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Normal modes are valuable tools for modeling electromagnetic resonators, since all their electromagnetic prop-
erties can be extracted from a small set of modes. To extend the utility of normal modes to open systems, a set of
modes was developed where permittivity is designated to be the eigenvalue. However, these modes, also known as
generalized normal modes, are defined at only a single frequency, which limits their utility for spectral applications.
In this paper, we present a simple way to extend the validity of permittivity modes to neighboring frequencies. This
enables the evaluation of spectral lineshapes and scattering of short pulses from open nanophotonic structures
using knowledge of the generalized normal modes at only a single frequency. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAB.463341

1. INTRODUCTION

In recent years there has been significant progress in the devel-
opment of modal techniques for the solution of electromagnetic
simulations; these provide concise physical insight into the
understanding of scattering of electromagnetic waves, along
with increased computation speed. This included the devel-
opment of efficient normalization techniques for complex
frequency modes (known as resonant states [1–3] or quasi-
normal modes [4–7]), along with the numerical [8,9] and
perturbative [1–3,10,11] techniques needed for computation
of their modes. An alternative approach relies on generalized
normal modes, for which the eigenvalue is designated to be the
permittivity of the scatterer [12–17]; this approach also benefits
from numerical [14,18], asymptotic [16,19], and perturbative
[11,20] approaches.

These modal approaches have enabled the study of a range of
complex physics and/or computationally intensive problems
in electrodynamics and nano-optics, such as strong coupling,
superradiance and Fano resonances [7], light scattering in
disordered media and random lasing [7,13], the Purcell effect
[7,21,22], Förster energy transfer [21], complex quantum
electrodynamic effects [23], magnetism, chirality and bi-
anisotropy [24,25], metal photoluminescence [26], nonlinear
optics [27], thermal emission [28], etc.

Despite the various mathematical complications associated
with complex frequency quasi-normal modes (see discussion in
[14]), they seem to enjoy much wider use relative to complex
permittivity normal modes. The probable reason is that the
former enable spectral lineshapes to be obtained in a straightfor-
ward manner, whereas permittivity normal modes can obtain
lineshapes only by repeated simulation over all frequencies
within the range of interest.

In this paper, we develop an approach to overcome this
limitation of generalized normal modes and demonstrate an
efficient way of extending the applicability of each permittivity
mode to a broad range of frequencies. In Section 2, we develop a
Taylor-expansion based formulation to derive the permittivity
modes over a range of frequencies from the known modes at a
single frequency. In Section 3, we implement the formulation to
study the scattering of a short electromagnetic pulse from con-
figurations of individual and multiple wires. We demonstrate
good accuracy versus exact simulations and much shorter com-
putational speed compared with multiple simulations, often
required for Green’s tensor calculations, performed with stand-
ard commercial software [29]. In Section 4, we conclude and
discuss potential future developments. We anticipate that the
approach described in this work will precipitate the widespread
adoption of generalized normal mode expansions for the study
of nanophotonic systems.

2. FORMULATION

Generalized normal modes, or eigenpermittivity modes, allow
the electric field E (r, k) due to a specified impinging field
E 0(r ′, k) on an open optical system to be decomposed in terms
of its localized eigenmodes E m(r; k) [14],

E (r, k)= E 0(r, k)+
∑

m

E m(r, k)
εi (k)− εb

εm(k)− εi (k)

×

∫
E m(r ′, k)†θ(r ′)E 0(r ′, k)dr ′. (1)

Here, k =ω/c is the free-space wavenumber at a specific
frequency ω, εi (k) is the inclusion permittivity, and εm(k) are
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the eigenpermittivities. We have assumed that there is a uniform
dispersion-free background permittivity, εb , and defined θ(r)
to be an indicator function defining the shape of the inclusion.

