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Abstract

We update our root-search method for transcendental equations. Our method
is globally convergent and is guaranteed to locate all complex roots within a
specified search domain, since it is based on Cauchy’s residue theorem. We
extend the implementation to treat the dispersion relations of slab wave-
guides and the resonances of a sphere, in addition to step-index fibers. We
also implement other improvements, such as to the contour selection pro-
cedure to ensure the method remains reliable even in challenging parameter
regimes.
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NEW VERSION PROGRAM SUMMARY
Program Title: disproots (Dispersion roots)
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: (if available)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions(please choose one): CC BY NC 3.0
Programming language: MATLAB
Journal reference of previous version: Comput. Phys. Comm. 214 (2017) 105.
Does the new version supersede the previous version?: Yes
Reasons for the new version: Even though the algorithm is mathematically guar-
anteed to locate all roots within a specified search domain, our original implement-
ation [1] is still liable to miss some of the roots at certain parameters regimes in
the context of optical waveguide dispersion equation. In this update, we make the
algorithm more reliable. The other reason of this update is to extend the imple-
mentation of our algorithm to treat the dispersion relations of other waveguide
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geometries and applicability in determining the radiative modes in the context of
propagation constant modes.
Summary of revisions: To ensure the method is reliable even in challenging para-
meter regimes, we make several revisions in the contour selection strategy like en-
largment of contour for lower-order roots, implementing elliptical shaped contours
and employing adaptive scheme for higher-order roots. Additionally, we also rescale
the search variables in the context of propagation constant when spacing between
roots is large.

We also demonstrate the extension of the method to slab & sphere geometries,
and computation of radiative modes.
Nature of problem: Locating the complex roots of a general transcendental equation
is often a non-trivial task. Iterative methods such as Newton’s method face numer-
ous difficulties because the existence of roots with narrow and otherwise difficult
attraction basins requires very accurate initial guesses to locate. Robust location
of a complete set of roots thus becomes problematic. In optics, modes of a circular
fiber are obtained from a transcendental equation, the dispersion relation. Several
recent advancements in optics have necessitated its robust solution, including the
fabrication of high index contrast fibers and analytical methods that expand radi-
ating sources using eigenmodes.
Solution method: We employ the argument principle method, a robust globally
convergent method guaranteed to locate all roots in the specified search domain.
It is based on the Cauchy residue theorem, and projects the locations of the roots
on to a polynomial basis. Unlike previous implementations of the argument prin-
ciple method [2,3] and related methods [4], our implementation has two features
vital for solving the fiber dispersion relation. It allows isolated singularities within
the search domain, and allows the search domain to approach arbitrarily close to
branch points without experiencing failure. Furthermore, our simple MATLAB
implementation is designed to be easily modified and integrated for a variety of
applications.
Additional comments including restrictions and unusual features (approx. 50-250
words): The specified search domain must be meromorphic, in other words be com-
plex analytic containing at most isolated singularities. The locations and orders
of these singularities must be known analytically, so we describe how they are de-
termined for our fiber dispersion relation. Branch points and branch cuts must be
avoided, though the search domain may be arbitrarily close. We exploit knowledge
of our dispersion relation, specifically that roots are located close to singularities,
to simplify the method.
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Figure 1: The three geometries treated in this update: a slab waveguide with infin-
ite translational symmetry in two dimensions, a circular fiber infinitely extended in one
direction, and a sphere.
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1. Introduction

In this update, we revisit our original algorithm,[1] where we implemen-
ted a robust, globally convergent argument principle root-search subroutine
for transcendental equations. The algorithm is guaranteed to locate all roots
within a specified search domain of the complex plane, since it is a globally
convergent algorithm based on Cauchy’s residue theorem. We applied the
algorithm to treat the step-index optical fiber dispersion relation, i.e., to find
dispersion curves (ω-frequency vs β-propagation constant[2, 3], or β-modes
in short) given a user-specified fiber radius and material dispersion rela-
tion. Free-to-use code was published alongside the original article.[1] The
algorithm found the roots up to any desired order with minimal human su-
pervision, and without any concerns of divergence with increased number of
iterations.[4] The implementation can also search for permittivity as the ei-
genvalue, which is useful for defining the normal modes of open, unbounded
systems.[5–27]

