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Optimization of second-harmonic generation from touching plasmonic wires
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We employ transformation optics to optimize the generic nonlinear wave interaction of second-harmonic
generation (SHG) from a pair of touching metallic wires. We demonstrate a six orders of magnitude increase in
efficiency with respect to SHG from a single wire, and a ten orders of magnitude increase in the second-harmonic
scattered power by increasing the background permittivity. These results have clear implications for the design
of nanostructured metallic frequency-conversion devices. Finally, we exploit our analytic solution of a nontrivial
nanophotonic geometry as a platform for performing a critical comparison of the strengths, weaknesses, and
validity of other prevailing theoretical approaches previously employed for nonlinear wave interactions at the
nanoscale.
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I. INTRODUCTION

The advent of lasers has opened the gateway to study-
ing various nonlinear optical effects and to harnessing them
for practical purposes. The simplest of these effects are
the second-order nonlinear processes, and in particular, their
degenerate version, second-harmonic generation (SHG). Us-
ing standard nonlinear optical materials, commercial devices
based on SHG are already available (e.g., a green laser
pointer). Nevertheless, recent advances in fabrication tech-
nology may pave the way towards further increases of
device efficiency via nanostructuring. Of particular interest
in this context are metal-dielectric nanostructures that bene-
fit from the large field intensities associated with plasmonic
resonances [1].

Theoretical research into this problem has focused on two
somewhat distinct aspects. First, attention has been devoted to
understanding the correct description of the underlying optical
response of the metal itself, starting from standard elec-
troniclike second-order polarization tensors or even simpler
surface polarization tensors [2] all the way to hydrodynamic
models with growing complexity (see [3,4]). The latter set of
studies included the identification of the relative importance
of the various terms in the model [5–8] and its specializa-
tion to even more complex spatial configurations such as
few-nanometer heterodimers [9,10]. Second, efforts have been
dedicated to understanding the wave physics associated with
second-harmonic (SH) generation from various structures of
interest (see, e.g., [11–16]), connecting it to the linear re-
sponse using simple models [11,17–19], understanding the
underlying symmetries [20–22], optimizing the response (see,
e.g., [23,24]), and designing applicable devices [25]. Similarly
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to the linear response of complex metallic nanostructures,
fully analytical solutions are available for only a limited num-
ber of simple geometries. Accordingly, previous theoretical
work mostly involved numerical simulations, and usually ad-
dressed only the far-field properties of the SH fields [15].

In [26], we introduced an analytic tool for this class of
problems, namely, transformation optics (TO). This technique
rose to fame in facilitating the design of the invisibility cloaks
[27], and was later used for the interpretation and design of
a range of plasmonic structures [28–31]. Our implementation
uses TO to study nonlinear optical wave mixing. Specifically,
we analytically calculated the SH field generated by a pair of
identical touching metal wires (TWs); for convenience of the
reader, the complete details of this calculation are provided in
Appendix A.

The transformation optics approach enabled several quali-
tative insights. First, it provided a simple interpretation of the
analytic solution (A1): The fundamental frequency (FF) plane
wave which is incident upon the TWs [see Fig. 1(a)] trans-
forms to a point source in the slab frame [32,33] [Fig. 1(b)]
which then excites a plasmonic surface wave. The surface SH
source resulting from those FF fields can be calculated and
transformed back to the TW frame, as discussed in detail in
[2,26,34]. It has the generic form

Jz,r (x, y) = χ
(2)
S,⊥⊥⊥
ε2ω

bg

∂‖(Eω
⊥Eω

⊥ )δ(x2 + y2 − 2ax), (1)

where x and y are the spatial coordinates, a is the wire radius
[see Fig. 1(a)], χ

(2)
S,⊥⊥⊥ is the surface second-order suscepti-

bility perpendicular to the interface, Eω
⊥ is the FF electric field

perpendicular to the wire interfaces, and ε2ω
bg is the background

permittivity at the SH.
Second, this solution revealed why the SH field profile

is quadrupolar and antisymmetric [see Fig. 1(c)]: The FF
modes excited in the slab frame have electric fields that are
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FIG. 1. Schematics of (a) the (identical) touching wire system and (b) the slab geometry to which it is related via an inversion
transformation. (c) The scattered second-harmonic magnetic field; a quadrupolar pattern with distinct antisymmetry in both x and y is observed.

symmetric in x and y, since these are the surface-plasmon
waves that exist within the frequency band below the plasma
resonance frequency (see [26]). The square of the FF elec-
tric field in (1) is symmetric, but the differentiation operator
causes the source to be antisymmetric in x and y, so it excites
the higher frequency asymmetric slab mode via the so-called
mode matching (MM) condition [implicit in Eq. (A1); see
[26]] [see Fig. 1(b)]. Transforming back to the TW frame
yields the observed profile.

