (9) based on the Padé expansion of

Cabs given by Eq. (6). This coefficient can be expressed in terms of the thermoderivatives of the absorption cross-section [see
Eq. (9)]. By using the chain rule, one can distinguish the various contributions from B′ 2

m , B′′ 2
m , B′

mB′′
m, D′

m, and D′′
m, namely,[
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where the contributions from B′ 2
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m are, respectively, given by[
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