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Independence of plasmonic near-field enhancements to illumination beam profile
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Near-field enhancements of the electric field at the center of spheroidal multilayer metallic nanoparticles
(NPs) are investigated when illuminated by focused beams of arbitrary field structure (i.e., amplitude, phase,
and polarization distributions). Employing a Mie-type representation, the enhancement at the center of such NPs
(such as a core-shell geometry) is analytically shown to be independent of the field structure of the illumination
beam for both on- and off-axis NPs. Furthermore, it is shown that, to leading order, the average field enhancement
in the near field of these NPs is also approximately illumination independent.
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I. INTRODUCTION

Metallic nanoparticles (NPs) enable concentration of an
electromagnetic field in regions smaller than allowed by
diffraction. These regions contain field amplitudes that can
be significantly higher than the incident field. This property
opens the way to various applications such as single molecule
spectroscopy, biosensing, absorption enhancement in solar
cells, improved drug delivery, as well as to improving signal
intensity in fluorescence microscopy (see, e.g., Ref. 1 and
references therein). Recently, it has also been proposed to
exploit this plasmonic near-field enhancement in order to im-
prove performance in various far-field super-resolution tech-
niques such as structured illumination microscopy (SIM)2–4

and stimulated-emission-depletion (STED) microscopy5–9

(see Ref. 10 for a recent review).
Quantitative knowledge of the near-field enhancement

levels achievable by use of NPs is important in such appli-
cations. Studies of this kind usually employ either quasistatic
approximations, Mie-type solutions, or rigorous numerical
calculations, yet are performed almost always under the
assumption of a linearly polarized plane-wave illumination
(i.e., a spatially uniform intensity, polarization and phase
distribution illuminating the NP). When metallic NPs are used
in standard wide-field microscopy techniques, the assumption
of a plane-wave illumination is well justified. However,
there are many configurations where the illumination can be
nonuniform. For example, scanning microscopy (both near
and far field) uses strongly localized beams, such that when
the illumination beam is shifted away from the NP center
(or vice versa), nonuniform fields are incident upon the NP.
Moreover, in modern microscopy, wide-field techniques such
as structured illumination2–4 and HiLo sectioning,11 as well as
scanning techniques such as STED microscopy,5–7 employ
complex illumination patterns which can exhibit subwave-
length variations (shown schematically in Fig. 1). Going
beyond applications in microscopy, complex illumination

patterns such as Laguerre-Gaussian (LG) beams,12,13 “dark
spot” beams,14 cylindrically polarized beams,15–17 or even
completely irregularly shaped beams18 have been recently
employed for selective mode and spot excitation in nanoplas-
monic systems.

In order to obtain accurate results for field enhancements
in all such cases, the actual illumination pattern must be
taken into account. Accordingly a natural question arises
regarding the illumination dependence of the field enhance-
ment factor achievable by use of NPs. In particular, for
a given NP configuration beam shapes producing optimal
field enhancements are of interest, whereas in a scanning
configuration the variation of field enhancement with scan
position becomes a concern. The intent of this article is to
address these, and related, questions. Despite the complexity
of the problem, a very simple and generic result is derived
for (multilayer) spheroidal NPs; namely, it is shown that
at the core of such NPs the plasmonic enhancement factor
is rigorously independent of the illumination profile used.
This result is especially relevant in techniques assisted by
metal (as well as dielectric) NPs,8 as well as in nanolasing,19

optical cloaking,20 and other applications. Consideration of
average enhancement factors near the surface of NPs is also
considered here, and the conditions under which this can
exhibit illumination independent behavior highlighted and
discussed. This is pertinent to fluorescence microscopy in
which NPs are coated with fluorophores, or random collections
of NPs and fluorescent molecules are exploited.21

II. RESULTS AND DISCUSSION

A. Focusing and scattering formalism

Throughout this article a Mie-type (or multipole) solution
to Maxwell’s equations is adopted, because the quasistatic
limit rapidly breaks down, even for NPs as small as ∼20 nm,
and numerical calculations provide limited physical insight.
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FIG. 1. (Color online) Schematic illustration of the focusing of
a structured beam (e.g., a Gaussian beam with spiral phase) onto a
nanoparticle.

Furthermore the setups discussed above typically operate
by focusing of beams with arbitrary amplitude, phase, and
polarization structure, a scenario which is highly amenable
to a multipole description,22,23 hence also motivating this
approach.