Third, the TO solution (A1) revealed that the magnitude of
the SH field is proportional to three factors. The first factor is
the strength of the SH source, Jz,r (1). The second factor is the
magnitude of the so-called phase-matching (PM) parameter

P (ω) = cosh (2αω ) + ε2ω
bg

ε2ω
m

sinh (2αω ), (2)

where αω is the propagation constant as well as the mode
transverse width. P (ω) represents the pole of the dispersion
relation of the antisymmetric slab mode, i.e., the proximity to
the SH resonance of that mode. The third factor is a newly
identified geometric factor [see (A4) which originates from
the nonuniform distributed nature of the source across the
metal-dielectric interface and suppresses SHG from the touch-
ing point]. Further details on the physical interpretation of
these terms and explanations of the parameters on which they
depend are supplied in Appendix A.

In the present paper, we proceed beyond [26] by exploit-
ing the analytic solution (A1) and the qualitative insights it
provides to perform a quantitative study of the SHG from the
TWs. Specifically, we study the interplay between the three
aforementioned factors to optimize the near-field enhance-
ment, but now also the far-field response, as quantified by the
scattered power at the SH wavelength, P2ω

scat.
The paper is organized as follows. In Sec. II, we de-

scribe the configuration under study and the methodology. In
Sec. III, we compare the SH response of the TWs with that
of a single wire, demonstrating up to six orders of magni-
tude greater SHG efficiency. In Sec. IV, we explore how the
SHG of the TWs varies with εbg and show that the scattered
power can be increased by even ten orders of magnitude by
increasing εbg. In Sec. V, we analyze the spectral response
and identify the origins of its narrow-band nature. In the last
section of the paper, we exploit our analytic solution of a

nontrivial nanophotonic geometry as a platform to perform a
critical comparison of the strengths, weaknesses, and validity
of other prevailing theoretical approaches employed for non-
linear wave interactions at the nanoscale. Finally, we conclude
with an outlook.

II. CONFIGURATION AND METHODOLOGY

For all results presented in this paper, we choose a wire
radius of a = 5 nm, with a permittivity characterized by
a Drude model (with parameters suitable for Ag, namely,
ε∞ = 5, ωp = 9.2 eV, and γ = 0.2 eV [35]). We also choose
χ

(2)
S,⊥⊥⊥ = 10−20 m2/V in all simulations. However, all SH

results in this paper are linearly proportional to this parameter,
so it can be adjusted to suit any particular nonlinear polariza-
tion model. We perform calculations for two dissipationless
background permittivities: low (=1, considered previously in
[26]) and high (=12, characterizing semiconductor materials
with negligible losses, i.e., when illuminated at a frequency
lower than the energy band gap of the semiconductor). For
simplicity, we also assume the host to be dispersionless (i.e.,
ε2ω

bg = εω
bg = εbg). To ensure a fair comparison, we choose the

incident FF field to be an x-polarized (i.e., along the dimer
axis) plane wave with unit amplitude in both cases. H field
values are thus given in relative units.

We discuss below three main types of results. We first focus
on the near-field SH wave along the perimeter of the wire,
marked by C. Due to symmetry, we consider only the right
wire of the TWs. This H2ω

z field is given by (Appendix A)

H2ω
z (x, y)|C = −iωε0ε

2ω
bg

sinh 2αω

2αωP xJz,r (x, y). (3)

This demonstrates that the resulting H2ω
z at each point is

proportional to Jz,r at that point, subject to the two aforemen-
tioned additional factors. These are the PM parameter defined
in (2), and the geometric factor (A4), which has been reduced
to x along the TW perimeter. Note that in the plots below we
show only the region relatively close to the touching point, as
it is the most interesting, informative, and influential regime.

We also present the scattered power; the details of its
analytic and numeric calculations are given in Appendix B.
Finally, in the context of the spectral response, we also present
various averaged values of near-field properties over the TW
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FIG. 2. (a) The numeric solution for the absolute value of the (scattered) linear magnetic field |Hω
z | along the perimeter of the TWs (◦) and

the single wire (+) as a function of angle θ for εbg = 12 at a fundamental wavelength of 922 nm (hence, λSH = 461 nm). (b) Same as (a) for
the SH magnetic field |H2ω

z |. (c) Same as (b) at a fundamental wavelength of 1400 nm. The case of εbg = 1 is qualitatively similar (data not
shown). In all cases, the incident electric field is an x-polarized plane wave with unit amplitude.

perimeter, defined as

〈| f (x, y)|〉C = 1

4πa

∫
C

| f (x, y)|dx dy. (4)

As observed in [26], the source Jz,r (1) and magnetic field
(3) were found to be in excellent agreement with the numeric
solution only relatively close to the touching point [36], and
not too close to PM. Therefore, whenever we discuss the
solution far away from the touching point, we employ the
numeric (COMSOL-based) solution instead of the analytic one
(e.g., for scattering calculations). As is customary, analytic
results are marked by lines, and numerical results by symbols.
Further, in order to distinguish the FF and SHG results, all
SHG data are displayed in blue, and all FF are displayed in
red, in line with their relative spectral position.

