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Reinterpreting the magnetoelectric coupling of polarizability tensors of infinite
cylinders using symmetry: A simple TM/TE view
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Recently, Strickland et al. [Phys. Rev. B 91, 085104 (2015)] retrieved dynamic polarizabilities of infinitely long
wires at oblique incidence, reporting nonzero magnetoelectric coupling, seemingly defying existing theorems
which forbid this in centrosymmetric scatterers. We reconcile this finding with existing symmetry restrictions
on microscopic polarizabilities using a property of line dipoles. This motivates a reformulation of cylinder
polarizability, yielding diagonal tensors that decompose the response into TM and TE contributions, simplifying
subsequent treatment by homogenization theories. A transformation is derived between the formulation of
Strickland et al. and our reformulation, allowing magnetoelectric coupling to be identified as the contrast between
TM and TE responses, and enabling simple geometric insights into all its scaling and symmetry properties.
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I. INTRODUCTION

Since the advent of metamaterials, the long thin cylinder has
been a fundamental building block in a multitude of metama-
terial designs [1]. It features prominently in bulk metamaterial
designs, often consisting entirely of long circular cylinders,
either metallic or dielectric, arranged on a periodic lattice [2].
These include all-dielectric negative index metamaterials
based on Mie resonances [3—8] and dark modes [9], hyperbolic
media [10-13], and drawn metamaterial fibers [14—16]. The
scope of applications is similarly broad, encompassing super-
resolution endoscopes [17-19], planar superlenses [11,20,21],
enhanced coupling to quantum sources [22-24], solar collec-
tors [12,25,26], and single-molecule biosensors [27]. Applica-
tions also span the electromagnetic spectrum, relating even to
propagation of radio waves through forests [28].

Arrays of long thin cylinders also appear on metasurfaces,
both as structures fabricated parallel to a planar substrate
or etched into the substrate itself. Through geometry alone,
extensive engineering of reflection phases and angles is
possible [29-32]. Beyond periodic arrays, cylinders have been
arranged in linear chains and clusters, enabling waveguiding
and antenna functionalities [10]. Single cylinder designs,
especially core-cladding designs, use the interplay between
electric and magnetic Mie resonances to shape the profile
of scattered and emitted light [33,34], with application to
cloaking [35], microscopy [36], and photodectection [37]. The
long thin cylinder has a vast range of applications, and the cross
section presented here is by no means exhaustive.

Retrieving the response of individual cylinders is a fun-
damental step towards characterizing the effective electro-
magnetic response of a metamaterial. For optically thin
cylinders, scattering is adequately described by only dipolar
fields, considerably simplifying subsequent treatment using
effective medium theories [18,38,39]. Analytical results are
available, enabling a systematic design process. This proceeds
analogously to the atomic polarizability, which quantifies the
distortion of electron clouds due to impinging fields, ultimately
yielding the macroscopic constitutive relations. Polarizability
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where p and m are the electric and magnetic dipole moments
induced by incident fields. The diagonal blocks of & describe
the electric and magnetic polarizabilities of a scatterer.
More generally, a scatterer may have nonzero off-diagonal
blocks, @“" and &™¢, corresponding to magnetoelectric cou-
pling whereby magnetic and electric fields induce electric
and magnetic dipole moments, respectively. In macroscopic
constitutive relations, these are commonly defined as D =
€E +&H and B = CE + jiH. For the infinite cylinder, the
polarizability tensor depends on the angle of incidence due
to the longitudinal translational symmetry, which leads to
constitutive relations that also depend on the longitudinal
propagation constant [18,40].

Due to its fundamental importance, a number of recent pa-
pers retrieve & for infinitely long cylinders under specific inci-
dence conditions, such as normal incidence [7,18,36,41]. And
even though scattering from infinite cylinders is a thoroughly
investigated textbook problem [42], explicit expressions for
the full polarizability tensor & at oblique incidence were
only published recently by Strickland ef al. [43]. Surprisingly
though, a magnetoelectric coupling was reported. Since E
is odd while H is even under inversion, magnetoelectric
coupling is considered forbidden in structures containing
a center of inversion. Furthermore, local constitutive rela-
tions of two-dimensional lattices of such infinite wires after
homogenization are known to have zero magnetoelectric
coupling [44,45]. Strickland et al. ascribe the unexpected
magnetoelectric coupling to the asymmetric nature of oblique
incidence, likening it to the observation of optical activity
in achiral split ring resonators, termed pseudochirality or
extrinsic chirality [46—48].

Symmetry restrictions on magnetoelectric coupling have
been systematically studied in the field of solid state
physics [49,50], and more recently in metamaterials for
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split ring resonators [51-53]. The result is general: no
magnetoelectric coupling may exist in the microscopic po-
larizability & of a scatterer with both temporal and inversion
symmetry [38,54]. Analogous symmetry prohibitions exist for
macroscopic constitutive relations, requiring ¢ (w) = &(w) =
0 for inversion symmetric structures [44,45]. Equivalently,
macroscopic magnetoelectric coupling can be described by
first-order spatial dispersion [55] by incorporating magnetic
responses into a permittivity tensor both temporally and
spatially dispersive D = é(w,k)E. Weak spatial dispersion
permits expansion in powers of k,

€j(w,k) = €j(@) +iyp(@k; + Biju(wkiky + ..., (2)

where y; i (w) corresponds precisely to nonspatially dispersive
¢ (w) and & (w). Identical symmetry constraints apply, requiring
vijk(®) to vanish [55].

More recently, homogenized magnetoelectric coupling
tensors which are themselves k dependent, & (w,k) and & (w, k),
have been studied. This arises when a medium is excited by
an arbitrary excitation (w,k), as opposed to homogenization
based on excitation-free eigenmodes of a medium along its
dispersion relation w(k) [39,56-58]. Only in this context was
it shown that even centrosymmetric metamaterials, such as
§pheres on a cubic lattice, can have nonzero ¢(w,k) and
&(w,k). This magnetoelectric coupling emerges during the
homogenization procedure, due to the phase delay of the
excitation between adjacent unit cells [39]. Since such ar-
guments pertain to macroscopic constitutive relations derived
from the homogenization of a lattice, their applicability to the
microscopic polarizability @ of an individual cylinder is not
immediately apparent.