Vectorial electric and magnetic multipoles represent a
rigorous and complete solution to Maxwell’s equations within
isotropic media and can hence be used to represent the field
in each of these regions. Particularly, it is first noted that an
arbitrary electric field can be expressed in the form,
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∑
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ν(j )
lm Eν(j )

lm (r), (1)
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a
ν(j )
lm is the weighting coefficient for the multipole mode

of order l = 1,2, . . . , and m = −l, − l + 1, . . . ,l and ν

denotes either electric (E) or magnetic (M) multipoles. The
multipole modes depend on the material properties via the
constants k1 = iωε − σ/ω, k2 = iωμ, where k2 = −k1k2, ε

is the permittivity of the medium, μ is the permeability
(assumed henceforth to be μ0), and σ is the conductivity.24

An exp(−iωt) time dependence has also been assumed.
Furthermore, Ym

l (ϑ,ϕ) are the spherical harmonics defined
by Ym

l (ϑ,ϕ) = ClmP
|m|
l (cos ϑ) exp(imϕ), where P

|m|
l (cos ϑ)

are the associated Legendre polynomials, h
(j )
l (kr) denotes

the spherical Hankel (j = 1,2) or spherical Bessel (j = 3)
functions, and Clm = ((2l + 1)(l − |m|)!/4π (l + |m|)!)1/2.
Physically, the j = 1 modes represent multipole sources,
in which energy flows outward from r = 0 while j = 2
represents field sinks with energy flowing inwards towards the
sink position. In contrast, spherical Bessel functions constitute
a superposition of both j = 1 and j = 2 in equal measure

FIG. 2. (Color online) Schematic illustration of a multilayer
nanoparticle, with distinct layers indexed as I,II, . . . N − 1, of
respective radius rI ,rII , . . . rN−1, immersed in a medium indexed
as N .

(h(3)
l (z) = [h(1)

l (z) + h
(2)
l (z)]/2) and hence have finite energy

density at the origin.
Given these observations, consider a multilayered NP with

spherical symmetry with N − 1 layers, where the inner core
is denoted by index I and the layer index is incremented with
increasing radius (see Fig. 2). Most notable (and practical)
of such configurations is the two-layer shell-core NP,25 or a
single material homogeneous NP, however, all results derived
are applicable to multilayer NPs. The NP is itself located in
a medium which constitutes the N th distinct region in the
scattering problem. The field within each region can then be
written,

EI (r) =
∑

ν

∑
l,m

c
ν(3)
lm Eν(3)

lm (r),

EII (r) =
∑

ν

∑
l,m

d
ν(2)
lm Eν(2)

lm (r) + e
ν(1)
lm Eν(1)

lm (r), (2)

...

EN (r) =
∑

ν

∑
l,m

a
ν(3)
lm Eν(3)

lm (r) + b
ν(1)
lm Eν(1)

lm (r),

where it is noted that spherical Bessel functions (j = 3) are
used for both the illumination and the field within the NP
core, so as ensure the field is well behaved at the origin and
maintain physicality in a source/sink free region.22 Spherical
Hankel functions (j = 1) are meanwhile used to describe the
scattered field in the outer region. Within all other layers the
field is represented as a superposition of j = 1 and j = 2
multipole contributions, which will in general be of differing
strengths, to allow for transmission and reflection at each
boundary. By applying Maxwell’s boundary conditions at each
interface (i.e., applying standard Mie theory), it can be shown
that each multipole mode experiences a simple scaling in
strength dependent only on its order, with no cross coupling,
such that relations of the form,

a
ν(3)
lm = Gν

l b
ν(1)
lm = Hν

l c
ν(3)
lm , (3)

hold. Explicit forms of the scaling factors between mode
weightings in each region, including Gν

l and Hν
l , can be

found in Ref. 26. It is however noted here that these factors
depend on the material properties (via k1 and k2), illumination
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wavelength, and the NP geometry only, but not on the
illumination pattern. Evanescent coupling, as plays a key role
in plasmonics, is accounted for via the complex nature of k1

(and hence also k) within each region.
It is noted that in many practical arrangements, it becomes

necessary to focus the illumination beam through materials
of differing refractive indices. One such example is that of
a sample mounted on a glass microscope slide and covered
with a protective cover slip. Naturally, the presence of such
a stratified media affects the focal distribution of light, a
problem which has been addressed in the literature (e.g.,
Ref. 27). In particular, inclusion of a stratified sample structure
predominantly leads to spherical aberration in the focused
field distribution. This, in turn, does not change the symmetry
of the focusing problem, albeit does change the effective
multipole coefficients of the illumination seen by the NP. For
the work presented in this article, a stratified sample structure
is therefore not considered since, given the results of Ref. 27,
it is evident that qualitatively our results are unaffected. Exact
quantitative values of calculated enhancement factors will
differ from the stratified case, however, assuming the refractive
index mismatch is small (or zero in the case of an oil immersion
lens in which the immersion oil is matched to the cover
slip, in addition to the objective lens) the discrepancies will
be small. Finally, the optical arrangement used for readout
will also affect the measured signal. While full exposition
of the resulting effects is beyond the scope of this article,
the qualitative results of this work are again unaffected. The
interested reader is directed to Refs. 28 and 29. A specific
treatment of the high NA imaging of multipole modes is also
given in Ref. 30.