III. SINGLE WIRE VS THE TOUCHING WIRES

As an initial step, we compare the (scattered) SH fields of
the touching wires and a single wire. Overall, the single wire
near field varies sinusoidally along the wire perimeter. As can
be shown from (cylindrical) Mie analysis [34,37,38], under
the (x-polarized) FF plane-wave illumination, all the modes
excited in the wire vanish at θ → π (the would-be touching
point of the TWs), but only the modes having even azimuthal
indices (M = 2, 4, . . .) vanish at θ → π/2, thus giving rise
to a finite field, as seen in Fig. 2(a). At the SH wavelength
[Figs. 2(b) and 2(c)], the situation is inverted, namely, all the
modes excited in the wire vanish at θ → π/2, but only the
modes having even azimuthal indices vanish at θ → π .

The TW fields exhibit radically different behavior than the
single nanowire (both for the FF and SH wavelengths); they
focus near the touching point [39], and then decrease rapidly
towards touching point θ → π . Near the resonances [i.e., at
the FF resonance, Fig. 2(a) or the SH resonance, Fig. 2(b)],
the TWs generate stronger SH near fields for essentially all
incidence angles due to the intrinsic singular character of the
geometry. Figure 2(c) demonstrates the situation for illumi-
nation further from resonance (i.e., for a longer wavelength).
Here, the TWs generate a stronger near field close to the
touching point only.

The behavior of the scattered power is somewhat more
complicated. As shown already in [32,33], Fig. 3(a) shows
that the single wire exhibits stronger linear (i.e., at the FF)
scattering compared with the TWs when both systems are
at resonance [40]. However, since the spectral bandwidth of
the TW response is much wider, the TW response is stronger
away from resonance. Surprisingly, the situation is inverted
for the SH scattered power, as seen in Fig. 3(b). In particular,
the power scattered at resonance by the TWs is greater by
more than six orders of magnitude. Yet, since its spectral
width turns out to be significantly narrower, the power scat-
tered at longer wavelengths is greater for the single wire.
This is the first main result of the current work; it is further
elaborated in Sec. V below. This behavior can be traced to the
relatively weak SH fields generated at points along the TW
perimeter further from the touching point in the off-resonance
case [see Fig. 2(c)] as it is these points that determine the
far-field scattered power [see Fig. 7(a) and further discussion
in Appendix B].

Also worth noting is that the peaks of FF and SH scattered
powers are at the same wavelength for the single nanowire,
and these coincide with the peak of the TW linear response.
However, the peak SH response of the TW is blue-shifted.
The origin of this blue-shifting can be understood from the
modal information revealed by TO. In particular, all plas-
monic modes lie exactly at the surface-plasmon frequency
for the single nanowire in the quasistatic limit adopted in
the current study; indeed, this configuration corresponds to a
single interface plasmonic waveguide in the transformed slab
frame. This corresponds to ∼580 nm (see Fig. 3) for which
Re[εm] ≈ −12. However, for the TWs [which transform to the
slab waveguide, Fig. 1(b)], two branches emerge in the disper-
sion relation, one above and one below the surface-plasmon
frequency. The upper branch corresponds to the antisymmet-
ric modes, and is characterized by a negative group velocity.
As a result, the modes corresponding to smaller wave vectors
(i.e., those which correspond to the quasistatic limit) have
the highest frequency and the wider spatial extent; the latter
corresponds to the highest radiative damping. A more detailed
discussion as well as a visualization can be found in [41].
Since the SH field is asymmetric [see Fig. 1(c)], the SH peak
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FIG. 3. (a) The numeric solution for the linear (i.e., at the FF) scattered power of TWs (+) and single wire (◦). (b) The corresponding
solution for the SH scattered power; the black dashed lines represent the scattered power for fundamental wavelengths 922 and 1400 nm,
corresponding to the near-field plots in Figs. 2(b) and 2(c). Both scattered powers are calculated for εbg = 12.

of the TWs occurs at frequencies that correspond to the higher
frequency branch, above the surface-plasmon frequency and
approaching the metal plasma frequency.

IV. OPTIMIZATION OF THE SH RESPONSE
OF THE TOUCHING WIRE

The analytic solutions for the near and far fields now al-
low us to scan the parameter space in search of the optimal
response, by varying ω, εbg, etc. While this has clear prac-
tical value, it is also tedious, and is worth doing only for a
well-defined experimental setup. Instead, we opt to explain
these findings qualitatively, and to identify the governing
physics that enable further optimization of the SH response.
In particular, we exploit the solution (A1) and analyze the
contributions of the previously mentioned factors to the SH
response. A link exists between the near-field and far-field
behavior realized by R (A2) [see Fig. 7(a) and Appendix B],
so it suffices to analyze the near-field solution (3).

A. Near-field response

We now analyze the SH generation efficiency by evalu-
ating each of the various elements in Eq. (3) separately. We
begin by finding the optimal material parameters for which
the phase-matching factor 1/|P| is maximized [42], i.e., the
background permittivity and frequency that brings the system
as close as possible to phase matching (or equivalently, to SH
resonance). From Fig. 4(a), it is evident that the background
permittivity required to maximize 1/|P| is high, especially as
the fundamental wavelength gets longer. For example, for a
fundamental wavelength of 922 nm (hence, λSH = 461 nm),
the optimal choice for the background dielectric is ≈12
[marked by the top “©” symbol in Fig. 4(a)]; this motivates
a posteriori the choice of parameters in the previous sec-
tion. Figure 4(a) also shows an overall moderate sensitivity
of 1/|P| to the choice of permittivities and SH wavelength.
In particular, the high permittivity case yields a maximum
value of 1/|P| ≈ 3.2 for εbg = 12, whereas 1/|P| ≈ 1 for the
εbg = 1 case.