Similarly, the Green’s tensor ¯̄G(r, r ′; k) can be decomposed in
permittivity modes as

¯̄G(r, r ′; k)= ¯̄G0(|r − r ′|; k)

+
1

k2

∑
m

εi (k)− εb

(εm(k)− εi (k))(εm(k)− εb)

× E m(r; k)⊗ E †
m(r
′
; k), (2)

where ¯̄G0(|r − r ′|; k) is the Green’s tensor of the homogeneous
background [30]. The key benefit of Eqs. (1) and (2) is that the

variation of ¯̄G(r, r ′; k) over source r ′ and detector r coordi-
nates is decomposed into two factors, E m(r; k), and its adjoint
E †

m(r
′
; k). This means that once the modes have been found,

it is then easy to obtain ¯̄G(r, r ′; k) for any source position and
orientation.

However, the modes E m(r; k) and their associated eigen-
permittivities εm(k) are only applicable to a single frequency
k =ω/c . They are defined by the eigenvalue equation

s m(k)E m(r; k)=
∫

G0(|r − r ′|; k)θ(r ′)E m(r ′; k)dr ′,

(3)
where the eigenvalue s m is linked to the eigenpermittivity

1

s m(k)
=
εm(k)− εb

εb
. (4)

To obtain E (r, k) and ¯̄G(r, r ′, k) over a range of frequen-
cies, we would need to solve this eigenvalue equation for εm(k)
and E m(r, k) over the entire desired frequency range, which
can be a computationally expensive task.

One simple way to remedy this issue is to assume that the
eigenpermittivities and eigenmodes can be expanded as Taylor
series about some central frequency k0,

εm(k)= εm |k0 + (k − k0)∂kεm |k0 +
1

2!
(k − k0)

2∂2
k εm |k0

+
1

3!
(k − k0)

3∂3
k εm |k0 + · · · . (5)

Calculating the eigenpermittivity at k0 and its derivatives
requires fewer simulations, and is a cost-effective way of obtain-
ing the result over a relatively large frequency range. Similarly,
we may expand the eigenmodes as

E m(r, k)= E m |k0 + (k − k0)∂k E m |k0 +
1

2!
(k − k0)

2∂2
k E m |k0

+
1

3!
(k − k0)

3∂3
k E m |k0 + · · · .

(6)

Although third-order terms were displayed in the above
equations, a lower-order expansion may suffice for many
practical purposes. There are two components of Eqs. (1) and

(2) that we do not bother to expand as a Taylor series. First,
εi (k) is regarded as a known parameter of the system, either
from an analytic model or from experimental measurements.
We shall also assume that an analytical expression is available

for ¯̄G0(|r − r|, k) or that the dependence of E 0(r, k) on
frequency is supplied.

Quantitative testing showed that it is preferable not to evalu-
ate the integral in Eq. (1) for every different frequency we may
want to consider, so we also choose to expand it as a Taylor series.
For notational convenience, we define the integral as

Im(k)=
∫

E m(r, k)†θ(r)E 0(r, k)dr, (7)

allowing the Taylor expansion

Im(k)= Im |k0 + (k − k0)∂kIm |k0 +
1

2!
(k − k0)

2∂2
k Im |k0

+
1

3!
(k − k0)

3∂3
k Im |k0 + · · · .

(8)

To employ the expansions Eqs. (5)–(8), analytic expressions
can be obtained for the derivatives of the eigenpermittivi-
ties and eigenmodes [31]. Another simple way is to compute
the derivatives via finite difference, which we shall use in our
implementation.

3. NUMERICAL EXAMPLE

It is highly advantageous to avoid the troublesome step of
expanding the modal fields in a Taylor series, Eq. (6). Such
expansions are prone to errors, since the fields are oscillatory
functions of frequency, for which Taylor series expansions are
not ideal. Furthermore, the phase variation of the field becomes
increasingly rapid and challenging to expand, as it increases
linearly with distance from the scatterers.

Our extensive testing showed that these issues can be avoided
to a large extent for many geometries, since the modal fields
can be expressed as linear combinations of the known modes
of simpler shapes. For example, for scattering from a cluster
consisting of more than one cylinder, the modes are not available
in analytical form. However, they can be represented using
single cylinder modes as a basis, which are known analytically.
A treatment of the single cylinder case via Taylor expansion is
provided in Appendix A. The multi-cylinder case then builds
upon these results, by solving the matrix eigenvalue problem
[12,21,32,33]

Vc = sc, (9)

where c is a column vector representing an eigenmode of the
cluster expressed as coefficients of the single cylinder modes, s
is related to the eigenpermittivity of the cluster mode, and V is
a matrix of overlap integrals between the single cylinder modes.
This hybridization procedure converges upon the modes for the
cluster with arbitrary accuracy, since the single cylinder modes
provide a complete basis.