In this paper, we delve into the origins of the nonzero
magnetoelectric coupling of infinite cylinders at the level
of microscopic polarizability &. We present two independent
arguments, serving two different purposes. First, we affirm the
results of Strickland et al. [43] by providing formal symmetry
arguments to reconcile the unexpected magnetoelectric cou-
pling with existing symmetry theorems. Second, we derive a
transformation which reformulates the magnetoelectric tensor
a, restoring the expected diagonal response by partitioning the
response into its TM and TE components. This complementary
and equivalent formulation predicts identical results, but its
diagonal form enables simpler homogenization procedures,
and provides simple geometric interpretations for the magne-
toelectric coupling and its behavior.

In Sec. I, we discuss symmetry, demonstrating how mag-
netoelectric coupling arises despite inversion symmetry, stem-
ming from the intrinsic longitudinal k variation of line dipoles
which distinguishes them from point dipoles. We use group
representation theory, a systematic and universal formalism for
treating symmetry to derive all the symmetry restrictions on &,
including its symmetry-forbidden elements. Using symmetry
arguments alone, we exactly reproduce the structure & derived
by Strickland et al. [43]. This provides justification for the
magnetoelectric coupling of & at the level of individual
cylinders, without the need for analogies with macroscopic
constitutive relations derived from the homogenization of a
lattice.
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However, our symmetry analysis also reveals that mag-
netoelectric coupling is not a necessary consequence of
the k dependence of line dipoles. In Sec.Ill, we develop
an alternative formulation of & that obviates the need for
magnetoelectric coupling terms. Our key insight is that the
simple decomposition of & into its TM and TE contributions
yields diagonal polarizabilities. The equivalence of the TM/TE
reformulation is established by a mathematical transformation
which we derive. Simpler, alternative insight into the physical
origins of the magnetoelectric coupling is enabled, bypassing
the need to invoke the formal group-theoretic symmetry
arguments of Sec.II, or rely on macroscopic analogies used
by Strickland et al. stemming from the relatively novel and
unfamiliar form of spatial dispersion Z (w,k) and &(w, k). Such
abstract arguments compound the counterintuitive nature of
the magnetoelectric coupling, rendering it prone to misinter-
pretation.

In Sec.1V, we employ our reformulation to demonstrate
that the off-diagonal magnetoelectric coupling terms account
for the difference between TM and TE responses, allowing
two dissimilar diagonal responses to be combined onto the
single tensor &. In the process, we dispel some potential
misconceptions that surround the existence of the magne-
toelectric coupling. In particular, magnetoelectric coupling
is not a consequence of the cross coupling between TM
and TE polarized plane waves during scattering at oblique
incidence, but requires only that the TM and TE responses
differ.

All magnetoelectric properties have simple reinterpreta-
tions based on the geometry of plane waves when decomposed
into the TM/TE view. Quantitative properties are discussed
in Sec.IVA. We show that the magnetoelectric coupling
of dielectric cylinders exhibits weak quartic scaling at long
wavelengths, but becomes prominent at Mie resonances. We
also show that perfect electric conductors exhibit a stronger
quadratic scaling at long wavelengths, despite having zero
polarization cross coupling even for oblique incidence scat-
tering. Then, symmetry properties are discussed in Sec. IV B,
such as the odd dependence on wave vector. Its geometric
origin becomes apparent once the role of the magnetoelectric
coupling as a proxy is identified. We reveal one practi-
cal consequence of this odd symmetry, showing that the
magnetoelectric coupling of infinite cylinders, not necessar-
ily of circular cross sections, cannot be directly retrieved
using numerical schemes that employ counterpropagating
waves, but instead can be indirectly obtained using our
transformation.

II. SYMMETRY RESTRICTIONS

Since symmetry properties of polarizability tensors are
predominantly phrased in the language of group theory, we
establish the consistency of the magnetoelectric formulation
of Strickland et al. [43] with the extensive existing literature,
and show the simple extension of group-theory techniques
from point dipoles to line dipoles.

Consider an infinite circular cylinder modeled by line
dipoles under impinging radiation with harmonic spatial
variation e# along its axis. Define electric and magnetic line
dipole moments concentric with the cylinder axis with said
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When given harmonic e '’ time variation, the time derivatives
of (3) define line currents which produce radiation patterns
identical to dipolar scattered fields of the cylinder [43]. We
define a(w, B) from (1) in terms of the six complex amplitudes
of (3), with p=1[px; py; p:] and m =[my; m,; m.].
Unlike point dipoles, these line dipoles are defined per unit
length. To harmonize units among the four quadrants of &,
we further rescale the quantities throughout this paper, which
are related to the original SI quantities by H = ZHS!, ep =
pS'/1, and m = ZmS'/1, where € and Z are the permittivity
and impedance of the surrounding medium and [/ is the
unit length. Thus, all elements of & have units of meters
squared.

Symmetry restricts the components of [E; H] that may
couple to [p; m], and thus the nonzero components of &.
Furthermore, symmetry arguments alone can replicate entirely
the structure of & derived by Strickland et al., thereby justi-
fying the existence of magnetoelectric coupling terms. This
ensues by demanding that @ be invariant under all symmetry
operations which leave the cylinder invariant. For the cylinder,
the group of symmetry operations is D, generated by three
operations sharing a common point along the cylinder axis:
rotation of any angle ¢ about the axis, reflection through any
plane coplanar with the axis, and inversion about a point. This
invariance is established in part by noting that an experiment is
unchanged when a rigid transformation is applied to both the
scatterer and incident fields, even if the transformation does
not correspond to a symmetry operation of the scatterer [54].
The same & still predicts the new induced dipoles moments,
but only if these can be expressed in terms of the basis set
that defines &. The full mathematical details of this argument
appear in Appendix A.

