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Abstract

The profiles of narrow lattice solitons are calculated analytically using
perturbation analysis. A stability analysis shows that solitons centred at a
lattice (potential) maximum or saddle point are unstable, as they drift towards
the nearest lattice minimum. This instability can, however, be so weak that the
soliton is ‘mathematically unstable’ but ‘physically stable’. Stability of solitons
centred at a lattice minimum depends on the dimension of the problem and on the
nonlinearity. In the subcritical and supercritical cases, the lattice does not affect
the stability, leaving the solitons stable and unstable, respectively. In contrast,
in the critical case (e.g. a cubic nonlinearity in two transverse dimensions), the
lattice stabilizes the (previously unstable) solitons. The stability in this case can
be so weak, however, that the soliton is ‘mathematically stable’ but ‘physically
unstable’.

PACS numbers: 42.65.Jx, 03.75.Lm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solitons are localized waves that propagate in nonlinear media where dispersion and/or
diffraction are present. They appear in various fields of physics such as nonlinear optics,
Bose—FEinstein condensates (BECs), plasma physics, solid state physics and water waves.
The dynamics of solitons is modelled by the nonlinear Schrodinger (NLS) equation in the
context of nonlinear optics which is also known as the Gross—Pitaevskii (GP) equation in the
context of BEC.
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In the study of stability of solitons in a homogeneous medium, it is useful to consider the
d-dimensional focusing NLS

A (z,x) = —V?A — |A|PT' A, (1

where 7 is the longitudinal coordinate, x = (xy, ..., x4) are the coordinates in the transverse

plane, V2 = 9y, + - - - + dy,x, is the Laplacian operator and the nonlinearity is focusing with

exponent p > 1. In optics, the z variable in equation (1) is normalized by 2 L s, where L g is

the diffraction (Rayleigh) length and the x; variables are normalized by the input beam radius.
We delineate several cases for the NLS (1):

4
O<p—-1< 7 the subcritical case,
4 ..
p—1= 7 the critical case,
4 .
p—1> rE the supercritical case. 2)

In the subcritical case, the solitary waves A = ey, (x) of the NLS (1) are stable, while
in the critical and supercritical cases the solitary waves of the NLS (1) are unstable. The
profile of a stable solitary wave experiences only minor changes under small perturbations as
it propagates. On the other hand, unstable solitary waves can change dramatically due to the
effect of an infinitesimal perturbation. For the NLS (1), unstable solitary waves either collapse
after propagating a finite distance, or diffract as z goes to infinity [1, 2].

Solitons have been thoroughly studied in view of their potential application in optical
communications and switching devices (in nonlinear optics) or in quantum information
science (in BEC). Recent advances in fabrication and experimental methods now make
possible the realization of transparent materials with spatially varying, high contrast dielectric
properties. Such materials have various all-optical signal processing applications in optical
communications, see, e.g. [3,4]. In this case, the solitons are usually called lattice solitons.
Specifically, by a proper design of the dielectric properties of the medium, it may be possible
to avoid the blowup/diffraction instability in the critical and supercritical cases and to obtain
stable propagation of laser beams in those structures [5—8]. Thus, there is considerable interest
in understanding the propagation of light in modulated media.

Most studies of such media have considered linear lattices (potentials). In this case, the
equation of propagation is

iA.(z,x) = —V?A — |A]PTA + V(Nxw) A, 3)

where x1c = (x1, ..., xg,) are the lattice coordinates, 1 < diy; < d is the lattice dimension
and 1/N is the characteristic length-scale of change in the lattice. For example, if the lattice
is periodic, then N is the lattice period. In the context of nonlinear optics, linear potentials
are created by modulating the linear refractive index n in space. If the modulation/potential
is periodic, such structures are called waveguide arrays or photonic lattices. In the context of
BEC, the corresponding GP equation accounts for the interaction of the atoms with a magnetic
trap or, in the case of a periodic optical lattice, with interfering laser beams, see [9, 10] and
references therein.

Solitary waves of the NLS (3) with a general linear potential were studied in [11, 12], to
name a few of the earlier studies. Recently, many studies considered periodic potentials.
Theoretical and numerical studies of solitons of the NLS/GP equation were done for a
periodic potential in one [13-16], two [17-19] and three [20,21] dimensions. Experimental
realization of these solitons was obtained in one-dimensional waveguide arrays [22] and in
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two-dimensional optically induced photonic lattices in photorefractive media [23-27]. Some
studies also involved lattices whose dimensionality is smaller than the spatial dimension, i.e.
diar < d (see, e.g., [8,28]) and in media with a quintic nonlinearity (see [29] and references
therein).

Generally speaking, it was found that for some lattice types and propagation constants v,
the lattice can prevent the collapse and stabilize the solitons in the critical and supercritical
cases. However, the possibility that these stable solitons can collapse under a sufficiently large
perturbation was not mentioned in previous studies.

A detailed study of stability (and collapse) of solitons in a nonlinear lattice, i.e.

iA.(z,x) = —V?A — V(Nx)|A|P7'A, 4)

was done in [30,31]. In these studies it was shown that the soliton profile and (in)stability
properties strongly depend on whether it is wider than, of the same order as or narrower than
the lattice period. Specifically, it has been shown that the same nonlinear lattice may stabilize
beams of a certain width while destabilizing beams of a different width. Hence, any study of
the stability of lattice solitons should take into account the (relative) soliton width.

In this paper, we conduct a systematic study of the stability and instability dynamics of
solitons in linear lattices which are narrow with respect to the lattice period. The fact that the
solitons are narrow implies that there is a small non-dimensional parameter N, see equation (6).
This allows us to employ perturbation methods and to compute the soliton profile and related
quantities (soliton power, perturbed zero eigenvalues )»((){\;), see below) asymptotically.

In nonlinear optics, typical lattice periods are of the order of several microns and typical
input beam sizes are not smaller than this period [6,22,25,32,33]. Hence, typically, the input
beam sizes are not small compared with the lattice period. However, if the beam undergoes
collapse, the beam can become much narrower than the lattice period. In BEC, the standard
magnetic traps are significantly wider than the size of the condensate. Hence, the narrow
beams limit is of physical relevance. From a theoretical point of view, the limit of narrow
beams corresponds to the semi-classical limit of the NLS equation

ihA.(z,x) = —h>VZA — |[A|PYA + V(xR A, h— 0, 3)

see, e.g., [11,34]. Moreover, as discussed in section 6, in many cases, the results for narrow
beams also hold for beams of O(1) width.

The paper is organized as follows: in section 2, we present various physical models in
nonlinear optics and in BEC where equation (3) arises. In section 3, the equation for lattice
soliton is derived. It is shown that the soliton width is given by a single parameter

N:%«L n=v+V(0), (6)

where V (0) is the potential at the soliton centre. Therefore, the limit v — oo analysed in [35],
and the limit N — O analysed in [34], are in fact the same limit. It is well known that
narrow solitons of a periodic lattice are found deep inside the ‘semi-infinite gap’ of the linear
problem, away from the first band of the allowed solutions [15], i.e. for v — oo. Indeed,
in this case N — 0. However, from this argument it is not clear how large v should be in
order for the soliton to be narrow. This information is given by the parameter N, which is thus
a more informative parameter than the propagation constant v. Moreover, the parameter N
also includes the effect of the lattice strength on the width and reflects the fact that as V (0)
increases, the beam confinement increases, hence the beam becomes narrower>.