The first purpose of this update is to enhance the reliability of our im-
plementation in the context of optical waveguide dispersion relations. Even
though our original algorithm is mathematically guaranteed to locate all
roots within a specified search domain, our original implementation is still
liable to miss some of the roots. There are two possible reasons for this.
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Firstly, if the search domain is not specified to be large enough to encom-
pass all the roots, then roots that stray deep into the complex plane will be
missed. This can occur under certain parameter regimes. Secondly, the al-
gorithm might fail due to the limitations of finite precision arithmetic when
the search variable becomes very small or very large. In this update, we
revise the algorithm to resolve these issues, yielding a more reliable imple-
mentation.

The second purpose of this update is to extend the implementation of
our algorithm to treat the dispersion relations of slab waveguide and spher-
ical scatterers, see Figure 1. These dispersion relations are simpler than that
of the step-index optical fiber, leading to simpler attraction basins. Thus,
these root-searches are perhaps less challenging, and may be more amenable
to simpler techniques than the one presented here, such as the locally con-
vergent Newton’s method. But given that the roots can lie in the complex
plane, locally convergent techniques can still be unreliable, as their success
is excessively dependent on good initial guesses. To ensure that roots are
not missed, it is still beneficial to use our globally convergent algorithm.

The third purpose of this update is to demonstrate its applicability to
compute the radiative and leaky optical waveguide (β) modes, i.e., those for
which the search variable is a complex propagation constant β; previously,
we studied such modes only when the search variable was the (eigen-) per-
mittivity. Such mode are encountered also in the context of the Schrödinger
equation in the description of electron states whose energies are above the
vacuum level [28]; the optical formulation adopted below reduces to this case
for a fixed value of the frequency.

This document is organized as follows. In Section 2, we motivate the
need for enhancements to the algorithm, and then proceed to develop the
necessary revisions and their implementations. In Section 3.1, we describe
the implementation of the method to treat the (asymmetric) slab waveguide
dispersion relation. This section incorporates the revisions of Section 2 and
its implementation for the radiative and leaky modes. Section 3.2 provides
a brief discussion of the implementation for spherical scatterers.

2. Revision of the Algorithm

In the original iteration of these utilities [1], the contour selection strategy
was guided by two key observations: (a) there exists one root for each sin-
gularity, counting multiplicities, and (b) these roots are often located in the
vicinity of their respective singularities. We thus devised a simple strategy
to enclose all the roots with a set of overlapping contours, with one contour
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centered on each singularity. This was specified in Eq. (13) of our original
manuscript and demonstrated there in Figure 2. However, this strategy
was liable to fail for some parameter regimes. This is because although
observation (b) holds firm for the high-order roots, it is more tenuous for
the first few roots, as these tend to stray the furthest from their respective
singularities.

Figure 2: Examples of the attraction basins and our revised contour selection strategy
(magenta). Horizontal and vertical axes represent real and imaginary parts of the complex
search variable domain, while color is the logarithmic magnitude of the transcendental
equation, log10(|f(z)|) (see equivalent figure in [1] for more details). Thus, the roots
are deep blue and the singularities are red. Plot (a) shows the attraction basin of (αca)

2

search variable with enlarged first contour (top leftmost) which now enclose the first couple
of singularities, as well as the first 6 roots. It is described in Eq. (1). Another contour
(Eq. (2)) is located below this contour to capture any plasmonic roots that wander further
into the lower half of the complex plane. Plot (b) shows an example of an attraction basin
of (βa)2 search variable for which elliptical contour selection for higher order roots is more
suitable.

