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We describe and demonstrate the extension of permittivity mode expansion, which is also know as generalized
normal mode expansion (GENOME), to open and lossy periodic structures. The resulting expansion gives a com-
plete spatial characterization of any open periodic structure, via the quasi-periodic Green’s tensor, by a complete,
discrete set of modes rather than a continuum. The method has been validated by comparing our expansion of an
open waveguide array with a direct scattering calculation. Good agreement was obtained regardless of the source
location or detuning from resonance. © 2022 Optica Publishing Group
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1. INTRODUCTION

Periodic nanophotonic structures such as photonic crystal
fibers [1,2], photonic crystal waveguides [3–5] and hole arrays
[6] enable the generation, control and manipulation of the
propagation of light [7–9], making them attractive for various
electro-optic applications like the inhibition of spontaneous
emission for thresholdless lasing [10], slow light propagation
[3,11], enhancing nonlinear effects [12,13], and optical switch-
ing [14,15]. Optimal design of such nanophotonic structures
requires characterization of the complete spatial distribution
of local electric fields. In particular, many quantum-optical
applications require knowledge of the field distribution and the
associated photonic density of states (DOS) [16] in the presence
of (single) quantum emitters, which can be obtained directly

from Green’s tensor ¯̄G .
Unfortunately, the characterization of Green’s tensor for any

nontrivial geometry requires repeated simulation for every dif-
ferent source position and orientation. An efficient way to treat
all these cases simultaneously is to use modal expansion meth-
ods since these provide the Green’s tensor everywhere in space
from a single simulation. In modal expansions, we represent
the electromagnetic fields and the Green’s tensor as a weighted
sum of eigenfunctions of the nanophotonic structure; in many
cases, this also has the computational advantage of requiring
the use of only a few eigenmodes, a description which may also
provide useful physical insights. Modal expansion formalisms
are well investigated for lossless and closed periodic structures
using eigenfrequency modes. These eigenfrequency modes are
stationary states and have real frequencies; it is a manifestation
of the closed Hermitian system, which also means these modes
form a complete, discrete, and orthogonal basis set.

However, when the structure involves absorbing materials
or allows radiation leakage to the far field (i.e., open struc-
tures in which the modes couple to free space), the eigenvalue
must be complex to represent the lack of energy conservation.
Complex eigenfrequency modes are also known as quasi-normal
modes (QNMs) [17] or resonant states [18]. Unfortunately,
the use of QNMs for open structures creates new problems
due to their exponentially diverging far-field behavior, which
requires nontrivial normalization schemes and the inclusion
of the continuum of background modes to reproduce the
physically correct solution in the background medium [17–
20]. The details of the calculation and implementation of the
QNMs/resonant states, together with a discussion of the various
solutions to their limitations (e.g., due to the complexity of
numerical implementation or incompleteness of the QNM
expansion [21]) are described in [19,22].

QNMs have been successfully employed for various periodic
structures [19,23–26]. Many of those used plane wave expan-
sion to calculate the quasi-normal Bloch modes (QNBMs),
where the open sides of the structure were treated with different
boundary conditions [19,20]; others found the modes via the
poles of the scattering matrix [25] and via perturbation meth-
ods [27]. The latter studies required additional discretization
schemes for the continuum of background modes; the standard
numerical approach is to use the perfectly matched layer (PML)
as the boundary condition in the open directions. However, the
resulting nonphysical PML modes require a complicated sorting
procedure [19,28]. Furthermore, if the periodic structure has
dispersive materials, the associated eigenvalue equation becomes
nonlinear. Algorithms for nonlinear eigenvalue problems tend
to require more human intervention and are less reliable.
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In addition, the eigenmodes of dispersive media are linearly
dependent [17,29], thus requiring a more elaborate basis expan-
sion procedure [17,30]. An alternative way to treat material
dispersion is to use auxiliary fields [31], which linearizes the
eigenvalue problem for materials whose permittivity is well-
described by a sum of Lorentzian responses. However, this
necessitates solving a larger number of differential equations.

One way to circumvent all the difficulties associated with
complex frequency modes is by using eigenpermittivity modes
as the basis for modal expansion [21,32,33]. In this approach,
the radiative nature of the open structure is compensated by
gain via the imaginary part of the eigenpermittivity, yielding
modes that are stationary states without field divergences in the
background. Furthermore, the eigenpermittivity modes always
satisfy the bi-orthogonality property, making them a complete
and discrete orthogonal basis set. Even for dispersive materials,
these eigenmodes are still generated by a linear eigenvalue equa-
tion, thus keeping the computation of Green’s tensor simple
and straightforward.