In section 3, we also use perturbation analysis to calculate the profile of narrow lattice
solitons for any dimension d, lattice dimensionality dj,; and nonlinearity exponent p. As can

5 Note, however, that expression (28) for the beam relative width is only valid for narrow beams.
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be expected, this calculation shows that the soliton profile depends only on the local properties
of the lattice, rather than on the full lattice structure. Hence, our study is relevant to any slowly
varying lattice, regardless of its long-scale properties. To simplify the notation, we mostly
consider lattices that are aligned in the directions of the Cartesian axes. In this case, the lattice
can be expanded as

diat
V(Nxia) = V(O) +5 [ N2 vx7+ ONY | (7)
j=1
Our results are valid, however, for any linear lattice, see remark 3.1.

In section 4, we analyse the stability of narrow lattice solitons. We first present the two
conditions for stability of lattice solitons in theorem 4.1. The first condition, known as the
Vakhitov—Kolokolov condition [36] or the slope condition [37], is that the power (or L, norm)
of the soliton should increase with v. Using the results of the perturbation analysis, we show in
section 4.1 that to leading order, the power of a narrow lattice soliton is equivalent to the power
of a soliton in a homogeneous medium, and that the change in the power due to the lattice scales
as N2.° In particular, the lattice causes the power to decrease (increase) for lattice solitons
centred at a lattice minimum (maximum). In addition, the power curve slope is more positive
(negative) for lattice solitons centred at a lattice minimum (maximum). Since in ahomogeneous
medium the slope has an O(1) magnitude in the subcritical and supercritical cases, the small
change in the slope by the lattice does not affect the sign of the slope. Accordingly, the slope
condition remains satisfied in the subcritical case and violated in the supercritical case. In
the critical case, the slope in a homogeneous medium is zero. As a result, the O(N?) change
in the power by the lattice leads to a positive (negative) slope for lattice solitons centred at a
lattice minimum (maximum). Hence, the slope condition is satisfied for narrow lattice solitons
centred at a lattice minimum, but is ‘even more’ violated for lattice solitons centred at a lattice
maximum.

The second condition for stability of narrow lattice solitons is the spectral condition [39],
and it involves the number of negative eigenvalues of the linearized operator LiNv) see
equation (34). In section 4.2, we first show that the spectral condition is violated if and
only if the lattice causes some of the zero eigenvalues of the homogeneous medium linearized
operator L, , (see equation (42)) to become negative. Then, we use a perturbation analysis to

show that the values of the perturbed zero eigenvalues )L((){\;) are given by
) _ O NP+ O, J=1. . du,
* o, j=du+1,....d,
where
5= pR2—-d)+2+d
= P ,

see lemma 4.2. This calculation shows that the eigenvalues become positive (negative) for
solitons centred at a lattice minimum (maximum). Hence, the spectral condition is satisfied
(violated) for solitons centred at a lattice minimum (maximum). This calculation generalizes
the result of Oh in the one-dimensional cubic case [11] to any dimension d, any lattice
dimension dj,; and any nonlinearity exponent p.

In order to test the validity of the analytical formula for )L((){\;), we also compute these

eigenvalues numerically. For d > 2, the matrix that represents the linearized operator Li]\? is

6 For comparison, the change in the power due to a nonlinear lattice is O(N?) in the subcritical and supercritical
cases but O(N*%) in the critical case [30,38].
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Table 1. Stability of narrow lattice solitons. Condition leading to instability is marked by * for a
failure to satisfy the slope condition and by © for a failure to satisfy the spectral condition. In the
case of instability, its dynamics is indicated in parentheses.

Lattice minimum Lattice maximum
Subcritical Stability Instability+ (drift)
Critical Stability Instability™ (blowup + drift)

Supercritical ~ Instability* (blowup)  Instability™ " (blowup + drift)

very large. As a result, standard numerical schemes (e.g. Matlab’s eig or eigs) usually fail
to compute its eigenvalues. In order to overcome this numerical difficulty, we use a numerical
scheme which is based on the Arnoldi algorithm, see appendix C. While in this study we ‘only’
use this scheme to verify the validity of the analytical approximation of the eigenvalue, we note
that in the case of non-narrow lattice solitons, the eigenvalue cannot be computed analytically,
and the only way to check the spectral condition is numerically. Moreover, this numerical
scheme can be used in similar eigenvalue problems in which large matrices are involved.

Combining the results of sections 4.1 and 4.2, we show in section 4.3 (proposition 4.2)
that in the subcritical and critical cases, narrow lattice solitons are stable when centred at a
lattice minimum, and unstable when centred at a lattice maximum or at a saddle point. In the
supercritical case, narrow lattice solitons are unstable at both lattice maxima and minima.

Proposition 4.2 specifies when the two conditions for stability are violated. It does not,
however, describe the resulting instability dynamics. The relations between the condition
which is violated and the instability dynamics were observed in [30,31] for a nonlinear lattice
and in [40] for a linear delta-potential to be as follows:

(i) if the slope is negative, the soliton width can undergo significant changes. In the critical
and superecritical cases, this width instability can result in collapse. In the subcritical case,
this width instability can ‘only’ result in a ‘finite-width’ instability, i.e. the soliton width
can decrease substantially, but not to zero.

(ii)) When the spectral condition is violated, the solitons undergo a drift instability, i.e. the
soliton drifts away from the lattice maximum towards the nearest lattice minimum.

(iii)) When both conditions for stability are violated, a combination of a width instability and
a drift instability can be observed.

In the case of narrow lattice solitons, the slope is always positive in the subcritical case.
Hence, the instability due to a negative slope is a blowup instability and not a ‘finite-width’
instability. Furthermore, in section 4.4 we prove that when the spectral condition is violated
(i.e. if the soliton is centred at a lattice maximum or saddle point), narrow lattice solitons
undergo a drift instability, i.e. they move away from their initial location at an exponential drift
rate. In contrast, solitons centred near a lattice minimum (for which the spectral condition
is satisfied) undergo small oscillations around the lattice minimum. The above observations
on the condition leading to instability and the type of instability dynamics are summarized in
table 1.