In this update, we revise our strategy for finding the first few roots, via
a simple modification that has been tested to succeed even for challenging
parameter regimes. In particular, we combine the first two contours into
one large contour that covers a much larger region of the search space. Even
so, this enlarged contour still does not enclose more than 6 roots, and thus
not present any difficulties for the numerically sensitive Newton’s identities.
This contour is displayed in Figure 2. Specifically, we define the center and
radius of this enlarged contour to be
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This equation uses the notation of Eq. (13) from the original manuscript[1],
where uk is the value of k-th singularity, and u0 = 2u1−u2. Additionally, the
plasmonic root in the context of eigenpermittivity modes tends to wander
further into the negative half of the complex plane. As such, we place an
additional contour underneath this enlarged contour to capture any wayward
plasmonic roots. For our purposes, we choose a contour defined by

cp = c1 − ir1,

rp = r1.
(2)

This additional contour can be further enlarged to cover more of the search
space. This does not risk numerical difficulties, since the contour is not
expected to enclose many roots, if at all, and is situated in a relatively
featureless region of the of search space. An example of this contour is dis-
played in Figure 2(a). If necessary, the contour can be further enlarged to
cover even areas with known roots and singularities by running the addi-
tional contour last, and deflating the additional contour of all known roots
and singularities. This ensures that the additional contour will not contain
more than 5 new roots, which is necessary for the stability of the Newton
identities.

For higher-order roots, especially at long wavelength, we employ elliptical
contours as roots may wander much farther along the imaginary axis in
comparison to the distance between consecutive singularities on the real
axis, as shown in Figure 2(b). To make the root search more robust, we also
implement an adaptive scheme to search further deep into the imaginary
axis of the complex plane until a root is found, i.e.,

ck = ck ± l ∗ rk,
rk = rk.

(3)

Here, l is a integer and its value is incremented until a root is found for
every contour.

The second revision to the method involves a rescaling of the search
variable. In the original implementation, either ϵc or β was designated to be
the search variable. These parameters are related by the dispersion relation
for homogeneous space,

α2
c + β2 = k2ϵcµc, (4)

where αc is the in-plane propagation constant, β is the propagation constant
along the cylinder, k = ω/c is the free space wavenumber, and ϵc and µc

are the permittivity and permeability of the cylinder. However, these search
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variables encountered numerical problems, for example at long wavelengths,
where the roots scale as 1/k2. We revise the method to use either (αca)

2 or
(βa)2 as the search variable. This ensures that the attraction basins exhibit
greater invariance with respect to changes in a. In addition, we search for
(αca)

2 rather than αca, for example, since the latter would result in a du-
plication of the complex search space. For the implementation of argument
principle method, we provide the explicit expressions of the derivatives of
fiber dispersion relation for the updated search variables in Appendix A.
Additionally, we also provide the expressions of the field profiles of β and ϵ
fiber modes and their normalization constants in Appendix B.

3. Implementation of the algorithm to other geometries

3.1. Slab Waveguide

We now turn to extending the algorithm to a planar step-index slab
waveguide which consists of three layers, a guiding layer, surrounded by
a cover and a substrate as shown in Fig. 3. We denote the permittivities
and permeabilities of these layers as ϵf and µf , ϵc and µc, and ϵs and µs,
respectively. The guiding layer is infinite in the y-z plane and finite along
the x-axis, with thickness a.

Film

Substrate

Cover ϵc , μc

ϵf , μf

ϵs , μs

0

−a

x

z

Figure 3: Schematic of slab waveguide geometry shown in x − z plane, with y-axis
pointing out of the paper.

In slab waveguides, both transverse electric (TE) and transverse mag-
netic (TM) modes are supported. We treat these in turn. First, the disper-
sion relation of TE modes is [2]

α2
f − γcγs

αf
tan(αfa)− γc − γs = 0. (5)

Here, the parameter αf is the propagation constant along the x-direction
in the guiding layer, while γc and γs are attenuation constants along the
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x-direction in the cover and substrate layers,

α2
f = k2ϵfµf − β2, γ2c = β2 − k2ϵcµc, γ2s = β2 − k2ϵsµs (6)

where k is the wavenumber in free-space and β is the in-plane propagation
constant along z-direction. In this dispersion relation, we can set either
(βa)2, or ϵf as the eigenvalue or search variable.