We now demonstrate the effects of these Do, symmetry
operations on the basis set of line dipoles (3). Consider first
a rotation of angle ¢, C’fo, on the component p,. When both
incident fields and scatterer are rotated, the dipole induced p’,
is similarly rotated,

m, = mzﬁe’ﬁz, m, = m £,

P, = CLpy = pxd'e? = pi(cos ¢ +sing)e™, ()
with primes denoting transformed coordinates. A linear com-
bination of (3) is generated, so the new moment can also be
represented by the same basis set. But, inversion P generates
a line dipole outside the set

p.=Pp, =pe? = —p e %)

with opposing propagation constant —f, so the basis
set in which & is defined is unable to model the new
moment.

Thus, invariance under Do, is impossible because the
basis set (3) is not closed under inversion. The basis does not
preserve all the symmetries of the cylinder due to the imposed
longitudinal 8 variation. In more abstract terms, Pp, must
generate itself or its negative, corresponding to eigenvalues
+1, since P? is the identity operation [54]. Both magnetic
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and electric point dipoles fulfill this requirement, but not the
line dipoles (3) so these do not transform as an irreducible
representation of D, [59].

With inversion lacking, & transforms only under the
symmetry operations of point group Cw,, Which determines
its allowable form [54]

DPx a® 0 0 0 —a 0 E,
Dy 0 aff 0 o™ O 0 E,
Pz |_ 0 0 o O 0 0 E, ©)
Ny 0 o™ 0 o 0 0 H,
my —™ 0 0 0 o 0 H,
m, 0 0O 0 O 0 o"]|LH,

This is precisely the form obtained by Strickland ez al. [43],
with the exception of an additional symmetry «" = ™,
provided by Onsager relations [60,61]. The straightforward
derivation of (6) considering only C, symmetry is detailed
in Appendix A, as is the additional restriction under Dy,
requiring the magnetoelectric coupling to disappear.

To highlight the contrasting symmetry requirements of
point and line dipoles, we apply the analysis to a prolate
spheroid. We may consider two different spheroids, one which
resembles a sphere and one which is elongated to resemble a
finite cylinder. Assuming the short axis of the two spheroids
is sufficiently subwavelength, the scattered fields may be
modeled as either a point dipole or line dipole source. Thus, the
length of the spheroid determines which of the two symmetry
restrictions applies. For the short spheroid, the inversion
symmetric Do, point group applies and magnetoelectric
coupling is forbidden. Although the long spheroid possesses
the same structural symmetry, the line dipole which models it
only has C,, symmetry, so magnetoelectric coupling appears.
Such a size dependence has been experimentally observed,
with long wires exhibiting spatial dispersion but not short
wires [62].

III. TM/TE FORMULATION

Critical to the foregoing discussion is that @ inherits the
symmetry properties of its defining line dipoles. Specifi-
cally, Strickland et al. retrieved & considering only e#*
variation. If instead & is retrieved for both ¢#¢ variations,
then magnetoelectric coupling vanishes. At first glance, this
alternative formulation appears cumbersome and disadvan-
tageous: two tensors are now necessary to characterize the
polarizability, and treating both opposing incidence angles
would seem to obscure any connection to spatial dispersion
arising from the phase delay of a single plane wave along the
cylinder.

On the contrary, we show that this enables a familiar and
natural reinterpretation of magnetoelectric coupling, decom-
posing & from (1) into

- Einc,TM _ Einc,TE
[,I:li| =a™ [ Hinc,TM:| +a'® [ FincTE |5 (7
where &™ and @™ apply only to the TM or TE components
of the incident field. Both tensors are diagonal, with

T

=TM . ee,TM _ee,TM _ee, TM _mm,TM _mm,TM

a v = diag (ozl o o , ,O), ®
=TE __ 3. ee,TE ee, TE mm,TE _mm,TE _mm,TE

a -~ = diag (ocl o 00 o Ny )
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Properties of (7) seem to follow immediately from the
cylindrical geometry. Decomposition of the response into TM
and TE incidence is common among structures with infinite
translational symmetry, like the Fresnel coefficients of planar
interfaces. Meanwhile, inversion symmetry now enforces
diagonal responses, as initially expected. More rigorously,
these properties follow from the symmetry considerations
detailed in Appendix A.

We now consider the transformation between the mag-
netoelectric formulation of (1) and (6), and the TM/TE
reformulation (7) and (8), which is key to the utility of (7)
in interpreting the magnetoelectric coupling properties of (1).
The two tensors in (7) together occupy a vector space twice the
size of (1), seemingly implying that (7) requires independent
knowledge of both TM and TE components of the incident
field. But, this is unnecessary, as this knowledge can be
deduced from the fields themselves. Indeed, this crucial
property forms the foundation of the transformation, and even
the reinterpretation of magnetoelectric coupling discussed in
Sec. IV. We exploit the redundancy among the six incident field
components of (1), which are instead specified by only three
variables for a given k and polar incidence angle 6: the complex
amplitudes of the TM and TE waves and azimuthal incidence
angle ¢. Thus, &™ and @™ can be combined into a single po-
larization independent tensor &. This inverse transformation,
from (7) to (1), is more physically illuminating, and is derived
below.