In this case, we may expand the eigenvectors c in lieu of
expanding the eigenmodes over all space. This can be achieved
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by solving Eq. (9) at several neighboring frequencies and using
the finite-difference formulas. The underlying single cylin-
der eigenmodes also vary as a function of frequency, but this
variation can be handled analytically using the methods of
Appendix A.

In practice, the task of obtaining the derivatives of c from
finite difference is a numerically sensitive procedure. Thus, it
is advisable to use an analytical formula for the derivative of an
eigenvector. We give the formula in the case of a symmetric V
[34],

c′m =
∑
n 6=m

cn
cn · V ′cm

sn − sm
, (10)

where the prime indicates differentiation with respect to k. The
derivative V ′ can be obtained reliably via finite differences. It is
also possible to obtain higher-order derivatives using increas-
ingly more complex formulas that nevertheless still only require
knowledge of V ′.

We now present a numerical example, treating a two cylinder
cluster, shown in Fig. 1. Figure 2 displays the eigenpermittivities
of the modes of the cluster as a function of frequency. In this
case, it is necessary to specify the distance separation between the
two cylinders, but no orientation is necessary, since modes exist
in the absence of any incident fields. The parameters are given in
the figure caption. For the purposes of clarity, we choose to show
only the six brightest modes.

We observe that the Taylor expansion is accurate over a mod-
erate frequency range, and has some difficulty extrapolating
beyond any inflection points. If great accuracy over a wide band
is desired, multiple Taylor expansions may be employed to cover

Fig. 1. Schematic of the simulation geometry, where the distance
separation is d/a = 0.2, measured from the boundary of each cylinder,
and a is the radius of each cylinder. When obtaining the modes, no
incidence fields are specified. Having obtained the modes, we then use
them for the specific direction of the incidence pulse shown.

the range of interest. Alternatively, a more sophisticated expan-
sion can be used, such as Padé’s approximation, which provides
better extrapolation beyond these inflection points.

Having obtained an expansion of the modes and their eigen-
permittivity, we proceed to demonstrate a pulse scattering
experiment. We continue to use the geometry of Fig. 2, featur-
ing two cylinders separated by a small gap. Figure 3 displays the
scattering of a short pulse at various instants in time. The sim-
ulation proceeds in two stages. First, the necessary derivatives
are calculated, i.e., derivatives for expanding the eigenvalues
via Eq. (5), and the integral via Eq. (8). The eigenmodes are
represented using the single cylinder basis of Appendix A via
Eq. (9), and expanded in frequency via Eq. (10). The entire pro-
cedure does not require the simulation domain to be discretized
using a grid or mesh. The construction of all the necessary basis
modes and their derivatives was completed in∼ 1.5 s in Matlab,
on a desktop computer with an Intel Core i5-8500 processor.
This involves 136 modes of the two cylinder configuration,
constructed from the hybridization of 68 single cylinder modes.
These 68 modes range from angular order m =−8 until 8 and
radial orders 1 to 4.

Subsequently, the solution can be evaluated using Eq. (1) at
any arbitrary position or grid of positions and at any frequency
within the range of validity. The spatial variation of the scattered
fields is known semi-analytically, since it is represented by a
linear combination of single cylinder modes. To construct the
solution to our desired pulse, the incidence is first constructed
in the Fourier domain as described in Appendix B, and each fre-
quency component is fed into Eq. (7) and assembled to obtain
both the scattered and total fields. Using this procedure, we
obtain good agreement with a direct simulation that does not
use Taylor’s expansion. See Appendix A for a more quantitative
validation.

We would now like to compare the complexities of our
approach to finite-difference time-domain (FDTD) simula-
tions. Unfortunately, such a comparison is not straightforward
because the complexity of FDTD scales with the product of
the number of grid points and time steps, while the complexity
in our approach scales with the number of modes cubed [due
to the need to solve the eigenvalue problem Eq. (9)], and does
not involve any discretization in space or time. Importantly, the
number of modes is typically far smaller than the number of grid
points, making our approach favorable.