Previous studies of eigenpermittivity modes have treated
isolated open resonators [32,34–39]. Modal expansion for
Green’s tensor via eigenpermittivity modes, known as the
generalized normal mode expansion (GENOME), was demon-
strated in [21] along with a numerical solver for permittivity
modes implemented using commercially available software.
The formalism of permittivity modes was further extended to
clusters of open resonators through hybridization [32,33,40,41]
and its implementation for nontrivially shaped nanoparticle
clusters was described in [42]. Hybridization was also used to
generate the modes of periodic arrays of particles; this approach
was proceeded by computing lattice sums over an infinite array
[32]. Unfortunately, such approaches can be applied only to
isolated scatterers, and not to waveguide-like structures such as
in Fig. 1. A different approach applicable to any periodic array
was proposed in [43]; it focused on determining the effective
index of an array of spherical resonators by solving the equations
for the Fourier components originating from the integral form
of the eigenvalue equation in the electrostatic limit.

In this paper, we propose a more general formalism to com-
pute the electrodynamic Green’s tensor of any open and lossy
periodic structure using eigenpermittivity modes (i.e., avoiding

Fig. 1. Example of an open periodic ridge waveguide structure in
2D space, which is periodic along the x direction and is open along
the y direction. The structure is excited by a periodic array of phased
point dipole sources in each unit cell whose positions are indicated by
r ′ + R(p). The unit cell of the waveguide is defined by the step func-
tion θ (p)(r ′), which is unity inside the interior of the p th index unit cell
and zero elsewhere. The p = 0 unit cell is known as the Weigner–Seitz
cell (WSC) [44].

the electrostatic approximation). This formalism provides a
robust and accurate solution, which is exact up to truncation.

The paper has three additional sections. In Section 2, we
develop the GENOME formalism for open and lossy periodic
structures, obtaining the quasi-periodic Green’s tensor. In
Section 3, we demonstrate its numerical implementation for
a periodic waveguide array [45] along with a comprehensive
comparison of GENOME against a direct excitation solution
based on COMSOL Multiphysics. Section 4 summarizes the
work and discusses potential next steps.

2. FORMULATION

In this section, we adapt the derivation of the GNOME of
[21] to periodic systems. We begin with the vector Helmholtz
equation,

∇ × (∇ × E (r))− k2ε(r )E = iωµ0 J (r), (1)

where we assumed a harmonic e−iωt time variation and non-
magnetic media. Here, E is the electric field vector, k =ω/c is
the vacuum wavenumber (ω being the photon frequency and c
being the speed of light in vacuum), J represents an externally
imposed source, and ε(r) is the permittivity profile. For simplic-
ity, we assume that the structure consists of only two constituent
materials: an interior with permittivity εi and a background
with εb . However, it is relatively easy to generalize the formu-
lation to account, for example, for a substrate and a superstrate
(host) of different permittivities [16]. The assumption permits
the manipulation of Eq. (1) to yield

∇ × (∇ × E )− k2εb E = iωµ0 J + k2(ε(r)− εb)E . (2)

Since the operator on the left-hand side (LHS) of Eq. (2) is
no longer a function of r, Eq. (2) can, in principle, be solved by
superposing the “source” terms on the right-hand side with the

appropriate Green’s tensor of uniform space ¯̄G0 [46], which
results in the Lippmann–Schwinger equation,

E (r)= E 0(r)+ k2
∫
¯̄G0(r − r ′;ω)(ε(r ′)− εb)E (r ′)d r ′,

(3)
where E 0(r) represents the known field of the external sources
in a uniform background; namely,

E 0(r)= iωµ0

∫
¯̄G0(r − r ′;ω) J (r ′)dr ′. (4)

Then, one could, in principle, follow the GENOME pro-
cedure to solve the Lippmann–Schwinger equation as in
[21]. However, we now depart from previous derivations to
incorporate Floquet–Bloch periodic conditions.