We now turn to study the effect of εbg on the product of the
surface source with the geometric factor, namely, xJz,r . To do
so, we first display in Figs. 5(a) and 5(b) the real and absolute
value of the FF fields Eω

⊥ along the wire perimeter for both
choices of εbg. The maxima of the fields are roughly of the
same order of magnitude for both cases. While both maxima
are located close to the touching point, the maximum for εbg =
12 is found further from the touching point, corresponding to
smaller angles. Indeed, it was shown in [33] that the position
of the peak value of the FF fields can be approximated by

θω
max � π −

Im
( εω

m
εbg

)
∣∣ εω

m
εbg

∣∣2 − 1
, (5)

where θω
max is the angle measured along the perimeter of

the right wire. Relatively low losses were assumed [specif-
ically, Im( εω

m
εbg

) � | εω
m

εbg
|2 − 1]. This shows that when the FF

approaches the plasmon resonance, the peak position of the
linear fields approaches θ → 0. Conversely, for longer wave-
lengths the linear electric field, and hence the source term at
SH, are pushed more towards the touching point, and the at-
tenuation due to the geometric factor increases [compare, e.g.,
Figs. 2(b) and 2(c)] [43]. In particular, it follows from Eq. (5)
that since the value attained by |εω

m/εbg|2 − 1 is much smaller
for εbg = 12 than for εbg = 1, then, θω

max is found further away
from the touching point for εbg = 12. For a complete map of
the θω

max dependence on the SH wavelength and background
permittivity, see Fig. 4(b).

Recall now that the SH source Jz,r is computed by squaring
the FF fields and evaluating the tangential derivative along
the perimeter of the TW. Thus, faster oscillations give rise
to a stronger SH source. Those are observed for the lower
background dielectric case [with a shorter wavelength res-
onance; see Fig. 4(a)]. This phenomenology is the same as
reported for increasing frequency and fixed background [44]:
as the frequency gets further away from the surface-plasmon
resonance, the field oscillation becomes faster. Here, this hap-
pens because the growing background permittivity effectively
shifts the plasmon resonance to the red. Indeed, Figs. 5(c)
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FIG. 4. (a) 1/|P| (2) as a function of SH wavelength and dispersionless dielectric background εbg. The points marked “©” denote
simulations at the SH wavelength of 461 nm, for εbg = 12 and εbg = 1. (b) θω

max [see Eq. (5)] as a function of SH wavelength and dielectric
background εbg.

and 5(d) show that the faster oscillations associated with the
εbg = 1 yield a 15-fold stronger source term.

Yet, the complete SH response (namely, xJz,r) is much
stronger for the εbg = 12 case, as seen in Fig. 5(e). This is
the effect of the geometric factor [see Eqs. (3) and (A4)]. It
acts to suppress the SHG of the εbg = 1 case more effectively
compared with the εbg = 12 case because of the closer prox-
imity of the field peak to the touching point. Specifically, the

peak value of the SH response (3) is 32 times higher for the
εbg = 12 case, due to the combined effect of an approximately
ten times stronger maximum value of |xJz,r | (compared to
the 15-fold lower maximum value of the source only) and an
∼3.1-fold higher value of 1/P .

Thus, our analysis reveals that having a stronger SH
source does not guarantee a stronger SH response, a po-
tentially counterintuitive result that stands in contrast to the

FIG. 5. (a)–(e) Analytic solutions of near fields. Fields are plotted as a function of angle θ (see Fig. 1) along the perimeter of the right wire
for the TW system. Curves for εbg = 1 and εbg = 12 are plotted using light-blue solid lines and dark-blue dashed lines, respectively, and in
slightly different colors. Note the particularly rapid oscillations in the former case. Linear fields (a) Re[Eω

⊥] and (b) |Eω
⊥| at the FF wavelength

922 nm. The SH source (c) Re[Jz,r] and (d) |Jz,r | at the SH wavelength of 461 nm. (e) The SH magnetic field H2ω
z , where the curve of εbg = 12

is threefold magnified. (f) The numeric solution for the SH scattered power of TWs for εbg = 12 (dots) and εbg = 1 (crosses).
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predictions of approximate models [11,17]. Instead, it is the
spatial distribution of the SH source, i.e., the product xJz,r ,
that determines the near-field SH response.