For propagation constant k=% cos ¢ sin6 + ysin ¢ sinf +
Z cos 6, the TM and TE plane waves are

E = EM(—% cos¢cosd — §singcos 6 + £ sinf)e*",
H = EM(&sin¢ — § cos p)e*" ©)
|

mm,TE

My sin? 6 | cos O (o™ — o

where off-diagonal elements can be directly retraced to the
coupling present in (12). Repeating the procedure for E, and
H, produces the remaining off-diagonal elements, combining
a@™ and @™ into & in the form of (6), where

ee —2(1,2, ee,TE 2 ee,TM
af =k (Koo = o), (14)
—2(1,2 ,TM 2 ,TE
Ole = kj_ (k Ole' — Oljjm ),

kizﬂk(aef’TE - otef’TM) ="
— g™ = kIZﬂk(aTm,TM _ aj_qm,TE)’

15)

and k? = k* — B2, thus defining the inverse transformation
from (7) to (1). In (15), the second equality follows from
Onsager relations [60,61]. The axial components of the two
formulations are identical and unaffected by the transformation
(16)

ee __ _ee,TM
OlZ —az , o

mm __ _ mm,TE
z - az

TE ™
Px 1 afF —af" M cos? 0
- mm,TM
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and
E = E[®(—%sin¢ + § cos p)e*",
H = EgE(—f cos ¢ cos — Psing cost + Zsinf)e’ ",
(10)

Two crucial ratios between field components E,/H, and
E,/H, characterize the polarization independently of ¢.
For example, E,/H, = cosf for TM incidence, but equals
1/cosf for TE incidence. The E, and H, fields resulting
from a predetermined superposition of (9) and (10) are

E.| _ [cosOcos¢ sing EM .
Hy|~ 7| cos¢p  cosOsing || ETE | (1)

This relation can be inverted to deduce the complex amplitudes
EqM and E* from a given incidence field, thereby decompos-
ing the fields into their TM and TE components

™
Ex

" —cos? 6 cos @
H" | 1 | —cos6 1 E, (12)
ET | sin?0 1 —cost || Hy|
HyTE cosf —cos?6

as denoted by superscripts TM and TE. The fields E, and H,
have been successfully decomposed without prior knowledge
of Eg Mand E g E independently of azimuthal angle ¢. However,
a coupling between magnetic and electric fields is introduced,
arising without any reference to polarizability tensors.

With E, and H, appropriately partitioned, tensor elements
from @™ and &™F in (8) can be individually applied and their
dipole moments subsequently combined to yield

™ e, TE
cos@(aj_e’ —af” ) |:Exi|
™ TE ’
) ™M =T cos? g | Hy

(

since axial fields E, and H, are already exclusively associated
with TM or TE incidence, respectively.

The forward transformation, from (1) to (7), can be
obtained by inverting the system of equations (14) and (15),
hence establishing the mathematical equivalence between the
magnetoelectric formulation and its TM/TE reformulation.
Alternatively, the transformation can be derived directly
from (1) and (6) if exclusively TM or TE fields (9) and (10)
are used as inputs. Then, by exploiting the characteristic
ratios Ey/H, and E,/H., (6) can always be shown to
produce the same mathematical result as a diagonal tensor,
of the form (8). Furthermore, (7) and (8) can be derived
ab initio, and its involved details will be supplied in a
forthcoming paper. Note that this transformation is not
the diagonalization of &, in part because it produces two
tensors (8) that together occupy a vector space twice the size
of (6).

When applied to the polarizability tensor derived by Strick-
land et al., the transformation produces explicit expressions

13)
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for tensor elements in (7) and (8):

k
ae™ = —8ik12< — M4 ch),

™ . B
oY = —Slklz<clTM - —c’f),
k
ee,TE __ .g =2 TE ﬂ X
a = =8k (Cl —;cl>,

aTm,TE — _8ikl2< _ C’IFE + Ec)lc)v
B
where CITM and CITE are the TM and TE Mie scattering
coefficients for dipolar cylindrical harmonic incidence fields,
and ¢} is the cross coupling between TM and TE during
scattering. These are defined according to the notation of
Strickland et al. [43], which features minor differences relative
to common textbook definitions [42].

The explicit form of (17) shows that the transformation
preserves the units of &, the common unit being meters
squared. Note also that @™(w,8) and @ (w, 8) both depend
on B/k, corresponding to cos6. Furthermore, each tensor
element implicitly depends on 6 via the Mie coefficients.
Angle-dependent tensors, though atypical, do not impede
the subsequent application of homogenization theories. The
resulting constitutive relations also depend on the angle of
incidence [18]. The angle dependence arises due to the
longitudinal invariance of the cylinders, which discriminates
all cylinder properties according to the harmonic variation .
However, angle-dependent polarizabilities are not exclusive
to cylinders, and arise whenever the gradient of the fields is
important [63,64].

a7

IV. DISCUSSION

Using the systematic and universal language of group
representation theory, we have demonstrated that the mag-
netoelectric coupling of infinite cylinders derived by Strick-
land et al. is entirely consistent with the existing literature
on symmetry and magnetism. Magnetoelectric coupling of
microscopic polarizability & only vanishes when both the
scatterer and the basis of dipoles representing it are inversion
symmetric. The bulk of the literature concerns point dipoles
or their homogenization [38,49-55], which are closed under
inversion, so inversion symmetric scatterers automatically
have zero magnetoelectric coupling.

Meanwhile, no unique choice exists for defining line
dipoles. Using e#? longitudinal variation as in (3), seemingly
the most natural choice as it matches the spatial variation
of obliquely incident plane waves, has the disadvantage that
the resulting dipoles do not retain all the symmetries of
the cylinders which they model. Since polarizability & is
defined in terms of these line dipoles, this introduces a
dependence to @(w, 8), whose symmetry properties may differ
from polarizability tensors that are functions of w alone,
a(w). The consequent nonzero magnetoelectric coupling may
be said to arise from oblique incidence, which breaks the
cylinder’s inversion symmetry [43]. However, the analysis
reveals a subtle distinction compared to the symmetry breaking
of extrinsic chirality, which arises even for point dipoles due
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to the restricted orientation of the incidence relative to the
scatterer [46,47,54,65].

Magnetoelectric coupling is not a necessary consequence of
a polarizability tensor that has 8 dependence, and alternatively
tensors that are valid for both ¢*#* incidence can be retrieved.
Two tensors (7) and (8) result, both of which are diagonal,
thus conforming to symmetry expectations of the cylindrical
geometry. Far from being arbitrary, the response partitions
into its TM and TE contributions @™ and &™. The TM/TE
reformulation predicts identical results to the magnetoelectric
formulation & given by (1) and (6), their equivalence estab-
lished by the transformation (14) and (15).