Specifically, we now consider an open periodic structure,
with periodicity in at least one dimension and open boundary
conditions in at least another. Optionally, the structure can also
have continuous translational symmetry along a third dimen-
sion. The example shown in Fig. 1 has all three types of the above
boundary conditions. As an aside, the formalism below can also
be applied to structures with only periodic and translationally
invariant conditions.
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The periodicity in the structure is represented by the permit-
tivity profile as ε(r)= ε(r + R(p)), where

R(p)
=

d3∑
i=1

ni ai , (5)

is a translational lattice vector and ai are the primitive lattice
vectors, d3 is the number of periodic dimensions and p indexes
the unit cells, represented by a single integer (n1) for d3 = 1
and a pair of integers (n1, n2) for d3 = 2. We can represent the
external source J (r) as a coherent superposition of sources in
each unit cell. This enables us to treat the coherent excitation
of all unit cells, such as plane wave illumination, or a coherent
excitation of near-field sources, as in a nonlinear wave mixing
problem. This coherent excitation relates the sources in each
unit cell via Floquet–Bloch (FB) periodicity; i.e.,

J K (r + R(p))= J K (r)e i K ·R(p) , (6)

where K represents the phase delay between adjacent unit cells,
also commonly known as the Bloch vector. This FB periodicity
allows the simulation domain to be reduced to a single unit cell.
The fields also obey FB conditions,

E K (r + R(p))= E K (r)e i K ·R(p) . (7)

Then, we can define the quasi-periodic Green’s tensor of
uniform space as the solution of

∇ × (∇ × ¯̄G0,K )− k2εb
¯̄G0,K

=
¯̄I
∞∑

p=−∞

δ3(r − r ′ − R(p))e i K ·R(p) , (8)

where ¯̄I is the identity tensor. Here, ¯̄G0,K obeys the same
boundary conditions obeyed by E K ,

¯̄G0,K (r + R(p), r ′;ω)= ¯̄G0,K (r, r ′;ω)e i K ·R(p) , (9)

Or, in terms of the source position,

¯̄G0,K (r, r ′ + R(p)
;ω)= ¯̄G0,K (r, r ′;ω)e−i K ·R(p) . (10)

Using the quasi-periodic Green’s tensor, we can
write the solution of Eq. (3) for a periodic structure as a
Lippmann–Schwinger equation:

E K (r)= E 0,K (r)+ k2(εi − εb)

×

∫
WSC

¯̄G0,K (r, r ′;ω)θ (p=0)(r ′)E K (r ′)d r ′,

(11)

where

ε(r ′)− εb = (εi − εb)θ
(p)(r ′),

and θ (p)(r ′) is a step function that is unity inside the interior of
the p th unit cell and zero elsewhere. For convenience, we have
chosen to consider the p = 0 unit cell. Here, the field E 0,K (r)

produced by external sources in a uniform background is also
computed from the central unit cell. It is given by

E 0,K (r)= iωµ0

∫
WSC

¯̄G0,K (r, r ′;ω) J K (r ′)dr ′, (12)

where WSC represents integration over the Weigner–Seitz unit
cell. The next step is to define the eigenpermittivity modes and
determine the modal expansion solution of the Lippmann–
Schwinger equation [Eq. (11)]. We define the eigenvalue
equation for the eigenpermittivity modes εK,m of the peri-
odic structure in Appendix A, and derive the modal expansion
solution,

E K = E 0,K +
i
ωε0

∑
m

E K,m
εi − εb

(εK,m − εi )(εK,m − εb)

×

∫
WSC

E †
K,m · J K dr, (13)

which expresses the total field E K , as a combination of E 0,K
from Eq. (12) and a sum over the eigenmodes of the structure.
The contribution of each eigenmode is weighted by the “detun-
ing” of the corresponding eigenvalue εK,m from the actual
permittivity, εi , and by the overlap integral

∫
WSC E †

K,m · J K dr,
which represents the interaction between the source and each
eigenmode. The explicit form of the adjoint field E †

K (r) is
discussed in Appendix B. Next, we obtain the desired normal
mode expansion of the quasi-periodic Green’s tensor:

¯̄G K (r, r ′;ω)= ¯̄G0,K (r, r ′;ω)+
1

k2

∑
m

εi − εb

(εK,m − εi )(εK,m − εb)

× E K,m(r)⊗ E †
K,m(r

′),

(14)

where ¯̄G0,K (r, r ′;ω) is the quasi-periodic Green’s tensor of the
uniform background [Eq. (8)].

The expansion solution will be valid everywhere in space,
even though the eigenmodes form a complete set only in the
interior of the inclusion. This follows from the property of the
Lippmann–Schwinger equation; i.e., representation of the total
field in terms of the field inside the inclusion geometry.