In section 5, we study the dynamics of solitons in the two cases where the small effect
of the lattice changes the stability. As observed in [30,31], in such cases, it is important to
study both stability and instability quantitatively. In section 5.1, we discuss the strength of
the stabilization induced by the lattice for solitons centred at a lattice minimum in the critical
case. To do so, we use the concept of the stability region, i.e. the region in function space of
initial conditions around the soliton profile that lead to a stable propagation. As in the case of
a nonlinear lattice [30,31], our results indicate that the (9(]\7 2) small slope of the power curve
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implies that the stability region is O(N2) small’. Therefore, although the two conditions for
stability are satisfied, these solitons can become unstable under extremely small perturbations.
Practically, this means that in the critical case, ‘mathematically’ stable solutions can be
‘physically’ unstable, i.e. become unstable under typical physical perturbations. We illustrate
these results using two standard types of lattices: a sinusoidal potential, which is typical in
photorefractive materials [23,25] and in BEC [41], and a Kronig—Penney step lattice (periodic
array of finite potential wells) [42], which is typical for manufactured slab waveguide arrays,
see, e.g., [13,22,33]. We study numerically the stability of solitons under random perturbations
that either increase or decrease the total power of the soliton and observe that narrow lattice
solitons are ‘mathematically’ stable but ‘physically’ unstable. The stability is particularly weak
for Kronig—Penney lattice solitons, for which the slope is exponentially small. In addition,
we observe that when the perturbation is sufficiently ‘non-small’, both the sinusoidal and KP
(stable) lattice solitons can undergo a blowup instability. This shows that in the absence of
translation invariance, stability and blowup can co-exist in NLS equations [30,31,43].

In section 5.2, we show that the opposite scenario is also possible, i.e. ‘mathematically
unstable’ solitons can be ‘physically stable’. This occurs for subcritical narrow lattice solitons
centred at a lattice maximum, which are unstable due to a violation of the spectral condition
(proposition 4.2). We show that the drift rate is exponential in (—A(()N))l/ 2. Therefore, narrow
solitons, for which A(()N) is O(N?) small, experience very slow drift and can thus be ‘stable’ for
the distances/times in experimental setups. In particular, we observe that the Kronig—Penney
lattice soliton drifts much more slowly than the sinusoidal lattice soliton of the same width.
Section 6 concludes with some concluding remarks.

2. Physical models

We consider the d-dimensional NLS equation (3) with a linear lattice in d}, dimensions
(1 < dix < d). This model describes numerous physical configurations. For example,
beam propagation in a Kerr slab waveguide with a lattice is modelled by

1A (z,x) = —A., — [APA+ V(Nx)A. ®)
Inthiscase, p =3,d =dis = 1,x =X, = x and V = V(Nx), see, e.g., [15,22,44]. Beam
propagation in bulk Kerr medium with a two-dimensional lattice is modelled by

iA.(z,x,y) = —V?A — |APA+ VA. )
Inthiscase, p = 3,d = 2andx = (x,y). If V = V(Nx, Ny), then djy = 2, and
X = (x, ), see, e.g., [17-19];if V = V(Nx) then djoy = 1, and x5 = x. In the latter case,
the dimension of the lattice dj, is smaller by one than the dimension of the transverse space
d, see, e.g., [8,28,31].

Propagation of ultrashort pulses in a slab waveguide is modelled by

1A:(z, x,1) = —Agx + B2Ay — |APA+ V(NX)A, (10)
where B, is the group velocity dispersion (GVD) parameter. In the case of anomalous dispersion
(B> < 0), the time coordinate ¢ is effectively an additional transverse dimension. Then,
equation (10) corresponds to equation (3) with p = 3,d = 2,x = (x, 1), dix = l and xj = x,
so the dimension of the lattice dj, is smaller by one than the dimension of the transverse
space d, see, e.g., [8,31]. Similarly, propagation of ultrashort pulses in a 2D optical lattice is
modelled by

iA.(z,x,y,1) = —=V?A+BA, — |APA+ VA, (11)

7 1In the case of a nonlinear lattice, the slope, hence the size of the stability region, is O(N*) small, implying an even
weaker stability [30, 38].
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which for 8 < 0 corresponds to equation (3) with p = 3,d = 3 andx = (x,y,t). If
V = V(Nx, Ny), then diy = 2, and x1,c = (x,y) [21]; if V = V(Nx) then di;x = 1, and
Xlat = X.

The linear lattice V in equation (3) varies in the transverse coordinates but not in z. In
some applications, the lattice varies in the direction of propagation z. Such problems, however,
will not be studied in this paper.

Equation (3) also models the dynamics of BECs with a negative scattering length. In
this case, z is replaced with ¢. In BEC, typically x = (x, y, z), i.e. d = 3, but under certain
conditions the cases d = 1 and d = 2 are also of physical interest, see, e.g., [45,46]. The
exponent p is usually equal to 3 but can also be equal to 5, see [29] and references therein. In
the BEC context, both a parabolic potential and a periodic potential appear in the experimental
setups [9].

3. Narrow lattice solitons

We look for lattice solitons, which are solutions of equation (3) of the form

A(z,x) = e u™ (x), v >0, (12)
where (™) is the solution of

V2u™M (x) + @My — [v+ V(Nxp) Jul = 0. (13)
1(;?3 of the lattice
[47]. The boundary conditions

We consider lattices which are symmetric with respect to a critical point x
0
lat

= 0 and u{™ (0c0) = 0. Without loss of generality, we set

V. Hence, the soliton maximal amplitude is attained at x
for equation (13) are Vu™ )(xl(gt))
O

We study solutions of equation (13) which are narrow with respect to the lattice
characteristic length-scale. A priori, the relative width of a lattice depends on the lattice
strength, the lattice period (or characteristic length) 1/N and the propagation constant v. We
now show that in the case of narrow solitons, one can rescale equation (13) to a form where the

relative width of the beam is given by a single parameter N. In order to achieve that, we define

n=v+V(0), N =N/, ut™ (x) = 07T ug (/). (14)
Then, equation (13) becomes
Vg (®) +uf — [1+ V(NEu)lug =0, Vug(0), ugz(co) =0, (15)
where
; ; o oo V(NEW) = V(0)
BV Fus= Ve VR = ———— (16
When N « 1, we can expand the solution of equation (15) as a power series of N2 ie.
uy® =U(E) + N?g @) + O(NY), a7

where U is the positive, radially-symmetric ground-state solution of
VU(ERD) +UP —U = 0. (18)

S~imilarly, since \7(0) = 0 and VV(O) = 0, the potential \7(1\7)?13[) can be expanded for
N <« 1as

V (N¥1y) = N*Va(Fry) + O(N), (19)
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where
[ 217
. o 19%V (1)
Vo) = D vk, v = (20)
k=1 2 3y;dyx Y1 =0

is the first non-vanishing term in the Taylor expansion of V which represents the local curvature
of the lattice at the soliton centre. In particular, V;(X},) = 0 (< 0) for lattice solitons centred
at a lattice minimum (maximum).

Remark 3.1. In order to simplify the presentation, we assume that the principal axes of the

lattice identify with the Cartesian axes {éy, ..., €4, }. In this case, v ik =0for j #k,
e
Vo) = Y 0% @1
j=1
and
[
V(Nxi) = V©O) +n [ N2 vjx? + O(NY |, (22)
j=1

see equation (C.3). However, all our results can be immediately generalized to the case when
the lattice is not aligned along the Cartesian axes as follows. Since v;; = vy;, there exists a

basis of vectors {€, ..., €4, } such that if ¥, = Z‘f‘;‘, oj€; then
d]al
7 (= Z 2
Va(Xiar) = Ujjo. (23)

j=1
Therefore, in order to apply our results to the lattice (20), one needs to replace x; by «; and
vjj by u;;. See, e.g., remarks 3.2 and 4.1.