The two formulations can thus be regarded as complemen-
tary, and their practical utility depends on the application.
The magnetoelectric form (6) applies to general incidence,
while the simpler diagonal forms (8) apply only to restricted
incidence, although we show that decomposition of arbitrary
incidence fields into its TM and TE components can always
be achieved. Correspondingly, homogenization based on the
magnetoelectric form produces more generally applicable
constitutive relations, but the resulting expressions are more
complex. In the electrodynamic limit, this typically proceeds
by accounting for the multiple scattering from all cylinders in
the lattice, then averaging fields over the unit cell. While the
extension of the former to magnetoelectric tensors is relatively
straightforward [66], simplifications result from the latter if
a is diagonal. For example, field averaging can be achieved
by taking the matrix inverse of & [18], but a more complex
dependence on magnetoelectric coupling arises even if a
scalar magnetoelectric term is present [39]. Thus, the diagonal
formulation is preferable and applicable if the response of
the opposing polarization can be neglected. This occurs, for
example, at frequencies where the difference between TM
and TE polarizabilities is small, and where cross-polarization
scattering is small or zero, such as for perfectly conducting
cylinders or dilute arrays of weak scatters.

The second primary benefit of the TM/TE reformulation is
the insights it provides, discussed below and in Secs.IV A
andIVB. With the transformation in hand, we may set
aside mathematically oriented group-theory arguments for
the appearance of magnetoelectric coupling, and henceforth
seek physically motivated explanations into its origins and
properties. The TM/TE reformulation is not only simpler by
virtue of its diagonal responses, but also coincides with the
familiar separation of cylinder properties into TM and TE
components. Note that the following observations apply to
the in-plane elements of @, @™, and &' since the axial
polarizabilities are identical between the two formulations,
as per (16).

The magnetoelectric coupling of & can be conceptualized as
accounting for the difference between TM and TE polarizabil-
ities, combining two differing diagonal responses @ ™ and &™F
into a single tensor with off-diagonal terms. This equivalence
stems from the freedom to attribute the induced dipoles to
either E or H fields, as these are indivisible components of
plane-wave inputs (9) and (10). From (14), we arrive at the
interpretation that the diagonal terms ¢ and o' within the
magnetoelectric formulation & of (6) correspond to a weighted
average of the TM and TE polarizabilities of (8). Then, the
off-diagonal magnetoelectric coupling terms «“” and o™
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encode the difference (15) between TM and TE responses.
Note from (17) that this difference only requires contrast
between the TM and TE scattering coefficients CITM and clTE.
A nonzero cross-coupling coefficient c{ is unnecessary, a case
we revisit in the next section.

The structure of the nonzero off-diagonal terms is also
revealing, corresponding precisely to the characteristic ratios
E./H, and E,/H, that enable an arbitrary incidence to
be decomposed into its TM and TE components, via (12).
This decomposition is achieved without foreknowledge of
incidence polarization, but introduces a coupling between E
and H fields which originates entirely from the geometry
of plane waves. For example, both E, and H, contribute to
E™ the TM component of E,, with strengths that depend
implicitly on incidence polarization via the ratio E,/H,. The
transformation reveals that the off-diagonal magnetoelectric
coupling terms emerge from this decomposition, which is
embedded within the polarization tensor & to ensure that the
correct induced moments p and m are predicted regardless of
polarization. Thus, the magnetoelectric contribution to the total
p and m also depends implicitly on incidence polarization via
the incidence fields. We may conclude that the magnetoelectric
and TM/TE formulations are fully interchangeable, and their
sole distinction is whether this decomposition has been
incorporated into the tensor.

A. Quantitative properties and numerical examples

Symmetry and spatial dispersion arguments concern the
existence of magnetoelectric coupling [57], but are silent on its
quantitative behavior. We now exploit the interchangeability of
the two formulations to gain such insight. Key is (15), tracing
the magnitude of «®” to the difference between polarizations in
both the electric and magnetic polarizabilities, which are given
explicitly in (17). We examine both dielectric and metallic
cylinders, discussing both the scaling of magnetoelectric
coupling at long wavelengths and its strength at resonance.

We consider first the scaling of a high-index dielectric
cylinder in vacuum, using parameters similar to the examples
of Strickland er al. Plotted in Fig. 1(a) is «" at oblique
incidence, showing its insignificant magnitude at long wave-
lengths due to its weak k* scaling. Such scaling can be
anticipated neither from Onsager relation requirements [61,67]
nor from arguments based either on group theory or the
spatial dispersion of magnetoelectric coupling [56-58]. But, it
may be deduced by considering the magnetic polarizabilities
o™ and o™ individually. As seen in Fig. 1(c), these
both have identical quadratic scaling, so their difference is
quartic to lowest order. The same quartic dependence of «®™"

can also be deduced from electric polarizabilities ™" and

aef’TM in Fig. 1(b), due to the symmetry between «*”* and o™
guaranteed by the Onsager relations embedded in (15).

As already observed by Strickland ef al., magnetoelectric
coupling is nonzero even for perfectly conducting cylinders.
This finding is unexpected if one adopts the seemingly
plausible, but ultimately erroneous, view that magnetoelectric
coupling originates from the polarization cross coupling
between TM and TE waves during scattering at oblique
incidence. The perfectly conducting case violates this view,
as c{ from (17) is zero for all incidence angles [43,68]. This is
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FIG. 1. Various components of polarizability, indicated by the
legends, as a function of wave number k and cylinder radius a. The
geometry is a dielectric cylinder € = 40 in vacuum excited at polar
angle of incidence 6 = m /4. Shown are (a) magnetoelectric coupling,
(b) electric polarizabilities, and (c) magnetic polarizabilities, where
(a) is calculated using (15) and (b) and (c) using (17). TM and TE
polarizabilities are respectively plotted in blue and red, while real and
imaginary parts are respectively indicated by solid and dashed lines.

exemplified by the stronger scaling of «“” at long wavelengths,
approximately proportional to k>. Unlike the dielectric case,
both TM and TE polarizabilities now converge to a constant at
k=0, given by o™ = ™" = —"™ = _o" T =
27a?. But, they differ at the quadratic term, so «o¢" =
k*a’* cos 8 —21n(ka sin ) + im]mwa®. Again, the origin of this
stronger scaling is inaccessible to group-theory or spatial
dispersion arguments. We note in passing that axial polariz-
ability af® of perfect conductors tends towards infinity at long
wavelengths, corresponding to the strong axial polarizability
of wire grid polarizers.