3. NUMERICAL EXAMPLE

In this section, we demonstrate the GENOME formalism
derived on the example of a periodic ridge waveguide in 2D
space. Its unit cell is shown in Fig. 2. This structure is periodic in
the x direction, is open in the y direction, and has continuous-
translational invariance in the z direction. In this 2D geometry,
the point–dipole source is of infinitesimal extent in-plane
(x − y ), but is infinite in the z direction.

The first step is to compute the eigenpermittivity modes by
the COMSOL Multiphysics eigensolver using the substitution
trick described in [21]. In this simulation, we apply the FB
periodicity (with Bloch wavenumber K ) in the x direction. The
simulation domain in the y direction is enclosed by perfectly
matched layers to avoid unwanted reflections. Once these eigen-
modes are found, they are normalized according to Eq. (A9) in
Appendix A within the inclusion interior.
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Fig. 2. Simulated geometry, a ridge waveguide with periodicity
along the horizontal direction, and the lattice constant L = 900
nm. The edges of the ridge are rounded with a radius of curvature
of 70 nm. The open sides of the structure (i.e., in the y direction)
are enclosed by perfectly matched layers (PML). The structure is
excited by an in-plane, point–dipole source (that extends into the
out-of-plane dimension), whose position is indicated by the dot on the
double-headed arrow, and whose orientation is parallel to the arrow.
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Fig. 3. Electric field profiles of different sets of eigenpermittivity
modes for K L = 0.09, λ= 700 nm, and β = 0 rad/m. All plots
show |E x |, superimposed with the outline of the waveguide geom-
etry. The first row shows plasmonic modes with eigenpermittivities
of (a) εm =−1.23−0.0003i , (b) εm =−1.65−0.0086i , (c) εm =

−1.21−0.1188i , and (d) εm =−6.26−2.2535i . The second row
shows dielectric modes with eigenpermittivity values of (e) εm =

3.752−2.0686i , (f ) εm = 3.752−2.0686i , (g) εm = 7.512−0.1070i ,
and (h) εm = 12.8914−2.2608i .

In Fig. 3, we present the field profile of a few eigenpermit-
tivity modes for K L = 0.09 and the out-of-plane (z direction)
propagation constant ofβ = 0 rad/m. Following [32,34,38], we
categorize these modes as either plasmonic or dielectric, depend-
ing on the sign of the real part of eigenpermittivity. The first
row displays the plasmonic modes (with eigenpermittivities of
Re[εm]< 0) and the second row displays dielectric modes (with
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Fig. 4. Validation of GENOME against a direct scattering sim-
ulation for a waveguide of permittivity εi = 4.7, with background
permittivity εb = 1, excited by an x polarized dipole source placed as
shown in Fig. 2 with λ= 700 nm and K L = 0.09. The first row shows
the results of GENOME computed from Eq. (14) and the second
row shows the results of direct simulation using COMSOL. Each
column shows a different component of Green’s tensor corresponding
to (a) Re (G xx), (b) Re (G yx), (c) Im (G xx), and (d) Im (G yx). We have
superimposed an outline of the inclusion geometry.

Re[εm]> 0). Figures 3(d), 3(e), and 3(h) show bright modes;
namely, a relatively high amplitude in the background medium
compared to the others; this radiative feature is associated with a
large value of Im[εm].

Next, we compute the GENOME solution (14) by
projecting the eigenpermittivity modes onto the source,
and adding the free-space quasi-periodic Green’s tensor,
¯̄G0,K (r, r ′, ω), for which a rapidly converging solution is

derived in Appendix C. To validate the GENOME solution,
we compare it to a direct scattering simulation produced by
COMSOL MULTIPHYSICS for a given source position,
polarization, and Bloch vector. Figure 4 compares the field
profiles for the inclusion permittivity εi = 4.7, K L = 0.09,
and out-of plane propagation constant, β = 0 rad/m. We see
that GENOME obtains a qualitative agreement with the direct
COMSOL simulation for both the real and imaginary parts of
the Green’s tensor. A similar comparison is shown in Fig. 5 for a
different value of inclusion permittivity, εi =−6+ 2i , but with
the same excitation conditions.