Using a perturbation analysis similar to the one used in [30,38], we show that

Lemma 3.1. The solution of equation (15) for N < 1 is given by

uy® = UCED = ML (VaGEatt) + O, (24)
where U is given by equation (18), Vs is given by equation (21) and

Ly =—VZ—pur~'+1. (25)

Proof. See appendix A.

In the original variables, expansion (24) becomes

uM @) = (v+ V(0) 7 UG+ V) x]) + O(NH] = U, (1x]) + O(N), (26)
where U, = nﬁU(\/ﬁp}l) is the solution of
VU, (x]) +UP — it = 0. (27)

This expansion shows that:

(i) To leading order, a (rescaled) narrow lattice soliton uy is given by the rescaled
homogeneous medium soliton /.

(ii) The deviation of a narrow lattice soliton u ; from I/ is 0(1\7 2y small, even if the lattice has
O(1) variations.

The above results also show that the soliton relative width is given by a single parameter N:
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Proposition 3.1. Lattice solitons are narrow with respect to the lattice period if
N N

F= <1 28
f NV + V(O) o

In this case,
i soliton width 29)

lattice period

Proof. By equation (24), when N <« 1, thenu & has O(1) width in x. Hence, by equation (26),
the width of u{™ (x) in x is O(1/,/7). Since the lattice length-scale/period is 1/N, then the

relative width of the soliton is given by N. 0

We emphasize that expansion (24) applies to all types of lattices so long as v;; N? < 1.
Specifically, for a strong periodic lattice (V > 1), for which the linear coupling between
adjacent lattlce sites is weak, the result (26) is still valid provided that N is small enough, i.e.

for N < v ; jz In that case, the solution (26) is the continuous analogue of the discrete solitons
of the DNLS model [13,22,48].

3.1. Effect of lattice type

Lemma 3.1 shows that the effect of the lattice depends on whether \72 % 0 or \72 = 0. When
\72 = 0, then the lattice effect is (9(1\7 2). This case corresponds to a parabolic lattice, a
sinusoidal lattice etc. However, when V, = 0, then g(x) = 0 and the next-order term in
expansion (17) must be considered. In particular, in the special case of a Kronig—Penney step
lattice (see, e.g., equation (38)), all derivatives of V at the soliton centre xlot) = 0 vanish.
Therefore, the difference between u ; and I/ will be exponentially small.

3.2. Effect of lattice inhomogeneity on soliton profile

In order to calculate the effect of the lattice on the soliton profile, we note that
Ly (F3U) = 27 S(IE) + (%)), (30)
where § and Q are radial functions which are the solutions of
4
L.S—=S=U, L.Q =2S. (31)
r

Indeed, applying the operator L. to the right-hand side of equation (30) gives
L. (F;S(%) + QX)) = (=V; + 1 — pUP~)(F;S(r) + Q7))

=% (L+S(F) — ;S’(F)) —2S(M) + L. Q) =xU
—_—

=0

=U

Therefore, the O(N?) correction to the soliton profile due to the lattice (21) is given by, see
equation (24),

diat diac

uy —U ~ —N’LT (VaEa)U) = —N2<S<|x|> D R 03D Y v ) (32)
j=1 j=1
anisotropic isotropic

Thus, the variation of the lattice in the direction x; has an isotropic effect through Q(|x|) and
an anisotropic effect in the direction x; through S(|x|).
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Remark 3.2. If \72 is given by the lattice (20), then, the (’)(N 2) correction to the soliton profile
is given by

[ [

uy —U~ =NL7 (Va@a)U) = =N | SURD) Y ujjé; + QUED D ujj | - (33)
- p

4. Stability and instability of lattice solitons

Equation (26) implies that narrow lattice solitons u" are positive. The conditions for stability
and instability of positive lattice solitons are as follows ([30], and see also [37,39,49]):
Theorem 4.1. Let u'") be a positive solution of equation (13), let PN = [(u{")? dx be

the power of ul") and let n,(L(fx,)) be the number of negative eigenvalues of the linearized
operator

L) =—-V?+v— p™ @)™ + V(Nxy). (34)

Then, the lattice soliton A(z,x) = ei”zuf)N) x) is
(i) an orbitally stable solution of equation (3) if

(a) 0, P(N) > 0 (slope condition) and

(b) n_ (L(N)) = 1 (spectral condition).
(ii) an orbitally unstable solution of equation (3) if

(a) 3,PN) < 0or

(b) n_ (L") > 1.

In what follows, we use expansion (24) to determine whether the two conditions in theorem 4.1
are satisfied and consequently determine the stability of narrow lattice solitons.

4.1. Slope condition
We can use expansion (24) to calculate the power of narrow lattice solitons:

Lemma 4.1. The power of narrow lattice solitons ( N < 1)is given by
4=d(p=1) I
PN =@+ V() 200 [Py —CyN* Y v+ OV | (35)
j=I
where Py = [ {U|? dx, U is the positive solution of equation (18), and
2p 6+dp—d
Cy = / #U2 d (36)
2d(p -1

is a constant independent of N and v.

Proof. See appendix B.

Equation (35) shows that, in a similar manner to its effect on the soliton profile, when \72 #0
(e.g. in the case of a sinusoidal or parabolic lattice), the lattice has an 0(1\7 2) small effect on
the soliton power, even if the lattice itself is not weak. In light of section 3.1, in the case of a
Kronig—Penney step lattice, the effect of the lattice on the power is exponentially small in N.

From equation (36) it also follows that Cy > O for p > 1 +4/(2 +d). In particular, for
p=3,Cy =1 [FU>dx > 0. Thus,



Analytic theory of narrow lattice solitons 519

Figure 1. (a) Sinusoidal lattice (37) and (b) Kronig—Penney lattice (38).

Corollary 4.1. If Vs = 0, the lattice causes the power to decrease (increase) for lattice solitons
centred at a lattice minimum (maximum) for any p > 1 +4/(2+d), and in particular, for a
Kerr nonlinearity p = 3.

In order to demonstrate the result of lemma 4.1, we solve equation (15) numerically with
d =dgy =2,x =x, = (x,y) and p = 3. For convenience, the numerical results shown
here are presented for n = 1 (so that N = N, u™ = u3) and for V (0) = 0 (so that V = V).
We study two different two-dimensional lattices with a periodic square topology:

(i) A 2D sinusoidal lattice given by
V(Nx, Ny) = £1(sin*(m Nx) +sin*( Ny)). (37)

(i) A 2D Kronig—Penney lattice that consists of an array of primitive cells of size
[-1/N 1/N] x [—1/N 1/N], each consisting of a circular waveguide with abrupt index
change between 0 and 1, i.e.

0, Vx2+y? < Nﬂo, Ny =245,

+1, otherwise.