Similarly, the dispersion relation for TM modes is

α2
f ϵcϵs − ϵ2fγcγs

αf ϵf
tan(αfa)− ϵcγs − ϵsγc = 0. (7)

The forms (5) and (7) are traditionally used to describe bound (i.e.,
below the light line) waveguide (β) modes, yet, they are also suitable to
describe radiative modes (i.e., above the light line). In this case, it is im-
portant to note that the radiative nature (i.e., γc/s being complex) is ac-
companied by leakage (i.e., a non-zero imaginary part of β), which reflects
the non-Hermitian nature of the problem. This description contrasts the
potentially more standard Hermitian description of the radiative modes as a
continuum [29, 30] for which there is no leakage (real β eigenvalues); this de-
scription involves a slightly more complicated spatial field profile (compared
to Eqs. (C.1) and (C.5) in Appendix C), i.e., a profile that includes also in-
coming waves in the cover/substrate. However, this continuous description
requires, naturally, a more complicated mathematical treatment.

For β modes, the presence of branch-cuts in dispersion relation greatly
effects the choice of sign (±) before the square root functions of cover and
substrate attenuation constants. The choice of the Riemann sheet for guided
and radiative modes is decided based upon following conditions.Specifically,
the attenuation constants of bound modes should have

Re(γc,s) > 0, Im(γc,s) > 0, (8)

so that they decay in the cover/substrate, whereas for radiative modes,

Re(γc,s) < 0, Im(γc,s) < 0, (9)

such that the mode grows exponentially in the cover/substrate. The con-
ditions (8) and (9) can be attained by repositioning the branch-cut to be
along positive imaginary axis.

We obtain the derivatives to dispersion relations (5) and (7) in Ap-
pendix D, which are needed for the argument principle method. Next, we
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demonstrate the numerical example of our algorithm for the slab waveguide
for both cases of eigenvalue: (βa)2 and ϵf .

We demonstrate the numerical example of the algorithm for (βa)2 as an
eigenvalue for a symmetrical slab waveguide with guiding layer permittivity
of ϵf = 12 + i, and vacuum cover and substrate layers. We show dispersion
characteristics (β vs k = ω/c) of TE and TM modes of this slab waveguide
in Fig. 4, with Re(β) along the horizontal axis and Im(β) in color. The
light lines of the substrate (and cover), k = β, and the guiding layer, β =√
Re(ϵf )k, are shown as grey lines in the plots. In general, mode profile

become bound or radiative based on the condition whether Re(β2) is greater
than or less than k2 (see Eq. (6)). Due to complex values of β2, we cannot
obtain a distinctive condition for the bound and radiative modes purely in
terms of Re(β). Thus, in the dispersion plot 4 we only show guided modes
which satisfies Re(β) > k and radiative modes with Re(β) < k.

Figure 4: Dispersion relations of modes of the symmetric slab waveguide, produced by
our algorithm with complex (βa)2 as the search variable, with Im(β) represented by color.
Plot (a) is of TE modes and plot (b) shows TM modes for a guiding layer of ϵf = 12 + i
and vacuum background. The guiding layer thickness a is normalized to 1. The gray
line on the left of each figure indicates the light line of vacuum, while the other gray line
corresponds to β =

√
12k. The modes between the two light lines are guided modes, i.e.,

their fields are evanescent in the background (i.e., in the cover and substrate layers). The
modes above the first light line are radiative modes, their fields grow exponentially in the
background.