Overall, we have seen that high permittivity values are
beneficial for increasing both the PM factor (2) as well as
the spatial distribution of the source, xJz,r , at least within
the regime where Eq. (5) is valid. One might then ask what
would be the ideal choice of the background permittivity
for an optimal SH near-field response. The strongest source
would be achieved at the FF surface-plasmon resonance, εbg ≈
−Re[εω

m]. Such a choice would also serve to pull the source
maximum away from the touching point [see Eq. (5)] such that
the SH near field becomes stronger. On the other hand, a max-
imal value of 1/|P| corresponds to a different value, namely,
the permittivity at the SH plasmon resonance wavelength, i.e.,
εbg ≈ −Re[ε2ω

m ] = −Re[εω
m]. A signature of the contradicting

nature of these requirements can be seen in Fig. 4.
Thus, improving the SH response by taking the geomet-

ric factor and phase-matching condition simultaneously into
consideration demands the illumination be doubly resonant,
i.e., at both FF and SH. Such a scenario was demonstrated in
[16,23,24] and involved nontrivial particle geometries. For the
structure studied here, which is characterized by a single reso-
nance, optimal performance can be achieved via a maximally
wide resonance bandwidth such that the system can satisfy
both requirements.

B. The far-field response

The discussion so far focused on the near fields along the
segment of the perimeter closest to the touching point. We turn
now to the far fields. As discussed in Appendix B (see Fig. 7),
its strength is determined by the values of Jz,r on the perimeter
further from the touching point, corresponding to the smaller
angles displayed in Figs. 5(d) and 5(e). In this regime, the
effects of the geometric factor discussed in Sec. IV A are
essentially irrelevant. Instead, it is the decay length of the
fields away from the touching point that determines the far-
field response. This decay is slower for the εbg = 12 case [see
Figs. 5(b) and 5(d)] so that indeed, the far-field response in
that case is much stronger. In particular, the source term for
the εbg = 12 case at angles away from the touching point is
about five orders of magnitude greater than for εbg = 1. This
originates from the fact that the FF electric field in the source
term is approximately two orders of magnitude higher for the
εbg = 12 case [see Fig. 5(b)] due to the proportionality to
the background permittivity and to αω (which represents field
confinement and the propagation constant) [see Eq. (3)]. Both
of these are higher by an order of magnitude for the εbg = 12
case. The differentiation of Eq. (1) extracts a further factor of
αω, hence adding another order of magnitude. This result was
obtained in [33]; again, its significance was not emphasized,
yet, its origins were. Indeed, only the ratio between permit-
tivities appears in quasistatic expressions in [33] such that
increasing the permittivity in the background is equivalent to
reducing the absolute value of the metallic one. As a result,
the highest confinement takes place at large, negative values
of the metal permittivity (i.e., at long frequencies of a Drude
metal) or for high permittivity background. As explained in

Sec. V below, this behavior also explains the spectrum of the
scattered SH power.

As a result, the scattered power (which scales with the
square of the fields) is about ten orders of magnitude greater
for εbg = 12 than for εbg = 1 [see Fig. 5(f)]. This is the second
main result of the current work. It is particularly remarkable in
comparison to the single wire, where a change in εbg improves
the scattered power by “only” two orders of magnitude (not
shown). Sections IV A and IV B have demonstrated that the
εbg = 12 case exhibits superior behavior both in the SH near-
and far-field regimes of the TWs.

V. THE SH SPECTRAL RESPONSE OF THE IDENTICAL
TOUCHING WIRES

From the analysis of Sec. IV A, it became clear that one
way to optimize the SHG efficiency of the TWs is to increase
the bandwidth of its spectral response. In fact, the unusually
large bandwidth of the linear response of the TWs [32,33]
was also our original motivation to study SHG from the TWs.
Moreover, a further increase in the SH bandwidth was ex-
pected due to the effects of autoresonance, also known as
adiabatic frequency conversion [45]. This was demonstrated
in tapered dielectric waveguides [46], and relied on sweeping
the phase-matching parameter (analogous to P) adiabati-
cally through zero along the propagation direction instead of
achieving the exact phase matching within the entire nonlinear
medium. Since the tapered waveguide is mimicked by the TW
geometry near the touching point for the modes circulating
around the particle perimeter [e.g., Fig. 1(a)], a similar wide
SH bandwidth was expected. Unfortunately, as we shall see
below, the SH response of the TWs did not meet such expec-
tations. Instead, the response turned out to be narrow band, as
it typically is.

To understand why, we plot the key physical quantities
in solution (3) against the fundamental and second-harmonic
wavelength, spatially averaged over the TW perimeter [see
(4)] for εbg = 1 [Fig. 6(a)] and εbg = 12 [Fig. 6(b)], respec-
tively, and compare them to the PM factor [Fig. 6(c)].

We first consider the spectral behavior of the SH source. It
is obtained by squaring the FF field, so that the spectral band-
width of the SH source is necessarily narrower than the linear
response [compare the red and magenta curves in Fig. 6(a);
the effect is less pronounced in Fig. 6(b)]. Further limitation
on the bandwidth is imposed by the geometric factor x [see
green curves in Figs. 6(a) and 6(b)]. Indeed, one might naively
conclude that this term is insignificant in determining the
spectral response as it is only a spatial factor that remains
unchanged regardless of wavelength, but Eq. (5) and Fig. 4(b)
show that the opposite is true. Indeed, the geometric factor
is less harmful near the SH resonance; this is due to the
wavelength dependence of the maximal field position [see the
discussion surrounding Eq. (5)]. Thus, the geometric factor
plays a significant role, and determines not only the near-field
enhancement [see Fig. 5(e)], but also the spectral bandwidth
of the SH near fields [47]. In contrast, Fig. 6(c) shows that the
peak position is determined by the PM factor (2).