To obtain a quantitative measure of the agreement, we com-
pute the spatially resolved relative difference between the two
approaches, which is shown in Fig. 6. We use

1Re(Gxx)= 10 log10

∣∣∣∣Re

(
Gxx − G x x ,COMSOL

max(G x x ,COMSOL)

)∣∣∣∣ , (15)

which is defined, for example, on the real part of the Green’s ten-
sor component Gxx. The first row corresponds to the dielectric
inclusion geometry (εi = 4.7), where the relative difference
shows that GENOME has achieved good accuracy. However,
the agreement of the real parts of Green’s tensor is worse near
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the source; the error originates from the inability of the direct
COMSOL simulation to reproduce the diverging field at
the source origin. Additionally, there is limited agreement at
the inclusion boundary, which happens because of the dif-
ficulty to sufficiently find many plasmonic modes using the
eigensolver because of the strong field confinement at the metal–
dielectric interface. This inaccuracy is more pronounced for the
plasmonic inclusion case, as shown in the second row of Fig. 6.
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Fig. 7. L2 norm of the relative difference between imaginary parts
of field profiles of GENOME and direct COMSOL direct simulation
for (a) εi = 4.7 and (b) εi =−6+ 2i .

To determine the convergence of GENOME over the entire
simulation domain for all Green’s tensor components, we use
the L2 norm metric on the relative difference between the two
solutions. Since the real part of Green’s tensor has unavoidable
inaccuracies, we only show the norm of the imaginary part of
Green’s tensor. Figure 7 shows the L2 norm as a function of
the number of modes. From these plots, we observe that the
agreement between the two methods improves with the number
of modes. This convergence behavior provides evidence for
the completeness of the eigenmode set. The observed conver-
gence level is, however, limited to ∼− 20dB, which is similar
to the convergence previously achieved with COMSOL using
numerical modes [21,42]. We mention that the convergence of
QNM-based numerical methods is provided in [47]. However,
that was determined only at a specific position (i.e., the scatterer
origin), whereas we perform an L2 norm over the entire simula-
tion domain. As before, we conjecture that the limited accuracy
stems from the inability to find all modes with the COMSOL
eigensolver. Indeed, far better convergence was obtained when
the modes were calculated analytically [21,48,49]. The bulk
of the computational time of this GENOME simulation is
dedicated to finding the eigenmodes.

4. SUMMARY AND DISCUSSION

We have shown how to expand the electromagnetic fields and

quasi-periodic Green’s tensor ¯̄G K (r, r ′;ω) for lossy and open
periodic systems using eigenpermittivity (generalized nor-
mal) modes. These eigenpermittivity modes are defined by the
Lippmann–Schwinger Eq. (A1); existing eigenfrequency solvers
can be adapted to find these modes by using a simple substitu-
tion trick, as described in [21]. The GENOME implementation
has numerous advantages: The modes are always discrete and
orthogonal, which significantly simplifies the modal expan-
sion representation; and the stationary nature of the modes
also provides the additional benefit of a trivial normalization
scheme. Most importantly, these eigenmodes form a complete
basis set, which ensures that the modal expansion solution
always converges toward the true scattering solution, even in the
background medium.

The formalism is implemented for the example of an
open waveguide array, by computing the eigenmodes using
the COMSOL eigensolver and using the quasi-periodic
Green’s tensor of a uniform background medium, derived
in Appendix C. From these components, the total field is
assembled using Eq. (14). This expansion is then validated by
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comparing it to the direct COMSOL scattering simulation,
which showed rapid convergence of 2–3 accurate digits using
only a few eigenmodes. However, the eigenmode search entails
a lengthy simulation, which may limit the method’s practical
utility. Thus, future work should be devoted to devising a more
efficient approach to compute the modes. This could be based
on reduced Brillouin zone expansion [50] or on perturbative
(e.g., “re-expansion”) techniques [18,48,49,51–53]. Once
such an approach is implemented, it would become practical to
compute other types of Green’s tensors of interest. In particular,

when computing the single source Green’s tensor, ¯̄G(r, r ′;ω)
would be of great importance for the study of many quantum
nano-optic effects. However, it currently requires intensive
computation because it must have integration over all modes
across the Brillouin zone [54]. GENOME could potentially
provide a rapid, efficient way to obtain this Green’s tensor.

APPENDIX A: GENERALIZED NORMAL MODE
EXPANSION OF GREEN’S TENSOR

We start with the eigenvalue equation that defines the eigenper-
mittivity modes of the unit cell, which is obtained by neglecting
E 0,K in Eq. (11):

s K,m E K,m(r)=−εbk2
∫

WSC

¯̄G0,K (r, r ′;ω)θ (p=0)(r ′)

× E K,m(r ′)dr ′, (A1)

where s K,m is the mth eigenvalue,

s K,m ≡
εb

εb − εK,m
, (A2)

and εK,m represents the eigenpermittivity of the inclusion.
Choosing an eigenpermittivity contrasts with the more preva-
lent choice of a frequency as the eigenvalue. The most important
consequence of this choice is that our modes are stationary even
in the presence of absorption, even though we choose ω (hence
k) and K to be real. A thorough discussion of the significance
and advantages of eigenpermittivities can be found in [21].