Moving away from the long-wavelength limit, the
magnetoelectric coupling of dielectric cylinders becomes
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FIG. 2. As in Fig. 1(b), but shows TM and TE polarizabilities at differing polar incidence angles 6 = 7 /12 (solid blue), 6 = /4 (dashed-
dotted red), and 6 = 57/12 (dotted black). At near-normal incidence, the first resonance manifests primarily in the TE response and the second
resonance in the TM. At oblique incidence, this continues to be true, though to a lesser extent for the first resonance.

prominent at resonance. Here, TM and TE responses may
differ substantially, e.g., at the second resonance near ka = 0.6
in Fig. 1. The peak present for the TE response is absent for
TM. Such contrast is likely a general feature at resonance as
evidenced by plotting polarizabilities as a function of polar
incidence angle 9, as in Fig.2. Each resonance is associated
with either TM or TE incidence at near-normal incidence,
and even at oblique incidence the resonances often retain
their TM or TE character. This permits some intuition into
magnetoelectric behavior at oblique incidence to be deduced
from the normal incidence case, where a clear demarcation
between TM or TE resonances exists. A second consequence
of (15) is that magnetoelectric coupling resonances do not
occur independently of electric and magnetic resonances. This
is most apparent at the second resonance of Fig. 1, where
only TE polarizabilities show a response. Then, the full set of
equalities in (15) implies similarity between the magnitudes
of electric, magnetic, and magnetoelectric resonances. This
contrasts with scatterers that lack inversion symmetry, which
allow magnetoelectric coupling to differ in magnitude from
either the electric or magnetic resonance [69].

So far, the discussion has focused primarily on the real part
of polarizability, but we now specifically address the imagi-
nary parts of Figs. 1(b) and 1(c). Both positive and negative
imaginary parts are observed even for lossless cylinders. This
does not violate any energy conservation requirements, as we
can verify that the energy extinguished from the incident field
matches the energy radiated by p and m. Appendix B derives
the Sipe-Kranendonk relations (B6)—(B9), which express this
energy balance directly in terms of tensor elements within @™
or &TE. Specifically, (B7) and (B9) state that the imaginary
parts of both electric and magnetic polarizabilities must be
considered together to satisfy energy conservation.

B. Symmetry properties

A striking symmetry property of the magnetoelectric
coupling, as noted by Strickland et al., is its odd dependence
on wave vector. While this property can be derived using math-
ematical arguments [57], we show that its simple geometric
origin is revealed once the role of the off-diagonal terms as
accounting for the difference between TM and TE responses
is identified. We discuss a key practical consequence of this

odd symmetry, which prevents the direct numerical retrieval
of the magnetoelectric coupling.

0Odd symmetry @“"(w,8) = —a“"(w, — B) implies that the
sign of magnetoelectric coupling depends on the choice of
mathematical coordinate axes. This curious feature disappears
in the TM/TE formulation since the elimination of the
off-diagonal terms restores the one-to-one correspondence
between the electric dipole moments and their true origin,
the electric fields. Consider the effect of changing the angle of
incidence of an impinging plane wave 8 — —f as in Fig. 3(a).
Field components E, and H, remain unchanged, but E,
changes sign. From the diagonal TM tensor & ™ (8), it follows
that p, should also change sign. Under the magnetoelectric
view, however, the unchanged H, acts as a proxy for the E,
field and also contributes to p,. Since an identical result must
be predicted, @“™ is required to change sign to match the sign
change in p,. This example illustrates in qualitative terms that
spatial dispersion of magnetoelectric coupling within &(w, 8)
is fully captured by the TM/TE decomposition, which in
turn originates from the infinite translational symmetry of the
cylinder.

Odd symmetry holds consequences for an important inci-
dence configuration consisting of counterpropagating waves
shown Fig.3(b). In the literature, such configurations are
commonly used alongside numerical methods to retrieve po-
larizability tensors [70-72]. At sufficiently long wavelengths,
E fields destructively interfere over the cross section of the
scatterer, leaving only H, nonzero. In the context of magne-
toelectric coupling, any induced electric moments can thus
be unambiguously attributed to H,. However, magnetoelectric
coupling can never be isolated with this configuration since
both impinging plane waves are of the same polarization. No
electric moment will be induced in the absence of E fields,
which is an immediate consequence of diagonal @™ [Eq. (8)].

This property is insignificant for the retrieval of the
polarizability tensors of cylinders with circular cross sections
since exact Mie solutions are available. Strickland er al.
exploited this by matching the scattered Mie fields directly
to the radiated fields of line dipoles, bypassing the need to
use counterpropagating waves [43]. However, the symmetry
analysis of Sec.II can be used to show that other cylinders
with inversion symmetry, such as those with square and
elliptical cross sections, also exhibit magnetoelectric coupling.
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FIG. 3. Three examples of incident plane waves demonstrating various properties of the magnetoelectric coupling, where ¢ indicates
inclination above the x-y plane. (a) Changing the angle of incidence ¥ — —%, or equivalently 8 — —p, also changes the sign of the induced
moment p,. This originates from the change in sign of E,, while H, and E, remain unchanged. (b) Two counterpropagating waves are incident,
arranged so that E, and E; fields cancel while H, fields constructively interfere. No electric dipole moments p are induced. (c) Switching to
isometric view, two incoming plane waves of both TM and TE polarization are shown, with identical ¥ but orthogonal azimuthal angles ¢.
Magnitudes are chosen such that E, fields cancel, but H, fields do not. A p, moment is nevertheless induced. The only other nonzero fields

are £, and H,.