Fig. 2. Real and imaginary parts of eigenpermittivities of several modes as a function of frequency, expressed as the dimensionless quantity
ka =ωa/c = 2πa/λ, where a is the radius of the cylinder. The distance separation is d/a = 0.2 (see Fig. 1). Different curves correspond to different
modes, showing the six brightest modes. Solid lines were obtained from direct solution of the hybridization equation, Eq. (9), for each separate
frequency, while the dots correspond to a Taylor expansion about ka = 1.
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Fig. 3. Results of a pulse scattering experiment where the incident field is traveling from left to right (positive x direction). The electric field com-
ponent is oriented in-plane (y direction). The parameters of the geometry are the same as in Fig. 2. Additionally, we specify the permittivity of the two
cylinders placed at the center of the simulation domain to be εi = 12, with radius 1 in normalized units. The incident pulse is specified in more detail
in Fig. 8. Here, we show the real parts of the E x and E y fields. The E x component is initially zero, but as the pulse approaches and scatters, an E x com-
ponent is produced.

Thus, we proceed with a simple comparison. It shows that
the simulation times of our approach compare favorably in
comparison to FDTD simulation performed on a computer
with double the number of cores; considering the high efficiency
and low scaling of the latter, this finding is quite encourag-
ing. The commercial package Lumerical required ∼22 s for a
dielectric pair of cylinders (ε = 12) and∼70 s for a metallic pair
(ε =−15.2+ 0.4i ). (The Lumerical simulation domain was
the same as that of Fig. 3. The simulation grid was generated
automatically by Lumerical, with settings auto non-uniform
mesh at accuracy 8, with conformal variant 1 mesh refinement.
See Lumerical documentation for more details on mesh refine-
ment [35].) We note that these Lumerical run times are for
individual simulations, whereas once we have obtained the
modes and their derivatives, we can subsequently obtain results
for any incidence and any value of inclusion permittivity [14].

This also means that our approach allows easy handling of mate-
rial dispersion, by simply inputting the desired permittivity at
each frequency.

4. SUMMARY AND OUTLOOK

We have developed a frequency expansion of GENOME modes,
and demonstrated its implementation for scatterers of relatively
simple shapes. This enabled the use of analytic expressions for
the modes, obviating the need to expand the modes in a Taylor
series [Eq. (6)]. In fact, this procedure can also be applied to
scatterers in complex backgrounds (using a simple extension
of the technique whereby free-space background is replaced by
the Green’s tensor of the complex background) and scatterers
of arbitrary shape and even non-uniform and anisotropic per-
mittivities, since in general their modes can always be expanded
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via a weighted sum of modes of geometries with simple shapes
(e.g., of wire modes); see [1–3,11,20,36]. While these perturba-
tive procedures are not as fast as the analytic techniques we used
for the simple cylindrical inclusions, they are still significantly
faster than commercial mode solvers. Moreover, we empha-
size that our approach is most advantageous when repeated
simulations are needed (e.g., when computing Green’s tensor,
performing design optimization, etc.).

Our approach demonstrates how to circumvent the main
weakness of generalized normal (permittivity) mode expan-
sions, namely, the need to perform the expansion for each
frequency separately. This enables its use for the study of spectral
lineshapes and pulse propagation calculations, energy transfer
effects from spectrally-wide emitters [21], etc., which can now
benefit from the advantages of permittivity mode expansions
[14].