B. Enhancement at the center of on-axis in-focus NPs

Consider first the simplest geometry of focusing an arbitrary
beam onto an NP whose center is located at the geometric
focal point of the illumination system. The electric field
enhancement at a position r can then be defined, as per usual
convention, as


(r) = |ENP(r)|2
|Eno-NP(r)|2 , (4)

where ENP(r) and Eno-NP(r) is the field with and without
the NP, respectively. The latter is simply the focused field
distribution as given by the first term of Eq. (2). Equation (4)
describes the enhancement at a single point, and is hence
an appropriate metric for, for example, single molecule
spectroscopy, however, in other applications (e.g., fluorescence
and nonlinear optics), it is more appropriate to consider an
average of the field or higher powers thereof. Some results in
this vein are given in Sec. II D.

Temporarily restricting attention to the enhancement within
the core of the NP, as is pertinent to scenarios in which
fluorescent emitters are embedded within the core of the
NP,8,9,31–38 means the enhancement can be written in the form,


(r) =

∣∣∣∑ν

∑
l,m c

ν(3)
lm Eν(3)

lm (r)
∣∣∣2
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Additional simplifications follow by restricting further to the
origin of the coordinate system (i.e., the focal point). Using
the Maclaurin expansion of the spherical Bessel function,

h
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+ · · ·

)
,

it is possible to show that the forms of the electric dipole fields
(l = 1) at the origin are39
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2
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3

(
3

4π
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ẑ,

while all other multipole modes (magnetic dipole, electric
quadrapole, etc.) are identically zero. Direct substitution then
yields


(0) =
∣∣∣∣ 1

HE
1

kI

kN

∣∣∣∣2

=
∣∣∣∣ 1

HE
1

εI

εN

∣∣∣∣2

. (6)

The subscripts on k and ε denote the differing value within
different media. It should be noted that the latter equality in
Eq. (6) only holds for the case of nonconducting materials in
regions I and N (as is generally the case). Similar results have
been obtained by other authors31,32,34,38 albeit in a somewhat
different context.

Equation (6) shows that the enhancement factor at the
geometric optics focal point is dependent on only the NP
properties and illumination wavelength [i.e., 
(0) is indepen-
dent of the illumination beam profile used]. Figure 3 shows
the enhancement factor calculated via Eq. (6) for shell-core
NPs immersed in water (n = 1.33) of different inner radii,
rI , ranging from 1 to 35 nm.40 A silicon dioxide (SiO2) core
(n = 1.46) and a gold shell (refractive index data taken from
Ref. 41) were assumed and the outer radius of the shell was
fixed at 1.3rI . When compared with the enhancement fac-
tors predicted under a quasistatic approximation,42 excellent

Wavelength (nm)
560 620 680 740

0

60
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180

1 nm
5 nm
10 nm
20 nm
35 nm

FIG. 3. (Color online) Theoretical enhancement factors at the
center of a two-layer NP with a SiO2 core and Au shell immersed in
water, for different core radii rI as a function of illumination wave-
length. For small NPs good agreement with quasistatic predictions
are found, however, this quickly breaks down as the NP dimensions
are increased.
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agreement is seen with the more rigorous Mie calculations for
a 1-nm radius NP, however, discrepancies occur for NPs with
radius �10 nm.

Strictly, the illumination independence expressed in Eq. (6)
requires the illumination field at the focus to be nonzero in
the absence of the NP (i.e., Eno-NP(0) �= 0), and hence is not
applicable to a number of beams, notably azimuthally and cir-
cularly polarized LG beams. For this class of “dark spot” focal
distributions the leading contribution to the illumination are
the magnetic dipole (or potentially even higher order) terms,
which have zero electric field at the origin. Mathematically,
the enhancement in this case at the center of the NP can be
found by taking the limit of Eq. (5) as r → 0, yielding

lim
r→0


(r) =
∣∣∣∣ 1

Hμ

L

kI

kN

∣∣∣∣2

=
∣∣∣∣ 1

Hμ

L

εI

εN

∣∣∣∣2

, (7)

where μ, L defines the leading order term in the focused beam.
This result is, however, a mathematical singularity arising
from the singularity in the electric field and hence has little
physical consequence. It will in fact be seen shortly that the
result of Eq. (6) can be restored for dark spot illuminations in
reality.