Here, the inability to retrieve the magnetoelectric response
using counterpropagating waves becomes problematic. Our
transformation (14) and (15) provides a viable alternative,
allowing the TM and TE responses of the form (8) to be
independently retrieved, which can be combined into a single
tensor of the form (6) applicable to general incidence.

Only when both TM and TE waves are simultaneously
impinging can magnetoelectric coupling be isolated by a
superposition of plane waves. In contrast to the previous
example, Fig.3(c) shows two plane waves of orthogonal
polarizations impinging at orthogonal azimuthal angles ¢.
The amplitudes are chosen such that in-plane E fields cancel
but in-plane H fields do not. An in-plane electric dipole
moment p, then appears to be induced by the only nonzero in-
plane field H,, seemingly a manifestation of magnetoelectric
coupling. Alternatively, the induced p, can be considered an
artifact of the difference between TM and TE polarizabilities.
Even though E, is zero, this is achieved by superposing
plane waves of different polarizations, so a remnant electric
dipole moment p, is induced equal to the difference between
a‘f’TM and ozef’TE, as in (8) or more explicitly in (17).
In this analysis, the nonzero axial fields E, and H, are
ignored, as no coupling exists between axial and in-plane
fields and moments in either formulation. These provide
concrete examples of magnetoelectric coupling accounting for
the difference between TM and TE polarizabilities and of the
general interchangeability between the magnetoelectric and
TM/TE interpretations.

V. SUMMARY

We have provided two independent explanations for the
appearance of magnetoelectric coupling in the microscopic
polarizability of an infinite cylinder, which defies initial
expectations due to the cylinder’s center of inversion. First,
we provide formal symmetry arguments using group represen-
tation theory, which restricts the allowable nonzero elements
of polarizability & based on the set of symmetry operations
of the cylinder’s point group D;. Unlike point dipoles, the

line dipoles (3) used to model the cylinder response are not
closed under inversion (5), due to the imposed €% variation.
The lower symmetry of the line dipoles only transforms as
an irreducible representation of Cw,,, which then constrains &
to have the form (6), with nonzero magnetoelectric coupling.
This resolves the discrepancy with existing group-theoretic
symmetry restrictions on &.

Second, we decompose & into its TM and TE compo-
nents (7) and (8), valid for both e¢*#? incidence and thus
eliminating the need for magnetoelectric coupling. A transfor-
mation (14) and (15) is derived between the magnetoelectric
form (1) and (6) and its TM/TE reformulation, enabled by
the ability to decompose an arbitrary incidence into its TM
and TE components (12). The transformation demonstrates
that diagonal terms within the magnetoelectric formulation (6)
are the weighted average of TM and TE polarizabilities (14),
while off-diagonal magnetoelectric coupling terms account for
the difference (15). The magnetoelectric contribution to the
induced dipoles varies implicitly with incidence polarization,
thus merging two dissimilar responses (8) onto a single
tensor (6). The TM/TE reformulation predicts identical results
to the magnetoelectric formulation, so their simpler diagonal
forms facilitate simpler homogenization procedures.

The simplicity and familiarity of the TM/TE decomposition
enables ready physical insights into the behavior of magne-
toelectric coupling. The odd dependence of magnetoelectric
coupling on B is immediately apparent from the geometry
of plane waves as a function of polar incidence angle, as
is the inability to isolate magnetoelectric coupling using
counterpropagating waves. A key advantage of the TM/TE
formulation is the quantitative insights it also offers, via (15).
At long wavelengths, magnetoelectric coupling scales as
k* for dielectrics and as k2 for perfect conductors, which
follow from the contrast between TM and TE responses.
This contrast becomes pronounced at Mie resonances, so (15)
predicts that the magnitude of magnetoelectric coupling
becomes comparable to the magnitudes of both electric and
magnetic resonances and that these resonances all occur
simultaneously.
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APPENDIX A: DERIVATION OF SYMMETRY
RESTRICTIONS

This section derives the restrictions on @ from geometric
symmetries alone, culminating in the form (6). Use of theorems
and tools from group representation theory is minimized,
although some steps may be simplified or stated more
rigorously with their aid.

Consider the polarizability tensor from (1),

p . &66 &em E
m - &me &mm H ’

suppressing for brevity the superscripts on E and H. We
may simplify the derivation by treating each quadrant of (A1)
separately, beginning with

(AD)

p=a“E. (A2)
Consider first a rotation of the scatterer. In general, a scatterer
is not invariant under rotation, so p and E are related by a new
polarizability tensor

p=@“)E. (A3)
If, however, both scatterer and incidence fields are corotated,
then the experiment is unchanged, so induced dipoles are sim-
ilarly corotated and are predicted by the original polarizability
tensor

p =&“E. (A4)

J

o’ cos? 2¢ + oy sin 2¢) + %(aee + a;i) sin 4¢

Xy
—a%% cos? 2 + a% sin? 2 + 3 (s — a%¢) sind¢
0

0 0

+ 0 0
gy €08 2¢p + gy sin2¢  afysin2¢ — oy cos 2¢

Applying (A7) to the first element of (A10) requires that

o = ol cos” 2¢ + ol sin® 26 + 3 (f + %) sindgp
) (A1)
for all possible angles ¢, which can only be achieved if

oy = oy, o

e
xy a_\'x‘

(A12)

Applying (A7) to the second element of (A10), and inserting
the restrictions (A12) already obtained gives

ee __ ee 2 ee :.2
oy = —oy cos” 2¢ — a f sin® 2¢,

(A13)
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This is true regardless of any symmetries of the structure.
The primed quantities are related to the originals by the
transformation 7', which represents the rotation

p=Tp, E =TE. (AS5)

Thus,

@y =T&“T". (A6)

By the invariance of electromagnetism under parity [54], (A6)
also applies to reflections, or more generally any rigid
transformation 7. The caveat is that (A5) must be true: the
set p is closed, which enables the new dipole moments p’ to
be expressed as a linear combination of p given by T'.