V(Nx, Ny) = (38)

In both cases, the plus/minus sign corresponds to a lattice with a minimum/maximum atx, = 0,
respectively. The parameters of these lattices were chosen so that both lattices have a period
1, mean value 1/2 and vary from O to £1. The lattices are shown in figure 1 for a lattice
with a minimum at x. = 0. Note that both lattices are anisotropic in r = /x% + y2, and
thus, require a full two-dimensional treatment. Moreover, since the 2D cubic NLS is critical,
P,—y = Py = 11.7, where P, is the critical power for collapse in a homogeneous Kerr
medium.

In figure 2, we show the power of narrow lattice solitons centred at a lattice minimum for

both lattices. For 0 < N < 0.1 there is good agreement between the numerically calculated
value of the power of the sinusoidal lattice solitons and the analytical approximation®

dlal
PN =Pyt — CyN? Y v+ O(N*) Z11.7 - 6.94 - 2(27*)N
j=1
=11.7 —273.8N?, (39)

8 The agreement between the analytic result (35) and the numerics is good ‘only’ for relatively small values of ~1\7
because of the large curvature (Z?:] vjj = 47%) of the lattice which translates into a large coefficient of the N2

term in equation (39). Indeed, we verified that for smaller values of 227':1 v;;j, the agreement between the analytic

result (35) and the numerics extends to larger values of N.
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Figure 2. Relative power deviation from P,—; = P, for narrow sinusoidal (dots) and Kronig—

Penney (dashes) lattice solitons centred at a lattice minimum. The analytical prediction (39) for
the sinusoidal lattice is shown by a solid line.

which is derived from lemma 4.1. In particular, the effect of the lattice on the power of the
narrow lattice solitons is much more pronounced in the case of a sinusoidal lattice than in the

case of a Kronig—Penney lattice.
The sign of the slope follows directly from equation (35):

Corollary 4.2. Let N < 1. Then, the slope 3, PN) is positive in the subcritical case
(p < 1+4/d) and negative in the supercritical case (p > 1 +4/d). In the critical case
(p = 1+4/d), the slope is positive for narrow lattice solitons centred at a lattice minimum
and negative for narrow lattice solitons centred at a lattice maximum.

Proof. In the subcritical and supercritical cases, the slope is given by

4=d(p=1) N?
8, PN =, ((u +V(0)) %7 [Pv=l +Oo (Tv«))ﬂ)

d=dp-1) _ N2 4=dp=
= (v+V(0)) -0 P + O ———= | | ~ v+ V(0) -1~ Py_;. (40)
v+ V(0)
Therefore, in the subcritical case, the slope is positive while in the supercritical case, the slope
is negative. Note that in these cases, the lattice does not affect the sign of the slope.
In the critical case, the first term in equation (40) vanishes and the slope is determined by
the O(N?) correction in equation (35), i.e.

a 72 da B Nz e B
(N) _ . 4y . 4
0, PN =0-Cy—— > i+ O(N*) =2Cy VO ;v“ + O(NY), 41)

j=1
where we also used equation (14). By equation (36), in the critical case Cy = é f PU*dx > 0,
which completes the proof. g

We thus conclude that although the lattice has a small effect on the profile of narrow lattice
solitons, in the critical case, this small effect determines the sign of the power slope and hence,
the stability (but see section 5.1).

4.2. Spectral condition

As noted in section 4, lattice solitons are stable only if in addition to the slope condition, they
also satisfy the spectral condition. In the absence of a lattice (i.e. for V = 0), the linearized
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operator L reduces to L., which is given by
Lyy=-V?—pUr"+v, (42)

where U, = vy (v/v|%|) and U is given by equation (18). The spectrum of L, , consists
of [49]:

(i) A negative eigenvalue Ani, and a corresponding even and positive eigenfunction f, min-
In [11], Oh shows that ford = 1 and p = 3, Apin = —3v and fimin = U?. More
generally, we observe that for any value of p and d,

p+l

)\min == —‘(17— 1)(17+3)V fv,min :Z/[UZ
(ii) A zero eigenvalue X of multiplicity d with the corresponding eigenfunctions
ou, Xj .
fo i) = = U (x|), i=1...,d. (43)

ax;
(iii) A positive continuous spectrum [v, 00).

Thus, in a homogeneous medium the spectral condition is satisfied. In the presence of a linear
lattice, the perturbed smallest eigenvalue Amm remains negative. The continuous spectrum
develops a band structure, but remains positive. Moreover, for djys < j < d, the jth perturbed
zero eigenvalue remains at zero with the corresponding eigenfunction Bu(N )/ 0x;. Therefore,
L(N) can attain more than one negative eigenvalue only if at least one AL ]) becomes negative
for 1 < j < diy [30]. Thus, in order to check if the spectral condltlon is satisfied, we only
need to compute the sign of )\(, j) for1 < j < dy.

Ford = 1, p = 3 and a slowly varying parabolic potential, the value of the perturbed zero

eigenvalue A(()N) = )\(()],\]1) was computed by Oh [11]°

AWV =30, N+ O(N?). (44)

A more general result on the value and sign of Ag\? in the presence of a linear lattice for d > 2

is not known to us. We now give an asymptotic formula for AL ]) for narrow lattice solitons
which generalizes the result of Oh to any dimension d, lattice dlmensmn diy and nonlinearity

p:

Lemma 4.2. Let V be given by equation (22), or equivalently, let V, be given by equation (21),
and let N K 1. Then, the perturbed zero eigenvalues )”(()1,\_,;) of the operator LYX,) are given by

L 8v;iN? + O(N%), J=1 . du, 4
0 = , (45)
O, ]:dlat+17"'1dv

where
2—d)+2+d
g PE-d+2+d (46)
p—1

Proof. See appendix C.

9 The formula given in [11] contains a minor error, since on p 29 of [11], the L, norm of &/ was used instead of the
L, norm of U’.



522 Y Sivan et al

Remark 4.1. If V has the general form (20), then, equation (45) becomes
o = N8+ O(N*), i=1,...,dw, (47)
and equation (46) remains unchanged.
Proposition 4.1. Let
1 <p, d=1,2,

d+2 48
* , d > 2. (“45)
d—2

Then, the spectral condition is satisfied for narrow lattice solitons centred at a lattice minimum,
and violated for narrow lattice solitons centred at a lattice maximum.

l<p<

Proof. It is easy to verify that § > 0 if and only if p satisfies condition (48). Thus, lemma 4.2
shows that

N
sgn()»((w)) = sgn(vj;).
Consequently, the operator Lﬂ) has one negative eigenvalue ()L(()A;) > 0) for a narrow lattice

soliton centred at alattice minimum (v;; > 0) and more than one negative eigenvalue ()L((){\;) < 0)
for a narrow lattice soliton centred at a lattice maximum (v;; < 0).

We note that values of p for which condition (48) is satisfied include all the physically
relevant cases of d = 1,2,3 and p = 3, 5.