C. Enhancement at the center of arbitrarily positioned NPs

The theory described thus far is formulated in terms of a
coordinate system with its origin at the center of the NP. If,
however, the NP is shifted away from the focal point of the
illumination system (by rNP), as, for example, in scanning
microscopy, the multipole representation used to describe the
focused field, and that used to match the fields at the interface
of the NP will no longer match. This complication can be
considered by first defining two coordinate systems: one with
its origin at the focal point of the illumination system in which
positions are described by the vector r; and one with the origin
at the center of the shifted NP in which positions are described
by the vector r′ = r − rNP. Any field can be represented using
multipole expansions in both of these coordinate systems.
Therefore, consider representing a field in terms of vectorial
multipoles centered on r = 0 and r′ = 0, such that

E(r) =
∑

ν

∑
l,m

a
ν(3)
lm Eν(3)

lm (r) =
∑

μ

∑
L,M

α
μ(3)
LM Eμ(3)

LM (r′).

Note that for the purposes of this article only the j = 3 modes
need be considered. To relate the expansion coefficients a

ν(3)
lm

and α
μ(3)
LM in the two coordinate systems it is noted that

EE(3)
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∑
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∑
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LMEE(3)
LM (r′),

such that
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∑
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α
M(3)
LM =

∑
l,m

(
a

M(3)
lm Alm

LM + k

k2
a

E(3)
lm Blm

LM

)
. (10)

Explicit forms of the transformation matrices Alm
LM and Blm

LM

can be derived by virtue of the scalar addition theorem for the
scalar spherical harmonics, and can be found in the work of
Chew.43

As before the field enhancement can then be defined for an
arbitrarily shifted NP by Eq. (4). Physically, it is equivalent
to consider the enhancement factor in the shifted coordinate
system such that


(r) =

∣∣∣∑μ

∑
L,M γ

μ(3)
LM Eμ(3)

LM (r′)
∣∣∣2

∣∣∣∑μ

∑
L,M α

μ(3)
LM Eμ(3)

LM (r′)
∣∣∣2 , (11)

where γ
μ(3)
LM are the multipole coefficients of the field inside

the NP in the shifted coordinate system. γ
μ(3)
LM can be related

to the coefficients c
ν(3)
lm via expressions analogous to Eqs. (9)

and (10). Again, considering the enhancement at the center of
the NP (i.e., r = rNP, or equivalently r′ = 0) only the dipole
terms in the shifted coordinate system need be considered.
In the shifted coordinates, however, the multipole coefficients
α

μ(3)
LM and γ

μ(3)
LM are related via α

μ(3)
LM = Hμ

Lγ
μ(3)
LM [c.f. Eq. (3)],

such that


(rNP) =
∣∣∣∣ 1

HE
1

kI

kN

∣∣∣∣2

=
∣∣∣∣ 1

HE
1

εI

εN

∣∣∣∣2

, (12)

where the latter equality again only holds for σI = σN = 0.
Equation (12) demonstrates that even for off-axis illumination
of the NP, the field enhancement is independent of the
illumination beam profile. Formally, this latter claim requires
α

E(3)
1M �= 0 for at least one value of M , such that Eno-NP(r′ =

0) �= 0, however, from Eq. (9) it is evident that α
E(3)
1M has

contributions from all nonshifted multipole modes in the
illumination beam, such that this requirement is likely to be
satisfied in most cases. In this way, it is further seen that while
the on-axis result of Eq. (6) did not apply to all beam profiles,
infinitesimal shifts of the NP, or the presence of any small
perturbation, for example, noise, in the illumination beam,
restores the illumination independence of the enhancement
factor. It is emphasized here, that for the complex beams under
consideration, the field impinging on the NP can vary on a
scale comparable to the size of the NP, even in the electrostatic
limit. A good example is that of a LG01 beam where the
focused field changes sign over the dimensions of the NP.
In this case the illumination field has a different symmetry
than that usually assumed in a plane-wave illumination, such
that the illumination independence found here is nontrivial.

Interestingly, as a brief aside, it should be noted that due
to the symmetry breaking that arises when shifting the NP in
relation to the focused field, a nonzero electric field results
at r = 0, even for dark spot type illuminations. Given that the
electric field of such illumination fields is, however, unchanged
(i.e., is still identically zero), locally an infinite enhancement is
seen. This is merely a result of the definition of enhancement
factor and is not a physical effect.

To confirm Eqs. (6) and (12) full Mie scattering calculations
were performed to determine the field at the center of a shifted
shell-core NP under differing illumination conditions. Solution
of the scattering problem was discussed above and, given the
scaling coefficients Gν

l , Hν
l , etc., reduces to determination
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TABLE I. Parameter values for illumination beams used in
numerical simulations.