If now the scatterer is invariant under transformation 7T,
the initial experiment is recreated when the scatterer is rotated
even if the incidence is not corotated. This furthermore implies

(&ee)/ — C=(ee. (A7)

The combination of (A6) and (A7) yields the symmetry re-
strictions. The analysis for the other quadrants of (A1) follows
identically, noting that pseudovectorial magnetic quantities
transform by —7 if the transformation includes a reflection,
which can be be deduced from the sign of det(T').

The complete set of restrictions on & under the Cy,, group
can be derived by considering all possible reflections o,(¢),
where ¢ is the azimuthal angle defining a reflection plane
coplanar with the cylinder axis. In matrix form,

cos 2¢ sin 2¢ 0
T =|sin2¢ —cos2¢ 0], (A8)
0 0 1
which operates on
e e«
a’ = |ayy oy oyl | (A9)
oy ogy o
By (A6), this gives
—ag cos? 2¢ + oy sin 2¢) + %(a;i — aii) sin4p O
oy cos? 2¢ + agl sin® 2¢ + %(aif + “;i) sind¢p 0
0 0
oy €08 2¢p + o sin2¢p
ays sin2¢ — aj? cos2¢ |. (A10)
o
[
which immediately yields
oy, = oy =0. (Al14)

Similarly treating the second line of (A10) imposes the further
restrictions

(A15)

while off is a free parameter.
Repeating the procedure for the restrictions on &“" requires
a slight modification to (A6),

(&em)/ — _T&emTfl’

(A16)
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producing a result almost identical to (A10). Applying (A7)
and (A16), the key tensor element now reads as

2 -2 | -
agy = agy cos®2¢ — afl sin® 2¢ — 5 (agy — o) sinde,

(A17)
SO
oy =y, ol = —all. (A18)
But now
a" = —a®" cos? 2 — oy sin” 2¢ — %(afc’y" + ot;f;’) sin4¢,
(A19)
thus requiring
@l = aft =0. (A20)
Furthermore,
055’2” = a;’;l = (x;;n = (x;;n = (xf:n = 0. (Azl)

By similarly treating the other two quadrants of the
polarizability tensor, the final symmetry allowed form under
the C, point group is obtained [54]:

¢ 0 0 0 —a™ 0
0 ¥ 0 am™ 0 0
0 0 a* 0 0 0 A2)
0 o™ 0 ™ 0 0|
—™ 0 0 0 o™ 0
0 0 0 0 0 amm

matching (6) after simplifications to notation enabled by
symmetry.

The additional restriction due to Do, symmetry is invari-
ance under inversion. Matrix 7 is particularly simple, with
electric quantities transforming as their negative and magnetic
as the identity. But, as discussed, this fails to hold for the
¢'P* line dipoles, for which (A5) is undefined. Continuing
the analysis for inversion symmetry, we apply the equivalent
of (A6) to the full tensor

_, aee _gem
O =1 =me =mm |»

5 5 (A23)

so applying the equivalent of (A7) demands that all magneto-
electric quadrants be zero. The final form of the tensor under
Do Symmetry is

@t 0 0 0 0 0
0 o« 0 0 0 0
0 0 «° 0 0 0
o 0 0 o™ o o |  (AM
0 0 0 0 o™ 0
0O 0 0 0 0 o

matching (8).

APPENDIX B: ENERGY CONSERVATION

Energy conservation imposes restrictions on the polariz-
ability tensor in the form of the Sipe-Kranendonk relations,
also known as the optical theorem [43,61,73,74]. These
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are a direct consequence of the balance between energy
extinguished from the incident field and the energy radiated
by lossless point dipoles. These relations were derived by
Strickland er al. [43] for the magnetoelectric formulation &,
but can also be derived for the TM/TE formulation (7), with
restrictions individually applicable to each tensor, &™ and
&TE, of (8).

The total radiated energy per unit length is given by an
integral enclosing the cylinder of the Poynting vector

1
Pra/l = 2—Z()Ref E x H* - dn. (B1)

This can be evaluated directly in terms of the line
dipoles (3) [43]:

k
Pra/l = Tzo[z"i('“'z + |m.|*)

6 4 B ps > + 1py P+ I+ Imy )
+2KB(pam’s + plmy — pym’s — pimy)]. (B2)

Meanwhile, the energy extinguished from the incident field is
given by

k
Poi/l = — Im[p - E* + m - H*). (B3)
27,

To express results directly in terms of elements of the
polarizability tensor, we substitute either @™ or &'F of (8)
into (B2) and (B3), giving

k
Pua/l = m—z[zkiqa;ﬂzwzf + ™2 H?) + (K + B?)
0

x (| PUEL* + |Ey ) + lof™ (| He|* + | Hy 1)}
+4kp Re( oM™ ExHY — afe ™ E,HY)], (B4)

k m
Pex/1 = Z_ZOIm [«|E.|* + o™ |H|?

e + [Ey ) + o™ ( H + |Hy )] (BS)

Here, the symbol «¢¢, for example, can refer to either ozef’TM
or af‘TE, depending on which of (8) was substituted.

The Sipe-Kranendonk relations are then derived by equat-
ing term by term. Treating first the TM case, contributions from
the z components can be separated and the fields canceled to
derive

4Tm (2™ = &2 [ate™ . (B6)
The in-plane contribution to Py,g has cross terms that depend
on both E and H, while P. does not. This can be resolved by
substituting the characteristic ratios between field component

pairs E,/H, and E,/H,, specific to each polarization. These
four field components yield two equations, which are identical
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as a result of symmetry:

PHYSICAL REVIEW B 94, 035142 (2016)

81m (2™ 4 Ko™ ™) = k22 [o ™ P — k2 B2 [0t ™ | 4 262 B2l ™ 4 o1 ™), (B7)

The procedure can be repeated for the opposite polarization completing the Sipe-Kranendonk relations

41m (@™ TE) = &2 o TE?, (BS)

2 e TE | g2 mmTE 22| ee.TE
8Im (Ko™ + Ba™ ") = k1 k* |

Y S A ) o o P ] (BY)
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