In many cases, a differential form of the eigenvalue equation is
preferred, which can be directly obtained by neglecting source J
in Eq. (1):

∇ × (∇ × E m)− k2ε(r)E =
1

s K,m
k2εbθ

(0)E m. (A3)

The modes of Eq. (A3) can be calculated by modifying
any existing mode search routine, such as one based on plane
wave expansion or finite elements, (e.g., using COMSOL
Multiphysics [21]). Once the modes are known, we can
use them to expand the Lippmann–Schwinger [Eq. (11)], a
procedure that we now derive.

For notational brevity, we begin by casting Eq. (11) in opera-
tor form:

E K = E 0,K + u0̂θ̂ (0)E K , (A4)

where u describes the actual permittivity of the structure εi ,

u ≡
εb − εi

εb
, (A5)

and where 0̂ is an integral operator incorporating the quasi-
periodic Green’s tensor, and θ̂ (0) is the operator form of step
function θ (0); i.e.,

0̂θ̂ (0)E K ≡−εbk2
∫
¯̄G0,K (r, r ′;ω)θ (0)(r ′)E K (r ′)dr ′.

(A6)
The formal solution of Eq. (A4) is

E K =
1

1− u0̂θ̂ (0)
E0,K . (A7)

Our solution for the unknown field E K proceeds by project-
ing E 0,K onto the normal modes E K,m . Specifically, we define
the identity operator Î , which in bra-ket notation is

Î =
∑

m

θ̂ (0)|E K,m〉〈E K,m |θ̂
(0). (A8)

This simple form is valid because the modes obey a biorthog-
onality relation [33]. In this bra-ket notation, the fields are
confined to the Weigner–Seitz unit cell. By including θ̂ (0) in Î ,
we expand only over the interior fields of a single unit cell. This
avoids an unwieldy integral over all space, and also expands only
in the region where the eigenmodes provide a complete basis.
Note that this projection operator assumes that the modes are
normalized within the volume of a single unit cell:

〈E K,m |θ̂
(0)
|E K,m〉 = 1. (A9)

In that respect, we avoid normalization issues that may
arise in other modal expansions since the integral is over a
finite domain. We emphasize that the identity operator in
Eq. (A8) sums over a set of modes that share a common K , but
might belong to different bands and have different levels of
confinement in any open directions.

The unknown field |E K 〉 is then

θ̂ (0)|E K 〉 =
∑

m

θ̂ (0)|E K,m〉〈E K,m |
θ̂ (0)

1− u0̂θ̂ (0)
|E0,K 〉.

(A10)
Next is the key step of GENOME. Instead of applying the

operator (1− u0̂θ̂ (0))−1 to |E0,K 〉, which would result in a
lengthy numerical calculation via the Born series, we exploit
the freedom offered by the unified nature of the Green’s tensor
in Eq. (12) and Eq. (A1) to operate on the adjoint field 〈E K,m |

instead, immediately yielding a modal expansion. We invoke
the adjoint form of eigenvalue Eq. (A1),

〈E K,m |θ̂
(0)0̂ = 〈E K,m |s K,m . (A11)

This obtains from Eq. (A10) the total interior field θ̂ (0)|E K 〉:

θ̂ (0)|E K 〉 =
∑

m

θ̂ (0)|E K,m〉
1

1− us K,m
〈E K,m |θ̂

(0)
|E0,K 〉,

(A12)
expressed in terms of overlap integrals.

To obtain an expression also valid in the background,
Eq. (A12) is inserted back into the original Lippmann–
Schwinger [Eq. (A4)], this time operating 0̂θ̂ (0) on |E K,m〉

to give
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|E K 〉 = |E0,K 〉 +
∑

m

|E K,m〉
us K,m

1− us K,m
〈E K,m |θ̂

(0)
|E0,K 〉.

(A13)
Thus, with the aid of the Lippmann–Schwinger equation, we

have obtained an expansion valid over all space, even though we
only expanded the fields inside the structure. For convenience,
Eq. (A13) can be expressed explicitly in terms of permittivities,

|E K 〉 = |E0,K 〉 +
∑

m

|E K,m〉
εi − εb

εK,m − εi
〈E K,m |θ̂

(0)
|E0,K 〉.