APPENDIX A: CONFIRMATION VIA SINGLE
CYLINDER SCATTERING

In the special case of a single cylinder, the modes are available
analytically once the eigenpermittivity is known. This means
that the Taylor expansion, Eq. (6), of the fields is unnecessary.
To demonstrate this, we may begin with the known form of two
field components within the inclusion interior

E z =
∑
m,n

C E
m,n Jm(αm,nr )e imθ e iβz,

Hz =
∑
m,n

C H
m,n Jm(αm,nr )e imθ e iβz, (A1)

using the system of coordinates (r , θ, z) and where we now label
the modes with indices (m, n) due to the additional symmetry
available to the circular cross section. The in-plane propaga-
tion constant αm,n is related to the out-of-plane propagation
constant β by α2

+ β2
= εm,n(k)k2. The coefficients C E/H

m,n are
normalization coefficients that are available analytically [36].
From these two components, all other field components can be
derived using Maxwell’s equations. Similarly, the modal fields
of the background can be related to Eq. (A1) by interfacial jump
conditions. In this way, all field components everywhere have
a known analytical form based on εm,n(k), so it is unnecessary

to separately store an expansion of the modal field E m,n(r, k).
The frequency variation of εm(k) can itself be obtained from
a transcendental equation known as the dispersion relation or
secular equation, e.g., using the efficient and reliable algorithm
described in [37].

This analytical form drastically reduces the memory require-
ments of Taylor expansion. Similarly, if we are considering
scattering from a far-field source, the integral in Eq. (7) can be
calculated anew for each frequency via an analytical expression.
Such computations have negligible cost, and are usually dwarfed
by the subsequent evaluation of Eq. (A1) and equivalent
expressions for each (r , θ, z)within the simulation domain.

We now provide a numerical example of the single cylinder
case, benchmarking the performance of the Taylor expansion
against a direct simulation of each frequency via Eq. (1). In
Fig. 4, we plot several dispersion relations of eigenpermittivities
as a function of ka , where a is the radius of the cylinder. We plot
a series of dispersion relations all with angular variation exp(iθ),
but with different radial orders. This corresponds to m = 1 and
n = 1, 2, 3 in Eq. (A1).

We expanded the dispersion relations via the Taylor series
Eq. (5) about ka = 1 up to third order. This order is still not
computationally expensive to calculate, and is not yet numer-
ically sensitive. Coefficients of the Taylor series were obtained
using the central finite-difference formulas. It is seen to approxi-
mate well the various dispersion relations, especially in the range
from ka = 0.8 to 1.2. Some deviations are visible beyond this
range, on the order of 3%–4%. This is still acceptable though
for many purposes.

The Taylor expansion of the dispersion relation shown in

Fig. 4 in principle completes the task of finding ¯̄G(r, r ′, k) as
a function of frequency, due to the foregoing discussion that
the modal fields are known analytically once the eigenpermit-
tivities are known. However, for completeness, we proceed to
demonstrate the use of this expansion in simulating the scat-
tering of a plane wave by a single cylinder at a single frequency,
benchmarking against a direct simulation. Figure 5 shows the
result computed two different ways, as in Fig. 4. First, the refer-
ence calculation is a direct GENOME simulation at ka = 1.2.
Second, we expand the eigenpermittivity via the Taylor expan-
sion about ka = 1, but evaluated at ka = 1.2. For the purposes
of clarity, only the scattered fields are shown. The fields obtained

Fig. 4. Real and imaginary parts of eigenpermittivities of modes of a single cylinder as a function of frequency, expressed as the dimensionless
quantity ka =ωa/c = 2πa/λ, where a is the radius of the cylinder. Different curves correspond to different modes, all of azimuthal order m = 1
with e imθ angular variation. Solid lines were obtained from direct solution of the dispersion relation for εm , and are accurate to numerical precision.
Dots correspond to a Taylor expansion of each dispersion relation about ka = 1.
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Fig. 5. Comparison of Taylor expansion and direct calculation for a
scattering experiment. The incident field is a plane wave with ka = 1.2
that is traveling from left to right (positive x direction). The electric
field component is oriented in-plane (y direction). A cylinder of per-
mittivity εi = 12 and radius 1 is placed at the center of the simulation
domain. Shown are the real parts of the scattered E x and E y fields.
The left column displays results calculated directly via GENOME
at ka = 1.2, while the right column using the Taylor expansion
about ka = 1 displayed in Fig. 4. Unlike Fig. 4, more modes are
used, encompassing all radial orders n = 1 to 4 and all angular orders
m =−3 to 3.

from the Taylor series show excellent agreement with the
reference.