To demonstrate the results of lemma 4.2, we consider the case of d = dj,y = 2, p = 3 and
the lattice (37). By equation (45),

ay = A0y = 20N = £(2m)* N2 (49)
In order to confirm the validity of expansion (49), we compute the eigenvalues of the discretized
operator LiNv) for the lattice (37). In general, for d > 2, computation of the eigenvalues of the
discretized operator Lﬂ) (using, e.g., Matlab’s eig or eigs) fails to give reliable solutions due
to computer memory limitation. In order to overcome this limitation, we used an improved
numerical scheme based on the Arnoldi algorithm (see appendix D). In figure 3 we see that
indeed for N « 1, the asymptotic expression (49) for the eigenvalue is in agreement with its
numerically calculated value.

4.3. Stability results

Now that we have determined when the slope and spectral conditions are satisfied, we can
characterize the stability of narrow lattice solitons:

Proposition 4.2. Let N < 1, let u™) be the solution of equation (13), let p satisfy
conditions (48) and let V be given by equation (22). Then,

(i) If ul()N ) is centred at a lattice maximum, then uE)N )elV2 js unstable.
(ii) Ifu'M) is centred at a lattice minimum, then u{N)e'* is stable in the subcritical and critical

cases p < 1 +4/d, and unstable in the supercritical case p > 1 +4/d.

Proof. Instability of narrow lattice solitons centred at a lattice maximum follows from a
violation of the spectral condition (proposition 4.1). For narrow lattice solitons centred at a
lattice maximum the spectral condition is satisfied (proposition 4.1) and stability is determined
by the slope condition. Hence, the stability in the subcritical and critical cases and instability
in the supercritical case follow from corollary 4.2. ]
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Figure 3. Eigenvalue )Lg:? (j = 1,2) of the operator Li}x,) as a function of N for the lattice (37)

and for a soliton centred at a lattice minimum (left) and at a lattice maximum (right). For N <1,
there is good agreement between the numerically calculated eigenvalue of the discretized operator

Li{vl,) (dots) and the analytical approximation (49) (——).

Proposition 4.2 refers only to solitons centred at a lattice minimum or maximum. In some
cases (e.g. in studies of lattices with defects or surface/corner solitons [50]), lattice solitons can
be centred at critical points of the lattice that are saddle points. In these cases, by lemma 4.2,
the narrow lattice solitons are unstable since the spectral condition is violated.

4.4. Instability dynamics

Proposition 4.2 specifies the conditions for which narrow lattice solitons are unstable. It does
not, however, describe the instability dynamics that occur when those conditions are not met.
As noted in the introduction, in previous studies [30,31,40] it was observed that if the slope is
negative, the solitons undergo a width instability and when the spectral condition is violated,
the solitons undergo a drift instability.

In the case of narrow lattice solitons we can prove that violation of the spectral condition
results in a drift instability by monitoring the dynamics of the soliton centre of mass:

Lemma 4.3. Let (x;) be the centre of mass in the x; coordinate, i.e.

ij|A|2dx
Then,
(x; (@) ~ (x;(0) cos(Q2) + LU sin(Qz),  vj; >0, 51
(xj(2)) ~ (x;(0)) cosh(Qz) + w sinh(Qz), vj; <0,
where
QZZN dT]|UH|, (52)

and vj; defined in equation (21).

Proof. See appendix E. Thus, if v;; > 0, the centre of mass (x;) oscillates around the lattice
minimum. On the other hand, if v;; < 0, the centre of mass moves away from the lattice
maximum at an exponential rate. This shows, in particular, that a soliton centred at a saddle
point is stable in the directions in which it is centred at a lattice minimum and undergoes a
drift instability in the directions in which it is centred at a lattice maximum.
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5. Quantitative study of stability

As noted, the lattice has a small O(N?) effect on the slope and on the value of the perturbed
near zero eigenvalues of Li{vv). Nevertheless, this small effect changes the stability of solitons
centred at a lattice maximum (which become unstable) and of solitons centred at a lattice
minimum in the critical case (which become stable). As pointed out in [30,31], when a small
effect changes the stability, stability and instability also need to be studied quantitatively.

5.1. ‘Mathematical’ stability versus ‘physical’ stability

Let us first consider narrow lattice solitons centred at a lattice minimum in the critical case.
In this case, according to proposition 4.2 the solitons are stable. However, as was shown
in [30,31], satisfying the ‘mathematical’ conditions for stability does not necessarily ‘prevent’
the development of instabilities due to small perturbations. In order to understand how this can
happen, we recall that theorem 4.1 ensures that there is a stability region in the function space
of initial conditions around the soliton profile for which the solution remains stable. However,
it does not say how large this stability region is. If the stability region is very narrow, the
solution is only stable under extremely small perturbations. In this case, it is ‘mathematically’
stable but ‘physically unstable’, i.e. it can become unstable under perturbations present in an
experimental setup. If, on the other hand, it is also stable under perturbations comparable in
magnitude to perturbations in actual physical setups, one can say that it is also ‘physically
stable’.

The distinction between ‘mathematical stability’ and ‘physical stability’ is only important
in the critical case where, in the absence of the lattice, the slope is zero. Then, the slope (VK)
condition shows that these solitons are unstable and indeed, an arbitrarily small perturbation
can cause them either to undergo diffraction or to collapse. The effect of a linear lattice on
narrow lattice solitons centred at a lattice minimum is to induce an O(N?) positive correction
to the power slope which causes the slope (VK) condition to be satisfied and the solitons to
become stable. As demonstrated for the first time in [30,31], the size of the stability region
depends on the magnitude of the slope. This means that the transition between instability
and stability is gradual rather than sharp, in the sense that as the soliton width N increases
from zero, the magnitude of the slope grows from zero, hence the width of the stability region
grows from zero. For example, in the case of a Kronig—Penney lattice, the power slope of
narrow lattice solitons is exponentially small (see section 4.1), hence the stability region is
also exponentially small. Therefore, narrow Kronig—Penney solitons are ‘mathematically’
stable but ‘physically’ unstable. On the other hand, in the case of a sinusoidal lattice, the
stability region of the solitons is bigger, so that the sinusoidal lattice solitons can also be
‘physically’ stable.

In order to motivate the claims stated above, we first note that by definition (28) of N s
the slope 9, P is proportional to 9 PN ). Thus, the slope with respect to the soliton width
N can be viewed as a measure for the slope with respect to the propagation constant v.
Second, we recall that the soliton profile u 5 is an attractor for NLS solutions. Therefore, small
perturbations of the initial profile essentially lead to small oscillations of the soliton width
along the propagation (see below). Thus, heuristically, we can view these width oscillations as
a movement along the curve P{¥). Such movement along the curve P") was demonstrated,
e.g. in figure 6 of [40]. Since the power is conserved, a large slope only allows for small
changes of the soliton width (i.e. stability) while a small slope allows for larger changes of the
soliton width and larger deviations from the initial state (i.e. instability). More generally, these
arguments show that while the sign of the slope determines whether the solution is stable or
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Figure 4. A schematicillustration of stability (shaded), diffraction instability and blowup instability
regions as a function of the input beam width N and power P for narrow lattice solitons centred at

a minimum of (a) a sinusoidal lattice and (b) a Kronig—Penney lattice. Dashed curve is PIEN).

not, the magnitude of the slope |3,P{"’| corresponds to the size of the stability region. Hence,
if the slope 9, PN is positive but small, the stability induced by the lattice is weak. Therefore,
if the perturbation applied to the narrow lattice soliton is large enough, the perturbation can
‘overcome’ the stabilization and the solution will become unstable.