(A14)
Equation (A14) expresses the total fields within the unit

cell in terms of the radiation of the external sources in the
uniform background, E 0,K , and the modes of the structure
that are excited. The explicit form of the overlap integral
〈E K,m |θ̂

(0)
|E0,K 〉 is presented in Appendix B. The solution in

Eq. (A14) is exact up to truncation in m, since arbitrary accuracy
is possible by increasing m. The one set of eigenmodes |E K,m〉 is
applicable to all possible structure permittivities and excitations
|E0,K 〉, as the expansion requires only the evaluation of the
overlap integrals, which represent a small fraction of the total
simulation time. The solution [Eq. (A14)] is the most suitable
form when the source |E0,K 〉 has a known form, such as a plane
wave or a beam. If, however, the source is in the near field, a
second formulation is more convenient, expressed directly in
terms of sources J K (r) [36]. This begins by casting Eq. (12)
into operator form, yielding

|E0,K 〉 =
i
ωε0

0̂|J K 〉. (A15)

After inserting into Eq. (A13), we obtain

|E K 〉 = |E0,K 〉 +
i
ωε0

∑
m

|E K,m〉
us K,m

1− us K,m
〈E K,m|θ̂

(0)0̂|J K 〉.

(A16)
Again, by applying the operator θ̂ (0)0̂ to 〈E K,m | via

Eq. (A11) rather than to |J K 〉, a simple solution is obtained:

|E K 〉 = |E0,K 〉 +
i
ωε0

∑
m

|E K,m〉
us 2

K,m

1− us K,m
〈E K,m |J K 〉.

(A17)
In terms of permittivities, Eq. (A17) can be rewritten as

|E K 〉 = |E0,K 〉 +
i
ωε0

∑
m

|E K,m〉
εi − εb

(εK,m − εi )(εK,m − εb)

× 〈E K,m |J K 〉.
(A18)

The resulting Eq. (A18) is largely similar to Eq. (A14), but
the integral 〈E K,m |J 〉 is now no longer restricted to the interior
of the structure, and receives contributions from all locations
where J K (r) is nonzero. Nevertheless, Eq. (A18) remains a
rigorous solution of the Lippmann–Schwinger equation and
still benefits from the completeness of the eigenmodes within
the interior.

Finally, the desired normal mode expansion of the quasi-
periodic Green’s tensor, applicable to periodic arrays of

resonators in open and lossy systems, is obtained by choos-
ing J K (r) to be a localized Dirac-delta source so that the weight
factor 〈E K,m |J 〉 is simply the amplitude of the adjoint mode
at the source location, E †

K,m(r). The quasi-periodic Green’s
tensor is then

¯̄G K(r, r ′;ω)= ¯̄G0,K(r, r ′;ω)+
1

k2

∑
m

εi − εb

(εK,m − εi )(εK,m − εb)

× E K,m(r )⊗ E †
K,m(r

′).
(A19)

APPENDIX B: ADJOINT MODES

We give the explicit forms for the overlap integrals in Eq. (A14),

〈E K,m |θ̂
(0)
|E0,K 〉 =

∫
WSC

θ (0)(r)E †
K,m(r) · E 0,K (r)dr,

(B1)
and in Eq. (A18),

〈E K,m |J K 〉 =

∫
WSC

E †
K,m(r) · J K (r)dr. (B2)

We know that the adjoint field E †
K,m(r) is the left eigenstate

of operator 0̂θ̂ (0):

s K,m〈E K,m | = 〈E K,m |0̂θ̂
(0) (B3)

and 0̂ is anti-symmetric with respect to Bloch vector K as

¯̄G0,K (r , r ′)= ¯̄G0,−K (r ′, r ), (B4)

which can be proven using the Eq. (8). So the adjoint field in
Eqs. (B1) and (B2) takes the form of

E †
K,m(r)= E−K,m(r). (B5)

APPENDIX C: QUASI-PERIODIC FREE SPACE
GREEN’S TENSOR

Here, we determine a rapidly converging solution of the quasi-
periodic free-space Green’s tensor, defined by Eq. (8), for the
example shown in Fig. 1. In this 2D example, the point–dipole
sources are of infinitesimal extent in two dimensions and infi-
nite in extent in the third dimension (i.e., the z direction). The
source has harmonic variation of e iβz along the third dimension.