Finally, we observe that both the far-field and near-field
responses peak at the same wavelength, yet the bandwidth
of the far-field response is significantly narrower [compare
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FIG. 6. Spectral responses of the SH near field of the identical TW system. Normalized average of the near-field quantities along the
perimeter of the TW, namely, 〈|Hω

z |〉 (red dots), 〈|Jz,r |〉 (magenta dots), 〈|xJz,r |〉 (green dots), 〈|H2ω
z |〉 (blue dots), and P2ω

scat (black dots) for
(a) εbg = 1 and (b) εbg = 12. Each curve is normalized by its maximum value in the spectral range of interest. (c) The PM factor 1/|P| (2) as
a function of SH wavelength for εbg = 1 (solid red line) and εbg = 12 (dashed blue line).

black and blue curves in Figs. 6(a) and 6(b)]. This difference
can be understood by recalling that the spectral width of far-
field resonances is governed by radiative damping, whereas
absorption losses dominate the near field. The latter are much
faster than the former for small particles roughly a few tens
of nanometers in radius like the ones considered in our study
[48]. This well-known effect provides further spectral narrow-
ing on top of that caused by the geometric factor.

These results show why, contrary to expectations, the band-
width of the SH response is much more limited than the linear
response. In retrospect, the TO approach reveals that although
the geometry we study resembles a tapered waveguide, it is
fundamentally based on the flat slab geometry, for which no
autoresonance response is expected. This unexpected insight
is most likely unique to tapered geometries that are related by
TO to nontapered ones; further research is required to clarify
this point.

VI. COMPARISON TO PREVIOUS WORK AND OUTLOOK

The goal of the current work was to highlight the utility
of TO as a tool for the interpretation of the wave physics
of nonlinear optical wave interactions in plasmonic nanos-
tructures, and the optimization of its performance. This was
demonstrated by a thorough analysis of a well-studied sin-
gular plasmonic structure—the TWs—using the simplest
possible solid-state model for the second-order optical re-
sponse of metals.

The combined near- and far-field analyses provided in this
work enables comparison with some commonly used theo-
retical approaches employed for SHG in nanostructures. To

perform this comparison, we first recall that the exact formal
solution for the SHG problem from an arbitrary scatterer is
simply the convolution of the SH current with the Green’s
tensor (G

↔
), which represents the response of the structure to

a point dipole source (i.e., the spatial impulse response of the
scatterer); it is generically a complicated function of space and
frequency. Our analysis of the TWs showed that some aspects
of the far-field response, such as the permittivities that yield
stronger SH responses, can be correctly predicted by con-
sidering only the nonlinear polarization (i.e., the source, Jz),
Figs. 5(d) and 5(f), i.e., regardless of the details of G

↔
. This ap-

proach is essentially Miller’s rule, which is applicable to bulk
materials that exhibit a relatively weak spectral sensitivity, and
involves fairly uniform fields (i.e., no complex scattering due
to subwavelength structuring). In this case, the Green’s tensor
too exhibits weak variations in space and frequency, such that
the general far-field solution is indeed simply proportional
just to the SH source. This polarization-based model was also
shown to be successful when applied to systems far from
resonance, as e.g., in [18], or those that have a relatively broad
FF resonance, as in the current case [see Figs. 4(a) and 6(a)].

However, our solution shows that the near field exhibits a
more complicated form. It includes considerations such as the
proximity to the SH resonance (which we refer to as PM) and
symmetry of the source and modes (via the more quantitative
concept of MM). These considerations arise naturally in the
so-called nonlinear scattering/effective susceptibility model
[11,19] whereby the product of the SH polarization with the
linear field is spatially averaged. This approach was shown to
predict correctly various additional quantitative aspects of the
solution (e.g., the optimal structural asymmetry [19]).

075411-7



SHIMON ELKABETZ et al. PHYSICAL REVIEW B 103, 075411 (2021)

Yet, the nonlinear scattering/effective susceptibility model
does not accurately handle the interplay between the SH
source (∼Jz,r) and the SH response (∼G

↔
), in that it does

not rely on the exact Green’s tensor of the structure [49],
instead relying on the profile of an incident plane wave.
Moreover, it does not correctly account for the convolution
between these two quantities, instead relying on their product.
The former approximation may yield discrepancies in the
spatial and spectral responses while the latter approximation
can lead to somewhat different interference effects compared
with straightforward averaging [11]. It is clear that these ef-
fects did not prevent the good agreement between analysis
and measurement in the far-field response reported by [19],
but it may not correctly predict the near field [11]. Since
our exact solution is free of the approximations adopted in
the nonlinear scattering theory of [11], it indeed predicts a
near-field behavior that differs from the far field, as seen in
Figs. 3–5. In our specific case, this is due to the appearance of
the geometric factor, which modifies the near-field enhance-
ment [see Fig. 5(e)], and controls the overall bandwidth of
the spectral response (see Fig. 6). All the above shows that
polarization-based models such as Miller’s rule or simplified
models such as the nonlinear scattering model/effective sus-
ceptibility model [11,19,50] should be used with caution in
structured nanophotonic systems. Nevertheless, these simpler
models are applicable to a wide class of systems, while it is not
clear how the additional insights revealed in our work apply
to other structures.