To quantify the level of agreement against the reference as a
function of ka , we repeat the numerical experiment with differ-
ent plane wave incidences across the entire range of ka displayed
in Fig. 4. Rather than showing the fields, we use the metric

Err2
=

∫
|E ref − E Taylor|

2dr∫
|E ref|

2dr
. (A2)

We use this metric on the scattered fields only, since the inci-
dent field is an input and is identical for both E ref and E Taylor. In
particular, this means we use the scattered field only to compute
the denominator |E ref|

2. The domain of integration is over the
visible region of Fig. 5. Figure 6 shows this normalized error
for each mode of Fig. 4. Roughly speaking, the overall error is
constrained by the least accurate mode. We see that the Taylor
expansion yields excellent agreement over a wide frequency

Fig. 6. Normalized error between between GENOME modes and
their Taylor expansion over a frequency range for Fig. 5. The error is
given by Err in Eq. (A2), and is plotted on a decibel scale. The errors
are plotted separately for each mode of Fig. 4, using the parameters
described there.

Fig. 7. As with Fig. 5, but showing instead a pulse impinging on
a single dielectric cylinder of permittivity 9. The cylinder of radius 1
located at the center of the relatively large visible domain. The intensity
of the pulse is displayed, in three snapshots as it travels from left to right
and scatters from the cylinder.

range, and is a more than adequate approximation for many
numerical purposes.

Finally, we demonstrate the use of the Taylor expanded
GENOME in simulating scattering from a pulse, displayed
in Fig. 7. We again consider a setup similar to Fig. 5, but with
the pulse of Fig. 8 instead of a plane wave. We set the central

Fig. 8. Pulse used for pulse scattering experiments. The central
frequency is ka = 1 in normalized units, where a is the cylinder radius,
with FWHM of ∼0.1333. In the time domain, this corresponds to a
FWHM pulse width of∼41.5, in normalized units of ct.
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frequency of the pulse to ka = 1, with α ≈ 1.6× 10−3. This
corresponds to a width of∼0.1333 in the k domain with a pulse
width of∼41.5 (FWHM) in the time domain. Note that the k
domain is equivalent to frequency space, since k =ω/c . This
means that the vast majority of the energy of the pulse fits within
the range of ka = 0.8 and 1.2 (which is covered by the Taylor
expansion). The Fourier transform was used to synthesize the
pulse, using 101 discretization points in k space.

APPENDIX B: FOURIER REPRESENTATION OF
PULSES

The expansion of ¯̄G(r, r ′, k) as a function of frequency enables
us to simulate scattering from pulses. Suppose the pulse is
defined in the time domain by E 0(r, t). We then proceed in
the usual way, by first decomposing the pulse into its Fourier
components (since the electric field is necessarily a real function,
we suppress the need to take the real part of the right-hand side)

E 0(r, ω)=
1

2π

∫
∞

−∞

E 0(r, t)e iωt dt . (B1)

Each Fourier component is fed into Eq. (1), to obtain the
Fourier component of the solution E (r, k). Then the total
solution can be composed from these Fourier components:

E (r, t)=
∫
∞

−∞

E (r, ω)e−iωt dω. (B2)

In a numerical implementation, we must restrict the domain
of integration to a finite range, i.e.,

E (r, t)≈
∫ ω2

ω1

E (r, ω)e−iωt dω, (B3)

chosen such that the contribution is negligible outside this
range. Second, we must discretize, yielding finally

E (r, t)≈
ω2 −ω1

N

∑
j

E (r, ω j )e−iω j t , (B4)

where N is the total number of discretization points inω, andω j

are a set of (equidistant) points that span the domainω1 toω2.
We shall consider pulses with the Gaussian profile

E 0(r, t)= E (0)
0 e i(k0·r−ω0t)e−αt2

, (B5)

where E (0)
0 describes the magnitude and polarization of the

pulse, k0 =
√
εbω0/c is the propagation vector,ω0 is the carrier

frequency, and α is related to the pulse width, such that the
full width at half maximum is given by 2

√
log 2/α. Its Fourier

representation is then

E 0(r, ω)=
1

2
√
απ

E (0)
0 e i k0·re−

(ω−ω0)
2

4α . (B6)

The FWHM in the Fourier domain is given by 4
√
α log 2.
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