We proceed by using the relation with the quasi-periodic
Green’s scalar for the scalar Helmholtz equation [16],

¯̄G0,K (r)=
(
¯̄I +

1

k2
∇∇

)
G0,K (r), (C1)

Where, without loss of generality, we assumed that the source in
the central unit cell is at the coordinate origin, so r itself repre-
sents the displacement vector from the source in the central unit
cell. We also extend this Green’s tensor expression of free space
to the uniform background medium by simply absorbing the
permittivity value εb into k2. As our 2D example has translation
invariance in the third dimension, we can write

∇ =∇⊥ + iβ ẑ,
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where ∇⊥ applies only to in-plane directions. The simplest
expression of the quasi-periodic Green’s scalar, G0,K is given by

G0,K (r)=
∑

p

G0(r − R(p))e i K ·R(p) , (C2)

where G0(r − R(p)) represents the Green’s scalar of a iso-
lated point source at R(p) and the appropriate expression for
G0(r − R( p)) in 2D is i H0(α|r − R( p)

|)/4. Therefore,

G0,K (r)=
i
4

∑
p

H0(α|r − R( p)
|)e i K ·R(p) , (C3)

where α is the in-plane propagation constant, given by
α2
+ β2

= k2.
Equation (C3) converges very slowly, so we employ Ewald’s

method [55], which gives the solution as a sum of two rapidly
converging components; i.e.,

G0,K = G1 + G2. (C4)

For our 1D lattice example in Fig. 1, with lattice constant
L , Bloch wavevector K = K x̂ , and the displacement vector
r = x x̂ + y ŷ, we have [56]

G1 =
1

4L

∞∑
p=−∞

e i K p x

γp

[
e γp y erfc

(
γp L
2a
+

ay
L

)

+ e−γp y erfc

(
γp L
2a
−

ay
L

)]
,

G2 =
1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

En+1

(
a2r 2

p

L2

)
, (C5)

where

K p = K + p
2π

L
, γp = (K 2

p − α
2)

1
2 , and

r p =

√
(x − p L)2 + y 2.

Here, erfc is the error complementary function, and En+1

is exponential integral function of order n + 1. For optimal
convergence, the parameter a in Eq. (C5) is chosen to be

√
π , as

suggested in [56].
Using these G1 and G2 expressions, we can determine the

quasi-periodic Green’s tensor. In explicit form, we can write the

nine components of ¯̄G0,K (r) in Cartesian form as

¯̄G0,K (r)=
1

k2

 k2
+ ∂2

x ∂x∂y iβ∂x

∂y ∂x k2
+ ∂2

y iβ∂y

iβ∂x iβ∂y α2

 (G1
+ G2). (C6)

Finally, we determine the derivatives of G1 and G2. For G1:

∂x G1 =
i

4L

∑
p

K p Tp ,

∂y G1 =
1

4L

∑
p

e i K p x
[

e γp y erfc

(
γp L
2a
+

ay
L

)

− e−γp y erfc

(
γp L
2a
−

ay
L

)]
,

∂2
x G1 =−

1

4L

∑
p

K 2
p Tp ,

∂2
y G1 =

1

4L

∑
p

γ 2
p Tp −

∑
p

a
√
πL

e i K p x

× exp

(
−

(
γp L
2a

)2

−

(ay
L

)2
)
,

∂xyG1 = ∂yxG1
=

i
4L

∑
p

K p e i K p x
[

e γp y erfc

(
γp L
2a
+

ay
L

)

− e−γp y erfc

(
γp L
2a
−

ay
L

)]
,

where

Tp =
e i K p x

γp

[
e γp y erfc

(
γp L
2a
+

ay
L

)
+ e−γp y erfc

(
γp L
2a
−

ay
L

)]
.

The partial derivatives of G2 are

∂x G2 =−
1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

× En

(
a2r 2

p

L2

)
2a2(x − p L)

L2
,

∂y G2 =−
1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

En

(
a2r 2

p

L2

)
2a2 y

L2
,

∂x2 G2 =−
1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

×

[
2a2

L2
En −

4a4(x − p L)2

L4
En−1

(
a2r 2

p

L2

)]
,

∂y 2 G2 =−
1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

×

[
2a2

L2
En −

4a4 y 2

L4
En−1

(
a2r 2

p

L2

)]
,

∂xyG2 = ∂yxG2
=

1

4π

∞∑
p=−∞

e ipKL
∞∑

n=0

1

n!

(
αL
2a

)2n

× En−1

(
a2r 2

p

L2

)
4a4(x − p L)y

L4
.
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