Next, we consider (αfa)
2 search variable case. Here, the propagation

constant β is the independent variable and ϵf of the slab is the dependent
variable; the field profiles are defined in Appendix C. We show the dispersion
characteristics for this case in Fig. 5. Here, the light lines are vertical since
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the wavenumber k is fixed. The bound modes exist to the right of the light
line and always have real ϵf , while the radiative modes exists to the left of
the light line and have complex ϵf .

Figure 5: Dispersion relations of eigenpermittivity modes of symmetrical slab waveguide
determined using (αfa)

2 search variable. The results are shown in terms of ϵf of slab,
with Im(ϵf ) indicated by color. Plot (a) is of TE modes and plot (b) shows TM modes
for a wave-number k = 2, slab thickness a is normalized to 1, and vacuum background.
The vertical gray line indicates the light line of vacuum, and the bound modes with only
real ϵf exists to the right of the light line, while radiative modes with complex ϵf exists
to the left of the light line.

3.2. Spherical scatterers

We treat the secular equation for the modes of a sphere. The relevant
parameters are the radius a, free-space wavenumber k, background permit-
tivity ϵb, and sphere permittivity ϵs. There are two types of modes: TE,
where the component of the electric field along the radial direction is zero,
and TM, where the radial magnetic field is zero. Each of these modes are
generated by separate equations. For TE, we have [6]

αsaj
′
m(αsa)

jm(αsa)
=

αbah
′
m(αba)

hm(αba)
, (10)

where jm(z) and hm(z) ≡ h
(1)
m (z) are the spherical Bessel and Hankel func-

tions of the first kind of order m, and the prime denotes differentiation
with respect to the entire argument. Propagation constants α are related to
material parameters by

α =
√
ϵk, (11)
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attaching subscripts s and b to α and ϵ as appropriate. Equivalently, the
secular equation for the TM modes are given by

1

(αsa)2

(
1 +

αsaj
′
m(αsa)

jm(αsa)

)
=

1

(αba)2

(
1 +

αbah
′
m(αba)

hm(αba)

)
. (12)

Once again, to apply the argument principle method, we require the de-
rivatives of (10) and (12). Because of their similarity to the fiber dispersion
relation (A.1) and because derivatives spherical and cylindrical Bessel func-
tions obey the same identities, we omit the detailed derivations, and refer
the reader to the derivations of Appendix A. As for the geometries stud-
ied above the algorithm can be applied for either frequency or permittivity
modes.

4. Outlook

We have described various improvements and extensions of our argu-
ment principle root-search applied to various generic optical structures. We
specifically demonstrated propagation constant (β) and permittivity modes,
but our algorithm can also be applied to frequency modes [31] (aka resonant
states [32]). In addition to the usefulness of the algorithms detailed above
per se, they also provide a convenient starting point for perturbation tech-
niques (in the context of resonant state expansions [32] or re-expansion [16–
18]). They can also be extended to simple geometries with more sophistic-
ated physics, such as for systems with anisotropic, nonlocal or non-reciprocal
response. Finally, our algorithm can also be applied for the computation of
electron wavefunctions in arbitrary potential in atomic calculations [28]. All
these potential directions would be explored in future research.
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Appendix A. Derivatives of the Fiber Dispersion Relation

We update the derivatives used by the argument principle and Newton’s
methods. We evaluate these explicitly for both (αca)

2 and (βa)2 search
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variables. We consider the transcendental equation for the step-index fiber
dispersion relation,(

µc

αca

J ′
m(αca)

Jm(αca)
− µb

αba

H ′
m(αba)

Hm(αba)

)(
ϵc
αca

J ′
m(αca)

Jm(αca)
− ϵb

αba

H ′
m(αba)

Hm(αba)

)
−
(
mβ

k

)2( 1

(αca)2
− 1

(αba)2

)2

= 0,

(A.1)

which we simplify by introducing the symbols

RJ
m =

J ′
m(αca)

αcaJm(αca)
, RH

m =
H ′

m(αba)

αbaHm(αba)
. (A.2)