Ẽ(θ ) p n φ0

Laguerre-Gaussian (LGab) Eq. (14) 0 b 0
Radial polarization 1 1 0 0
Azimuthal polarization 1 1 0 − π

2

of the appropriate multipole weightings a
ν(3)
lm for a given

illumination. A general solution for arbitrary illumination
profiles exists,22 however a restricted class of cylindrically
polarized vortex beams is considered here, merely to enable
use of a semianalytic solution. This restriction does not reflect
a limitation of the results presented in this work. Cylindrically
polarized vortex beams can be defined in the pupil of the
illumination lens by the generalized Jones vector,[

Ẽcol
x (θ,φ)

Ẽcol
y (θ,φ)

]
=

[
cos(pφ + φ0)
sin(pφ + φ0)

]
Ẽ(θ )einφ (13)

[neglecting the zero Ẽcol
z (θ,φ) component], where (θ,φ) are

the usual spherical polar angles which define the direction
of propagation of individual rays originating from the pupil,22

Ẽ(θ ) describes the amplitude variation across the beam profile,
n ∈ Z is the topological charge, p ∈ Z is the cylindrical
vector order, and φ0 is a phase constant. The values of
these parameters for the beams considered here, specifically
x-polarized LG00, x-polarized LG01, radially polarized and
azimuthally polarized beams, are shown in Table I.

The LG beams were assumed to be defined using

Ẽ(θ ) = Eab s|b| exp(−s2)Lb
a(2s2), (14)

where s = sin θ/w0, Eab is a mode dependent constant, w0 is
the beam waist (measured in focal lengths and fixed at a value
of 0.9 for all calculations) assumed to be located in the exit
pupil of the lens, and Lb

a(x) are the Laguerre polynomials. The
nonzero mode weighting coefficients for these beams can then
be shown to be given by

a
E(3)
l,m± = e±φ0

il

4π Cl,m±

l(l + 1)

∫ �

0
a(θ )Ẽ(θ )�∓

l,m±(θ ) sin θdθ, (15)

for p �= 1 (e.g., focused x-polarized LG beams) where m± =
n ± p ∓ 1, � is the half angle of convergence of the lens,

�±
l,m(θ ) =

[
∂

∂θ
P

|m|
l (cos θ ) ± m

sin θ
P

|m|
l (cos θ )

]
, (16)

and a(θ ) is an apodization factor required to conserve energy
(=√

cos θ for an aplanatic lens). The magnetic multipole
contributions are given by the relation a

E(3)
l,m± = ±(k2/k) a

M(3)
l,m± .

For the p = 1 case (i.e., radially and azimuthally polarized
beams),

a
ν(3)
l,n = 4π Cl,n

il l(l + 1)

(
δνE − k

ik2
δνM

)

×
∫ �

0
a(θ )Ẽ(θ )

[
eiφ0�−

l,n(θ ) + (−1)δνM e−iφ0�+
l,n(θ )

]
× sin θdθ, (17)

where δνμ is the Kronecker delta. Nanoparticle displacements
from 0 to 100 nm were considered and the focusing lens

was assumed to have a numerical aperture (NA) of 1.2
(including the immersion effect of the water). Transformation
matrices Alm

LM and Blm
LM were implemented using recursive

relations found in the literature.44–46 Numerical evaluation
of the resulting enhancement factor yields plots identical to
those of Fig. 3 regardless of illumination beam profile and
displacement size (not shown to avoid repetition).

D. Effective enhancements near the surface of a NP

For many applications it is the enhancement close to the
surface of the NP (in region N ) that is more relevant than that
within the core.21,47–49 In this case the numerator of Eq. (4)
becomes ∣∣∣∣∣

∑
ν

∑
l,m

a
ν(3)
lm Eν(3)

lm (r) + b
ν(3)
lm Eν(1)

lm (r)

∣∣∣∣∣
2

, (18)

while the denominator remains unchanged. As a result of the
higher order multipole contributions (e.g., magnetic dipole
terms) present in the illumination beam, and the different
scaling coefficients for each, a dependence on the illumination
beam profile is introduced. Even in the case when only electric
dipole illumination is used (see, e.g., Ref. 50) the position
dependence of the individual dipole modes can give rise to
different enhancement distributions. For example, the electric
dipole terms are strongest for both a focused x-polarized LG00

and LG01 beam, yet inspection of the full enhancement maps
for scattering from a homogeneous 2-nm radius Au sphere [as
shown in the x-z plane in Figs. 4(a) and 4(b), respectively]
reveals a clear directionality. In particular this directionality
arises from dominance of different m modes in each case:
For the focused LG00 beam the m = 0 electric dipole mode
(representing a dipole with moment oriented parallel to the z

axis) is absent, while for the LG01 case the m = 0 is the only
electric dipole contribution present.