In addition to the above, we emphasize that the discussion
in the current work should not be construed as anything more
than a qualitative study. Indeed, various effects are expected
to modify the quantitative results shown here, such as nonlo-
cality [44,51], dispersion of the second-order response (which
is not yet fully understood, in general), interband transitions
[52], etc. These may modify the near-field enhancement and
spectral response. Nevertheless, the analytic solution and in-
sights obtained in this work can lead towards various ways
of improving the response quantitatively; for example, it can
reveal the material dispersion or anisotropy of the background
medium necessary for the optimal response. More significant
improvements may be achieved if the background also has a
second-order optical response; this is particularly likely for
the high permittivity background which was found to yield
superior performance in this study. In that sense, it would be
interesting to build on recent work on SHG from such systems
[53–56], and to study the relative importance of the SHG from
each material.

In addition to its insights on the TWs, the current
study can be extended to a variety of additional plasmonic
nanostructures. Specifically, one can exploit the results for

dipole sources above a metal layer in [57] to study the
field distribution due to illumination by electric fields of
different polarizations as well as to study other configura-
tions such as the crescent structure [58], nontouching wires
[59], blunt geometries [60], periodic arrays, two-dimensional
materials [61,62], and various three-dimensional structures
[63,64], etc. Future steps may include further optimization
of the performance, e.g., by exploiting the greater sus-
ceptibilities reported within heterodimers [9,10] or even to
treat more complicated nonlinear wave interactions such as
sum frequency generation [65,66], third-harmonic genera-
tion [18,19,67], terahertz generation [65,68], and four-wave
mixing [69].

Finally, our study will hopefully motivate an experimental
test of our predictions. Indeed, many aspects of the linear
response of TWs revealed by earlier analysis were already
experimentally demonstrated using thin disks (in the terahertz
regime; see [70,71]).
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APPENDIX A: THE ANALYTIC SOLUTION FOR THE SH
MAGNETIC FIELD NEAR THE TOUCHING WIRES

In [26], we calculated the SH field generated by a
pair of (identical) TWs (Fig. 1) assuming the simplest
second-order nonlinear polarization of the metal, i.e., assum-
ing it is dominated by a perpendicular surface source. As
explained in [2,26,34], this is a reasonable generic (even if
not complete) description of the second-order nonlinear op-
tical response of metals; indeed, bulk polarization can also
be accounted for by mapping it to a surface polarization.
We showed that a highly accurate analytic solution can be
obtained in three steps. First, we transformed the SH source
[72] (calculated within the quasistatic approximation [32,33])
and boundary conditions to the slab frame (see Fig. 1) using a
conformal inversion transformation [32]. Then, by assuming
that the amplitude of the excited guided wave in the slab
geometry is slowly varying along ỹ, we imposed the boundary
conditions appropriate for the surface source (namely, con-
tinuity of the magnetic field and proper discontinuity of the
parallel electric field [34]) [73]. Finally, we transformed back
to the TW frame and obtained

H2ω
z = −iωε0

2αωP (ω)
R(τx, τy)G(x, y) exp

(
4iaαωy

x2 + y2

)

×

⎧⎪⎪⎨
⎪⎪⎩

sinh

(
4aαωx

x2 + y2

)
, x2 + y2 + 2a|x| > 0

sgn[x]e2αω

sinh 2αω exp

(−4aαω|x|
x2 + y2

)
, x2 + y2 + 2a|x| < 0.

(A1)
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Here, x and y are the real-space coordinates; αω = 1
2 ln(

εω
m−εω

bg

εω
m+εω

bg
) is the dimensionless [74] propagation constant at the fundamental

frequency ω; εω
bg, εω

m, and ε0 are the background, metal, and vacuum permittivities, respectively; a is the wire radius; and P (2) is
the so-called PM factor. It represents the pole of the dispersion relation of the antisymmetric mode. It is maximal at resonance,
i.e., when the SH frequency is tuned to the frequency of that mode [26,75]. R is related to Jz,r (x, y), the (z-directed) surface
magnetic current generated by the nonlinear polarization on the right wire. It is evaluated via the analytic solution for the FF
fields, Eω

⊥ , provided in [33], and is itself given by Eq. (1) such that R is defined via

Jz,r (x, y) = R(τx, τy) exp

(
4iaαω|y|
x2 + y2

)
δ(x2 + y2 − 2ax). (A2)

Here, the coordinates τx and τy are defined as

(τx, τy) =
(

1/(2a)

1/(4a2) + y2/(x2 + y2)2
,

y/(x2 + y2)

1/(4a2) + y2/(x2 + y2)2

)
. (A3)

These coordinates map points in the domain outside the TWs to the TW perimeter [see Fig. 7(a)]. Finally, the factor

G(x, y) = 4a(x2 + y2)2

4a2y2 + (x2 + y2)2
(A4)

is referred to as the geometric factor. It originates from a transformation of the generalized boundary condition (which
incorporates the discontinuity in the tangential electric field) to the slab geometry [26] as well as from the complex nonuniform
distributed nature of the source. Along the TW perimeter, G reduces to simply x, as shown in [26]; this is used in Eq. (3).