Thus, the dispersion relation can be rewritten as

(µcR
J
m − µbR

H
m)(ϵcR

J
m − ϵbR

H
m)−

(
mβ

k

)2( 1

(αca)2
− 1

(αba)2

)2

= 0. (A.3)

The bulk of the calculation involves the derivative

∂

∂(αca)2
RJ

m = − 1

2(αca)2

[
1 + 2RJ

m − Jm+1(αca)Jm−1(αca)

J2
m(αca)

]
(A.4)

The defining Bessel differential equation was used in the second equal-
ity. Since the Hankel function obeys the same identities, the derivative
∂RH

m/∂(αba)
2 is obtained by the substitution αc → αb, RJ

m → RH
m and

Jm(αca) → Hm(αba) in (A.4).
We also have

∂ϵc
∂(αca)2

=
1

(ka)2µc
, (A.5)

since
α2
c + β2 = k2µcϵc. (A.6)

First consider the derivative of (A.3) with respect to ϵc. In order to
use (A.4), the chain rule is applied to derive

µc
∂RJ

m

∂(αca)2
[ϵcR

J
m − ϵbR

H
m] + [µcR

J
m − µbR

H
m]

[
∂ϵc

∂(αca)2
RJ

m + ϵc
∂RJ

m

∂(αca)2

]
+

2m2β2

(αca)4k2

(
1

(αca)2
− 1

(αba)2

)
,

(A.7)
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Now consider the derivative with respect to (βa)2, giving[
µb

∂RH
m

∂(αba)2
− µc

∂RJ
m

∂(αca)2

]
[ϵcR

J
m − ϵbR

H
m] + [µcR

J
m − µbR

H
m]

[
ϵb

∂RH
m

∂(αba)2
− ϵc

∂RJ
m

∂(αca)2

]
−
(m
ka

)2( 1

(αca)2
− 1

(αba)2

)2 [
1 + 2(βa)2

(
1

(αca)2
+

1

(αba)2

)]
,

(A.8)
where we have exploited the fact that

∂(αc,b a)
2

∂(βa)2
= −1. (A.9)

Appendix B. Fiber mode fields

In this section, we define the explicit expressions of eigenmode fields of
step-index fiber in cylindrical coordinate system.

Appendix B.1. Eigenpermittivity modes

The eigenpermittivity mode fields have the following form

Ez,n = Ane
imθeiβnz


Jm(αc,nr)

Jm(αc,na)
for r ≤ a,

Hm(αbr)

Hm(αba)
for r > a,

(B.1)

Hz,n = AnH0e
imθeiβz


Jm(αc,nr)

Jm(αc,na)
for r ≤ a,

Hm(αbr)

Hm(αba)
for r > a,

(B.2)

where

H0 =

(
1

(αc,na)2
− 1

(αba)2

)
mβ

k

[
J ′
m(αc,na)

αcaJm(αc,na)
− H ′

m(αba)

αbaHm(αba)

] . (B.3)

Here, the index n represents the nth eigenpermittivity mode, and the amp-
litude An is the normalization constant of the nth mode, given by

An =
Jm(αca)√∫ a

0 [(c1 + c2) Jm−1(αcr)dr + (c1− c2) Jm−1(αcr) + Jm(αcr)] dr
,

(B.4)
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where

c1 =
β2 − k2µ2H2

0

2α2
c

, c2 =
iβkµH0

2α2
c

. (B.5)

Appendix B.2. β mode field

The β mode fields have the following form

Ez,n = Ane
imθeiβnz


Jm(αc,nr)

Jm(αc,na)
for r ≤ a,

Hm(αb,nr)

Hm(αb,na)
for r > a,

(B.6)

Hz,n = AnH0e
imθeiβnz


Jm(αc,nr)

Jm(αc,na)
for r ≤ a,

Hm(αb,nr)

Hm(αb,na)
for r > a,

(B.7)

where

H0 =

(
1

(αc,na)2
− 1

(αb,na)2

)
mβn

k

[
J ′
m(αc,na)

αcaJm(αc,na)
−

H ′
m(αb,na)

αb,naHm(αb,na)

] . (B.8)

Here, the index n represents the nth eigenvalue of β, and the amplitude An

is the normalization constant of the nth mode computed as in [33].