Useful signal is, however, frequently not generated by a
single point. For example, coatings of fluorescent molecules
have been placed over spherical NPs,51 such that the measured
fluorescence signal originates from the entire NP surface.
Consideration of the enhancement of the integrated intensity
(or what shall be termed the effective enhancement), defined

(nm)
0

0

(nm)

(n
m

)

0
0

10

(a) LG00 LG01(b)

FIG. 4. (Color online) Maps of the near-field enhancement 
(r)
for scattering from a 2-nm radius homogenous Au NP illuminated by
a focused x-polarized LG00 (a) and LG01 beams (b). White dashed
lines in (a) represent the fixed radii at which the effective enhancement
is calculated in Fig. 5 as defined by r = βrI for β = 1,1.1 and 1.5.

155441-5
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as


̃(r) =
∫ 2π

0

∫ π

0 |ENP(r)|2 sin ϑdϑdϕ∫ 2π

0

∫ π

0 |Eno-NP(r)|2 sin ϑdϑdϕ
, (19)

is consequently more pertinent. 
̃(r) can also be evaluated
above the surface of the NP, as may be appropriate for coatings
of molecules with a finite thickness or for fluorophores
placed a (small) distance away from the surface to avoid
quenching.21 A similar effective enhancement can also be
defined if the detected signal originated from a finite volume,
whereby surface integrals in Eq. (19) would be replaced by
volume integrals. Orthogonality of the multipole modes over a
spherical surface, and Eq. (3), allows Eq. (19) to be simplified
yielding


̃(r)=1+
∑∑

l,m

∣∣aν(3)
lm

/
Gν

l

∣∣2[
I

ν(1,1)
l,N (r)+ 2Re

{
Gν

l I
ν(3,1)
l,N (r)

}]
∑

ν

∑
l,m

∣∣aν(3)
lm

∣∣2
I

ν(3,3)
l,N (r)

,

(20)

where Re denotes the real part and

I
M(i,j )
l,N (r) = l(l + 1)|k2,N |2h(i)

l (kNr)h(j )
l

∗
(kNr), (21)

I
E(i,j )
l,N (r) = l(l + 1)

r2

[
I

M(i,j )
l,N (r)

|k2,N |2

+ d

dr

(
rh

(i)
l (kNr)

) d

dr

(
rh

(j )
l

∗
(kNr)

)]
. (22)

If in any scenario the ν = μ and l = L modes are dominant
(e.g., if only electric dipole terms are present μ = E and
L = 1), Eq. (20) reduces to


̃(r) = 1 + I
μ(1,1)
L,N (r) + 2Re

[
Gμ

LI
μ(3,1)
L,N (r)

]
∣∣Gμ

L

∣∣2
I

μ(3,3)
L,N (r)

, (23)

which is independent of the illumination coefficients a
ν(3)
lm and

hence the exact form of the beam profile. The dominant mode,
however, need not be the electric dipole terms. For example,
for illumination by a focused azimuthally polarized beam,
the dominant modes are magnetic dipoles for which Eq. (23)
would still hold with μ = M and L = 1. The equivalent results
for signal collection from a spherical shell takes the same
form of Eqs. (20) and (23), with the replacement I

ν(i,j )
l,N (r) →∫ R2

R1
I

ν(i,j )
l,N (r)rdr , where R1 and R2 define the inner and outer

radius of the shell, respectively.
To investigate the effective enhancement factor further,


̃(r) was calculated for scattering from a single NP under
a variety of scenarios (see Fig. 5). In all cases a single
Au NP immersed in water and with its center located at
the geometrical focus of the illuminating lens was taken.
This NP geometry was adopted due to the common use of
such NPs. First, the effective enhancement at an infinitesimal
distance above the surface of the NP (i.e., at r = βrI with
β = 1) was determined as the radius of the NP was varied
over the range 0 < rI � 100 nm. Consider first the case of
scattering when the NP is illuminated by a focused LG00 beam
(vacuum wavelength of 533 nm and NA of 1.2 including the
immersion effect of the water were assumed) as represented
by the uppermost blue curve in Fig. 5(a). A peaked distribution

0

4

8
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16

0.2

0.5

0.8

Azimuthal
Theory

LG00

LG01

Radial
Theory

0 20 40 60 80 100
Nanoparticle radius (nm)

(a)

(b)