APPENDIX B: SCATTERED POWER CALCULATIONS

Scattered power is probably the most accessible observable in experimental studies of small nanoparticles. However, it
vanishes in the quasistatic limit, which was the limit used to calculate the linear electric fields [32,33]. Previous works (e.g.,
[76]) went beyond this limit by computing the linear absorption and scattering cross sections of the TWs based on the dipole
moment induced by the incident fields. As in the case of the near-field enhancement, the TWs exhibited a scattering cross section
which is spectrally much broader compared to the single wire. Hence, it is interesting to see if a large bandwidth is obtained also
for the SH response.

Unfortunately, the approach of [76] cannot be applied in our case, as a total SH dipole moment cannot be defined for the
nanostructure at the SH. Instead, we exploit the inherent near-to-far-field mapping which is manifested by R(τx, τy) (A2). As
noted, this factor map points in the domain outside the TWs to the TW perimeter [see Fig. 7(a)] in such a way that more distant
contours correspond to points further away from the touching point. In fact, since the field varies more slowly in these regions
compared to the regions closer to the touching point, it is easier to calculate the scattered power rather than the absorbed power
(which requires an integration over the rapidly varying near fields). Peculiarly, this magnetic-field-based calculation somehow
transcends the quasistatic limit, thus providing a nonzero prediction for the scattered power.

Thus, we now proceed past the near-field calculation of [26] and compute analytically and numerically the SH scattered power
from the TWs, P2ω

scat, given by

P2ω
scat = 1

2
Re

∫
S

E2ω
φ

[
H2ω

z

]∗
dS. (B1)

This is the scattered power that passes through the surface S , where n̂ represents the normal to the surface [see Fig. 7(a)].
To calculate the SH magnetic field (A1), we have to evaluate Jr,z(τx, τy) (A2); this requires computing the analytic expression

for the parallel derivative of the FF electric field Eω
⊥ (τx, τy). It is given by

∂‖[Eω
⊥ (τx, τy)] = M + N , (B2)

where

M = iyπαωaEω
0x

εω
m + 1

[
−i2ay2 − i(x − a)2(2x − αωa) + 1

2 a|y|[4a − 6y2

a − 2αωa
(

x−a
a

)] + |y|3
|y|(x + i|y|)4

]
exp

( −αωa

x + i|y|
)

, (B3)

and

N = −sgn[y]παωaEω
0x

εω
m + 1

[
(x − a)

(x + i|y|)2 − y[|y| − i(x − a)](i2|y| + 2x − αωa)

(x + i|y|)4

]
exp

( −αωa

x + i|y|
)

,

where Eω
0x is the amplitude of the incident plane wave along

the x direction. For all plots presented in this paper, we set
it to unity. Now that we have all the expressions needed for
the evaluation of the magnetic field (A1), we can analytically
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FIG. 7. (a) Two surfaces S1 and S2 surrounding the TWs. τx and τy map each point on these surfaces to the TW perimeter. For S1, with a
radius of 22 nm, each point maps to points relatively far from the touching point. Conversely, for S2 which is closer to the TW structure, each
point maps closer to the touching point. (b) The numeric (dots) and the analytic (blue solid line) solutions for the SH scattered power of TWs
for εbg = 1.

calculate the SH parallel electric field, using

E2ω
φ (r) = i

2ωε0ε2ω
m

∂H2ω
z

∂r
(B4)

from the analytic expression for the magnetic field (A1). Here,
r =

√
x2 + y2 is the radial coordinate along which the differ-

entiation is performed.
In order to validate the solution described above, we sup-

port our analytic results by direct numeric simulations using
COMSOL MULTIPHYSICS (v 3.5a) (see Appendix E in [26]). In
fact, the numeric calculation of the derivatives in Eq. (B4)

required even higher resolution compared to the calculations
in [26].

We observe good agreement between the analytic and
numeric calculations for most of the spectral regime stud-
ied, with the exception of the lower frequency range (see
Fig. 7). As we saw before [Eq. (5)], the fields peak closer
to the touching point when material losses are lower, and are
also more concentrated at lower frequencies [see Fig. 5(a)].
Thus, capturing this effect in numerical simulations is natu-
rally harder. Indeed, the numeric results for the Drude loss
parameter γ = 0.2 deviate from the analytic solution in the
long-wavelength regime; better agreement was obtained in
this regime for higher absorption (not shown).
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