Appendix C. Slab waveguide Modal fields

Appendix C.1. β mode fields:

In this subsection, we define the explicit expressions of β mode fields of
the slab waveguide and its normalization factor. For TE modes, the electric
field is transverse to the plane of incidence (x-z plane); thus, its mode profile
is expressed by the y-component of the electric field, i.e.,

Ey,n(x, z) = ATE
n en(x) e

iβnz, (C.1)

where

en(x) =


cos(ϕTE

n ) e−γcx, for x ≥ 0,

cos
(
αf,nx+ ϕTE

n

)
, for − a ≤ x ≤ 0,

cos
(
αf,na− ϕTE

n

)
eγs(x+a), for x ≤ −a,

(C.2)

14



and

ϕTE
n = tan−1

[
γc,n
αf,n

]
. (C.3)

Here, the index n represents the nth eigenvalue of β, and the amplitude ATE
n

is the normalization constant of the nth mode, given by

ATE
n =

√√√√ 1
1

2γc
[en(0)]

2 +
1

2γS
[en(−a)]2 +

∫
0

−a
[en(x)]

2 dx
. (C.4)

For TM modes, we define by the y-component of the magnetic field

Hy,n(x, z) = ATM
n hn(x) e

iβnz, (C.5)

where

hn(x) =


cos(ϕTM

n ) e−γcx, for x ≥ 0,

cos
(
αf,nx+ ϕTM

n

)
, for − a ≤ x ≤ 0,

cos
(
αf,na− ϕTM

n

)
eγs(x+a), for x ≤ −a,

(C.6)

and

ϕTM
n = tan−1

[
ϵf γc,n
ϵc αf,n

]
. (C.7)

The normalization factor ATM
n is given by

ATM
n =

√√√√√√
2k20

c1 [hn(0)]
2 + c2 [hn(−a)]2 +

2

ϵ2f

∫
0

−a

[
β2
n [hn(x)]

2 + [h′
n(x)]

2
]
dx

,

(C.8)
where

c1 =

(
β2
n + γ2c,n
ϵ2c γc,n

)
, c2 =

(
β2
n + γ2s,n
ϵ2s γs,n

)
. (C.9)

Appendix C.2. Eigenpermittivity modes

Now, we will look into field profile and normalization factor of eigen-
permittivity modes. For TE modes, the mode profile is expressed by the
y-component of the electric field, i.e.,

Ey,n(x, z) = ATE
n eiβz


cos(ϕTE

n ) e−γcx, for x ≥ 0, (cover)

cos
(
αf,nx+ ϕTE

n

)
, for − a ≤ x ≤ 0, (film)

cos
(
αf,na− ϕTE

n

)
eγs(x+a), for x ≤ −a, (substrate)

(C.10)
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where the index n represents the nth eigenpermittivity mode, and the amp-
litude ATE

n is the normalization constant of the nth mode, given by

ATE
n =

√
2αf,n

αf,na+ sin (αf,na) cos (αf,na− 2ϕTE
n )

. (C.11)

Here,

ϕTE
n = tan−1

[
γc
αf,n

]
. (C.12)

For TM modes, we define by the y-component of the magnetic field

Hy,n(x, z) = ATM
n eiβz


cos(ϕTM

n ) e−γcx, for x ≥ 0,

cos
(
αf,nx+ ϕTM

n

)
, for − a ≤ x ≤ 0,

cos
(
αf,na− ϕTM

n

)
eγs(x+a), for x ≤ −a,

(C.13)
where

ϕTM
n = tan−1

[
ϵf,n γc
ϵc αf,n

]
, (C.14)

and

ATM
n =

√√√√√√
2k2ϵ2f,n[

β2 + α2
f,n

]
a+

(
β2 − α2

f,n

αf,n

)
sin [αf,na] cos [αf,na− 2ϕTM

n ]

.