A schematic illustration of the stability region in the critical case as a function of the
beam power P and the relative width N is shown in figure 4. The stability region is centred
around the lattice soliton power PNY) = P, — Cy N?, see equation (35). By equation (41) and
the above arguments, the size of the stability region depends on the propagation constant v,
the period N and the lattice V (x) only through the parameter N, and is O(N?) small. Initial
conditions to the left of the stability region undergo a diffraction instability whereas initial
conditions to the right of the stability region undergo a blowup instability. The separatrix
between the stability region and the blowup region can be estimated by the critical power for
collapse in homogeneous medium P,. Indeed, while the minimal power needed for collapse
depends on the beam profile, for single-hump profiles such as M, the minimal power needed
for collapse is only slightly above P, [51].

To illustrate these ideas numerically, we solve equation (3) ford = djyy = 2 and p = 3,
which correspond to the physical case of a 2D Kerr medium and N = 0.1 (i.e. narrow lattice
solitons). Since this is the critical case, the lattice should have a dominant effect on the stability
(see proposition 4.2). In order to demonstrate the difference between the stabilization by the
sinusoidal lattice (37) and by the Kronig—Penney lattice (38), we perform a series of numerical
simulations with the initial condition Ag(x,y) = (1 +¢€ - h(x, y))ul™. Here v = n = 1
and A(x, y) is a random function which is uniformly distributed in [0, 1] x [0, 1]. Hence, the
perturbation increases the power of the initial condition by the factor of &(1 + €) with respect
to the power of the soliton uf)N ). 'We consider narrow solitons centred at a lattice minimum,
hence they are ‘mathematically’ stable, see table 1.

We first note that in all the simulations in this section, the centre of mass of the beam,
which is initially perturbed from the lattice minimum due to the random noise, remains small
and close to the lattice minimum, in accordance with lemma 4.3.

In figure 5(a), we show the solution for the Kronig—Penney lattice for various values of
€ > 0 (i.e. when the noise increases the beam power) for 0 < z < 70, i.e. over 140 diffraction
lengths. For ¢ = 0.001 and 0.002, the solution undergoes focusing—defocusing oscillations.
When the initial perturbation is further increased (¢ = 0.003), the beam undergoes collapse.
The abrupt change in the dynamics between € = 0.002 and € = 0.003 can be understood
by looking at the power of the beams. For the specific noise realizations in our simulations,
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Figure 5. Maximum intensity versus propagation distance of narrow lattice solitons (N = 0.1)
with power-increasing random perturbations for (@) Kronig—Penney lattice (38) and (b) sinusoidal
lattice (37). Comparison of the dynamics for a sinusoidal lattice (
lattice (- - - -) is shown in (c) for € = 0.003.
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Figure 6. Maximum intensity versus propagation distance of narrow (N = 0.1) lattice solitons with
power-decreasing random perturbations for sinusoidal (——) and Kronig—Penney lattices (- - - -)
with (a) e = —0.001 and (b) ¢ = —0.003.

the power of the initial condition was slightly below the critical power P, for ¢ = 0.001 and
0.002 and slightly above P, for € = 0.003. Therefore, the beam undergoes collapse in the
latter case.

While an € = 0.003 perturbation to a Kronig—Penney lattice soliton leads to collapse, the
same perturbation applied to a narrow sinusoidal lattice soliton only leads to small amplitude
oscillations, see figure 5(b). When the perturbation is increased to € = 0.02 the oscillations
become stronger, yet the solution does not collapse. Only when the perturbation is further
increased to € = 0.035 does the beam collapse in a finite distance. As in figure 5(a), we
confirmed that for ¢ = 0.003 and € = 0.02 the beam power is below P, while for € = 0.035
it is above P;.

These simulations confirm that although both lattice solitons are ‘mathematically’ stable,
sufficiently large perturbations can still cause these stable solitons to undergo collapse'”.
This demonstrates that collapse and stability can co-exist, see also [43,38]. Moreover, these
simulations also support the heuristic argument presented in section 5.1 that the upper boundary
of the stability region can be estimated by the critical power for collapse in a homogeneous
medium P,,.

In figure 6, we show the solutions for ¢ = —0.001 and ¢ = —0.003 (i.e. when the
noise decreases the beam power). The comparison between the two lattices for the same
value of € shows that the stabilization by the sinusoidal lattice is much stronger than by a
Kronig—Penney lattice. Additional simulations (data not shown) show that the difference

10 Note that the typical perturbations in experimental setups are at least of a few per cent.
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between the stabilization by the two lattices becomes more pronounced as N becomes smaller.
Indeed, for a Kronig—Penney lattice, the boundaries of the lattice are located far into the
soliton tail region. Thus, their presence can prevent broadening only once the narrow
beam has undergone significant broadening. On the other hand, a sinusoidal lattice acts
at any position in the central region of the soliton, hence, it has a much more pronounced
effect.

The results shown in figures 5 and 6 confirm that Kronig—Penney lattice solitons are
‘physically unstable’ (i.e. an extremely small stability region) whereas sinusoidal lattice
solitons can be ‘physically stable’ (not-so-small stability region). Indeed, a comparison
between these two lattices for the same value of € shows that for narrow lattice solitons,
the same perturbation leads to collapse in the case of a Kronig—Penney lattice but
only to small oscillations and stable behaviour in the case of a sinusoidal lattice, see
figures 5(c) and 6.

5.2. ‘Mathematical’ versus ‘physical’ instability

We now consider narrow lattice solitons centred at a lattice maximum. According to
proposition 4.2, these solitons are unstable as they violate the spectral condition. Indeed,
we showed that these solitons undergo a drift instability away from the lattice maximum.
Since there is no drift for Ag; = 0, by continuity, the drift rate should be ‘small’ for

; (N)
small negative values of A, .
forvj; <0,

. (N)
(x;(2)) ~ (x;(0)) cosh(£2z) + @ sinh(Qz2), Q=2 %. (53)

Thus, if —A(()N) is small, the instability develops very slowly. In this case, the solitons are
‘mathematically’ unstable but can be ‘physically stable’, i.e. the instability does not develop
over the propagation distance of the experiment. If, on the other hand, the instability does
develop over such distances, one can say that the soliton is also ‘physically unstable’.