FIG. 5. (Color online) Colored lines with data points show the
variation of the calculated effective enhancements 
̃(r) at fixed radii
above the surface of an Au NP, as its radius is varied. White dashed
lines in Fig. 4(a) represent the fixed radii at which the effective
enhancement is calculated as defined by r = βrI for β = 1,1.1 and
1.5. Different colored lines represent different illumination beams
as follows: (blue) LG00, (green) LG01, (red) radial polarization, and
(purple) azimuthal polarization (shown in a separate panel for clarity).
Black solids lines represent the effective enhancement as predicted
by Eq. (23) for electric dipole terms only (top panel) and magnetic
dipole terms only (bottom panel).

is seen as the NP dimensions are varied (the illumination
wavelength was selected so as to lie close to the resonance
predicted by quasistatic theory), with the peak occurring at
radius of rI ≈ 27 nm. Naturally the position of this peak will
vary with the illumination wavelength as would be expected
from its plasmonic origin (cf. Fig. 3). Given that a focused
LG00 beam has relatively strong (albeit not entirely dominant)
electric dipole contributions, reasonable agreement would be
expected with the predictions of Eq. (23) with μ = E and
L = 1. This electric dipole only approximation is depicted
by the uppermost solid black curve of Fig. 5(a). Indeed
this expectation is born out in simulations. Generally the
differences between the full calculations and the electric dipole
only approximation increase as the NP radius increases. This
behavior is to be expected since for larger NPs scattering of
high order terms plays more of a role, as also predicted by
standard Mie theory for plane-wave illumination.24

If a focused LG01 or radial polarized beam is used to
illuminate the NP similar results to the LG00 case are seen
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for small NPs [uppermost green and red curves of Fig. 5(a),
respectively]. Since magnetic dipole and higher order terms are
relatively stronger in these beams than in a LG00 beam, the di-
vergences from Eq. (23) are, however, more severe at larger NP
sizes. It should be noted that the electric dipole approximation
in these cases breaks down at smaller NP dimensions than the
100 nm quoted for a focused x-polarized beam,52 solely due to
the differing illumination conditions. Again it is emphasized
that variations of the focal field can occur over subwavelength
scales. For the case of a focused azimuthal polarized beam,
as shown by the purple curves in Fig. 5(b), the electric dipole
theory completely breaks down since the illumination beam
contains only magnetic dipole (and higher order) components.
As such, use of Eq. (23) with μ = M and L = 1 [uppermost
black curve of Fig. 5(b)], produces good agreement with the
nonapproximate calculations. Differences again begin to arise
at larger NP dimensions. Comparison of this observation with
that of Eq. (12) might be said to produce a logical contradiction,
since Eq. (12) shows that the enhancement at the center of the
NP is determined by the electric dipole terms. No contradiction
exists, however, because the specific symmetry inherent to the
center of the NP [i.e., where Eq. (12) is valid] implies that all
but the electric dipole terms have zero electric field such that
higher orders play no formal role at all. When considering the
enhancement over a sphere, however, all multipole terms must
be considered and therefore it is the strongest modes in the illu-
mination that dominate the behavior of the enhancement ratio.

Performing the analogous calculations of the effective
enhancement at different radii above the NP surface pro-
duces qualitatively similar results to those seen when 
̃

was calculated at the NP surface. Specifically, the effective
enhancement was also calculated at r = βrI with β = 1.1
and 1.5, as depicted by the dashed white circles in Fig. 4(a).
The corresponding families of curves are also shown in Fig. 5.
While the form of the resulting curves are similar (although not
exactly the same) a clear reduction in the overall enhancement
factor is seen at larger distances from the NP arising by virtue
of the evanescent nature of the near field.

Enhancement factors defined in terms of higher orders of the
electric field can also be constructed. For example, if looking
at the plasmonic enhancement of two photon fluorescence,
an effective enhancement defined analogously to Eq. (19),
albeit with the replacement |E(r)|2 → |E(r)|4 would be more
appropriate. Indeed, numerical calculations have also been
performed in this vein, under the same conditions as the
calculations of Fig. 5. A similar functional dependence on
NP radius and numerical aperture was seen, albeit numerical
values of the effective enhancement differed greatly from those
of Fig. 5. For example, for a LG00 illumination the peak
effective enhancement (for β = 1) was seen for rI ≈ 27 nm,
as also seen in Fig. 5, however, the peak enhancement took a
value of ≈330. Analytical results, unfortunately, are not easily
obtainable in this case, however due to the amplifying effect
of taking higher exponents of the field, a greater dependence
of the enhancement factor on illumination profile would be
expected. This is indeed seen in simulations.