(C.15)

Appendix D. Derivatives of the Slab Dispersion Relation

In this section, we obtain the derivatives of the slab waveguide dispersion
equation required in implementation of the argument principle method for
types of search variables: (αfa)

2 and (βa)2.

Appendix D.1. TE modes

For notational simplicity, we introduce a new symbol for the TE disper-
sion equation (5),

RTE =
(αfa)

2 − (γca)(γsa)

αfa
. (D.1)

Thus, (5) can be rewritten as

RTE tan(αfa)− γca− γsa = 0. (D.2)
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The bulk of the calculation involves the derivatives of RTE

∂RTE

∂(αfa)2
=

(αfa)
2 + (γca)(γsa)

2(αfa)3
,

∂RTE

∂(γca)2
= − γsa

2(αfa)γca
,

∂RTE

∂(γsa)2
= − γca

2(αfa)γsa
.

(D.3)

We also know
∂ϵf

∂(αfa)2
=

1

(ka)2µf
, (D.4)

since
(αfa)

2 + β2 = k2µf ϵf . (D.5)

By using the chain rule, we can obtain the derivative of the dispersion equa-
tion (D.2) with respect to (αfa)

2 as(
∂RTE

∂(αfa)2
tan(αfa) +

RTE

2αfa
sec2(αfa)

)
= 0. (D.6)

Next, we consider the derivative of (D.2) with respect to (βa)2(
− ∂RTE

∂(αfa)2
+

∂RTE

∂(γca)2
+

∂RTE

∂(γsa)2

)
tan(αfa)−

RTE

2αfa
sec2(αfa)−

1

2γca
− 1

2γsa
= 0,

(D.7)
where we exploited the fact that

∂(αfa)
2

∂(βa)2
= −1,

∂(γc,sa)
2

∂(βa)2
= 1. (D.8)

Appendix D.2. TM modes

For simplification, we introduce a symbol for the TM dispersion rela-
tion (7),

RTM =
(αfa)

2ϵcϵs − ϵ2f (γca)(γsa)

(αfa)ϵf
. (D.9)

Thus, (7) can be rewritten as

RTM tan(αfa)− ϵcγs − ϵsγc = 0. (D.10)

The derivatives of RTM is given by

∂RTM

∂(αfa)2
=

1

(αfa)ϵf

[
ϵcϵs − (γca)(γsa)

∂ϵ2f
∂(αfa)2

]
− RTM

2(αfa)2
− RTM

ϵf

∂ϵf
∂(αfa)2

,

∂RTM

∂(γca)2
= −

ϵf (γsa)

2(αfa)γca
,

∂RTM

∂(γsa)2
= −

ϵf (γca)

2(αfa)γsa
.

(D.11)
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We also know that

∂ϵf
∂(αfa)2

=
1

(ka)2µf
,

∂ϵ2f
∂(αfa)2

=
2ϵf

(ka)2µf
, (D.12)

from the definition
α2
f + β2 = k2µf ϵf . (D.13)

Now we can show that the derivative of the TM dispersion equation (D.10)
with respect to (αfa)

2 as(
∂RTM

∂(αfa)2
tan(αfa) +

RTM

2αfa
sec2(αfa)

)
= 0. (D.14)

Similarly, the derivative of (D.10) with respect to (βa)2 is derived as(
− ∂RTM

∂(αfa)2
+

∂RTM

∂(γca)2
+

∂RTM

∂(γsa)2

)
tan(αfa)−

RTE

2αfa
sec2(αfa)−

ϵc
2γsa

− ϵs
2γsa

= 0,

(D.15)
where we used the fact that

∂(αfa)
2

∂(βa)2
= −1,

∂(γc,sa)
2

∂(βa)2
= 1. (D.16)
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