As a final study, the dependence of the effective en-
hancement factor on the NA of the illumination lens was
considered. Again scattering from a single Au sphere in
water under different illuminations (of wavelength 533 nm)
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FIG. 6. (Color online) Variation of effective enhancement factor

̃ as a function of NA of the illumination lens. 
̃ has been evaluated
at the surface of differently sized homogeneous Au NPs for differing
focused beam profiles (see text) and NP dimensions. Illumination
wavelength was fixed at 533 nm.

was considered. While the effective enhancement was only
considered at the NP surface, three different sized NPs were
modeled (rI = 2,30,100 nm). The results are shown in Fig. 6.
For reference the thick vertical dashed line shows the NA
corresponding to the calculations of Fig. 5. The first point to
note in Fig. 6 is that for a 2-nm radius NP (solid lines, which
are coincident for all illumination cases considered, except
azimuthal polarization), the effective enhancement factor is
independent of illumination NA, remaining constant at a value
just below 12. Low NA illumination optics approximately
corresponds to illumination of the NP by a plane wave, such
that for 2-nm NPs the quasistatic approximation is valid. Given
that the effective enhancement remains constant, it can be
concluded that the quasistatic approximation holds for all
numerical apertures, if the NP is small enough. Moving to
larger NPs it is seen that a variation with NA is introduced,
indicating that the quasistatic approximation breaks down and
higher order multipole modes begin to play a more dominant
role. That said for practical NP sizes of ∼30 nm this effect is
weak with the differences over an NA range of 1.3 accounting
for less than 1 part in 15 variation in 
̃.

In the interests of completeness it is worthwhile to mention
the behavior of the effective enhancement when the NP
is shifted away from the focal point. Similar results to
the on-axis case can be found, however, by virtue of the
multipole shift equations it is unlikely that any one class of
multipoles will be dominant in the illumination field seen by
the NP. Consequently, exact illumination independence will
not hold. If, however, the NP radius, or the magnitude of the
displacement, is small in comparison to the wavelength, only
a weak dependence would be expected.

III. CONCLUSIONS

In summary, this article has considered the dependence of
plasmonic near-field enhancements of spherical NPs on the
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illumination field incident upon them. For this geometry it has
been possible to derive a general result, namely that at the
center of an NP the field enhancement factor is independent
of the illumination profile. This result holds true for a particle
of spherical symmetry, irrespective of the number of layers,
material properties, NP dimensions, and precise position of
the NP within the illumination pattern. This is an exact result
and relies on no approximations. Numerical values of the
enhancement factor depend solely on the properties of the
immersion medium and NP, such as size and composition via
Eq. (12). Relaxation of the assumption of NPs with spherical
symmetry, implies cross coupling between multipole modes
occurs at each interface of the NP, and thus formally invalidates
the exact illumination independence found, however, for small
(in the sense that the quasistatic limit holds) NPs the strength
of mixing will be weak, thus preserving the illumination
independence in an approximate sense for arbitrary NP shapes.
The NP geometry will again, however, affect the numerical
values of enhancement obtained in this case. Given this result
it is, however, important to note that while enhancement
ratios at the NP core have been shown to be independent
of the illumination structure, the absolute value of the local
field, and hence also the intensity, is not. Indeed if a field
of maximum intensity is sought at the center of an on-axis
in-focus NP, pure electric dipole illumination fields should
be used.50 While an electric dipole illumination field has a
spherical wavefront (as would be expected for a focused wave),
the amplitude and polarization distributions across the pupil
are nonuniform. If maximum intensity is sought off-axis then
only an electric dipole mode in the shifted coordinate system
centered on the relevant off-axis point (c.f. Sec. II C) must
be present. The associated illumination beam (which will
possess higher order multipole modes) can then be inferred
using inverse multipole shift formulas, derivable from Eqs. (9)
and (10).

Moving beyond consideration of enhancements within the
core of NPs, an effective enhancement factor for average
enhancements over spherical surfaces (and volumes) was
defined and investigated. Specifically, it was further shown
that this effective enhancement can also exhibit illumination
independent behavior. For example, exact illumination inde-
pendence is seen if one class of multipole modes only is present
in the illumination beam. Approximate independence is seen
if one class of modes is dominant. In particular the dependence
of the effective enhancement factor on illumination becomes
more apparent for larger NP sizes and illumination NA. The
latter effect was, however, demonstrated to be a fairly weak
one. While not explicitly considered in this text, an average
enhancement could be defined within the core (or intermediate
layers) of an NP. The uniformity of the enhancement for
on-axis in-focus NPs [see, e.g., Fig. 5(a)], imply that these
will be numerically similar to the enhancement obtained at the
origin. This is, however, likely to break down for dark spot type
illuminations and shifted NPs, however fuller investigation
remains as future work.

The results presented in this article enable substantial
simplification of numerical calculations of near-field enhance-
ments when complicated illumination beams are used. Full
calculations can often require development of complex code
and increased simulation times, however, the results here show
that under many circumstances it is reasonable, and accurate,
to use a plane-wave illumination.
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