In order to demonstrate the drift instability associated with violation of the spectral
condition, and in particular, the importance of the magnitude of A(()N) , we solve equation (3)
with d = 1 and p = 3 for a sinusoidal lattice

V(Nx) = Vycos(2r Nx), (54)

and also for a Kronig—Penney lattice with the unit cell that consists of a periodic array of cells
of size 1/N, where for each cell,

Indeed, combining equations (45) and (51), one sees that

VO» |)C| < -,
V(Nx) = R A (55)
0, — < |x] < —.
4N 2N

We excite the instability by shifting the soliton centre slightly off the lattice maximum, i.e. we
use the initial condition Ag(x) = uf}N Y(x —8). In figure 7 we show the centre of mass of the
solution for N = 0.07, v = 10, V = 2.5 and 8. = 10~*. For these parameters, (x(0)) = &,
and (x(0)) = 0 so that by equation (53),

(N)
(x;(2)) ~ 8 cosh(Qz). Q=2 %. (56)

This exponential drift rate is indeed observed in the simulation for the sinusoidal lattice
soliton, see figure 7. This shows that while the sign of A(()N) determines whether the soliton
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Figure 7. Centre of mass of the solution of equation (3) with d = 1, p = 3 and a sinusoidal
lattice (54) (——) and a KP lattice (55) (- - - -). The lattice parameters are N = 0.07 and
Vo = 2.5; the initial shift of the soliton centre is 8. = 10~*. The analytical formula (56) (red dots)
is nearly indistinguishable from the numerical result.

Figure 8. Beam profiles at several propagation distances for the data of figure 7. The beam profiles
for the sinusoidal lattice (54) ( ) and the KP lattice (55) (----)atz = Oand z = 5 are
indistinguishable.

is (‘mathematically’) stable or unstable, the magnitude of |)»§)N) | determines the rate of the
instability dynamics.

The drift rate for the KP lattice soliton is several orders of magnitude smaller than for
the sinusoidal lattice soliton. Intuitively, this is because unlike the sinusoidal lattice, the KP
lattice affects the soliton profile (and hence the dynamics) only in the soliton tail region. As
expected, the magnitude of A(()N) is much larger for the sinusoidal lattice soliton (AéN) = —0.05)

~

than for the KP lattice soliton ()»E)N) = —2 x 1079). Moreover, the drift rate of the KP lattice
soliton is considerably smaller than that predicted by equation (56) with )Lf)N )X 2 % 1075,
This ‘mismatch’ is not surprising, since equation (56) is not valid for the KP lattice, see also
section 3.1.

At a propagation distance of z = 5, both the sinusoidal and the KP lattice solitons
hardly shift from their initial location, see figure 8. At a propagation distance of z = 10,
however, the sinusoidal lattice soliton drifts more than one soliton width whereas the
Kronig—Penney lattice soliton hardly drifts at all. In that sense, since the propagation
distance in the simulations corresponds to a distance of 20 diffraction lengths, which is
longer than most devices in optics, the ‘mathematically unstable’ KP soliton is ‘physically
stable’.
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6. Discussion and comparison with previous studies

Most rigorous studies on stability and instability of lattice solitons are based on the Grillakis,
Shatah and Strauss (GSS) theory [52,53]. Let u{™ > 0, let

2
dv) =H+vP = / [|W§N>|2 + (V(Nxig) +v) (™M) — T(L¢§N>)f'+1} dx,
p

let p(d’) =1ifd” > 0and p(d”) =0ifd” < 0, and let n_(L(fX)) be the number of negative
eigenvalues of the operator LY,V,)). Then, ul()N )elV? is orbitally stable if n_(Lfr]x,)) = p(d"), and
orbitally unstable if r_ (Lfr]x,)) — p(d”) is odd [52,53]. For example, stability of lattice solitons
was studied in [35, 54-56] using the GSS theory. In addition, after this paper was submitted,
we found out that the GSS theory was applied to narrow lattice solitons in the critical case by
Lin and Wei [34].

Sinced'(v) = [(u{M)?dx, the sign of d” is the same as the sign of the power slope. Hence,
in the GSS theory stability and instability depend on a combination of the slope condition and
a spectral condition: if both the slope condition and the spectral condition are satisfied, the
soliton is stable, whereas if either the slope condition is satisfied and n,(Li%)) is even, or if
the slope condition is violated and n_(Lfr]}]v)) is odd, the soliton is unstable. There are two

cases not covered by the GSS theory: when the slope condition is satisfied and n_(Li{Vv) is

odd, and when the slope condition is violated and n _ (Li%)) is even. As theorem 4.1 shows, in
both cases the solitons are unstable. Hence, there is a ‘decoupling’ of the slope and spectral
conditions, in the sense that both are needed for stability, and violation of either of them would
lead to instability.

In [30, 31, 40] it was observed numerically that violation of the slope condition leads
to a width instability, whereas violation of the spectral condition leads to a drift instability.
Unlike these studies, in this study we prove that violation of the spectral condition leads to
a drift instability. Moreover, we show that a drift instability occurs in any direction x; for

which the corresponding eigenvalue Agp is negative, and that the drift rate is determined by
the magnitude of Ag‘?.“ This further shows that violation of the spectral condition leads to an

instability, regardless of the slope condition and of whether 7 _ (Lfr%)) is even or odd.

In previous studies it was also observed that in the subcritical case, lattice solitons centred
at a lattice minimum of all widths are stable. In the critical case, it was shown that lattice
solitons are stable only if they are narrower than a few lattice periods, see e.g. [17,19]. These
results are in agreement with table 1 in the subcritical and critical cases, and imply that our
analytical results are valid beyond the regime of narrow lattice solitons. In [20,21] it was also
shown that in the supercritical case, the lattice can stabilize sufficiently wide lattice solitons
centred at a lattice minimum but cannot stabilize narrow lattice solitons, in agreement with
our results. Note, however, that unlike most previous works, our results are valid for any
dimension d, lattice dimension dj,, and nonlinearity exponent p.

Another difference from previous studies on linear lattices is that we introduce a
quantitative approach to the notions of stability and instability. Thus, we show that the strength
of radial stabilization depends on the magnitude of the slope. Hence, in the critical case,
the stability of the soliton is ‘mathematical’ but not ‘physical’. Similarly, we show that the
strength of the transverse instability depends on the value of the perturbed zero eigenvalue A(()N).
Hence, for narrow solitons centred at a lattice maximum, the instability is ‘mathematical’ but
not necessarily ‘physical’. In such cases, the stabilization/destabilization of narrow lattice

A generalization of these results to non-narrow beams can be found in [57].
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solitons is highly sensitive to the lattice details. This sensitivity becomes smaller as the soliton
width increases, and is of considerably less importance for O(1) solitons, which is probably
why this feature was not observed in previous studies.
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Appendix A. Proof of lemma 3.1

The approach used here is similar to [30,38]. Substituting expansion (19) in equation (15)
gives

Vg +ufl — (1+ N Va@a)u g + O(NY) = 0. (A.1)
Let u 5 (x) be given by equation (17). Then, the equation for g is

V2@ + pUP g —vg = Va(Fra)U(E)).
Therefore,

g® = — L' [Va@Eu)U(JF])]. (A2)

Appendix B. Proof of lemma 4.1

By equation (24), the power of the rescaled lattice soliton Py = [ (u5(¥))? dX is given by

Py =P — 2N? / UF) LT [V FEra)U] dE + O(N*)

=Py — 21\72/ Vi (Fra)U (F)LT U] dE + O(NY), (B.1)

where P,—; = f U?*(7) dx and 7 = |¥|. In order to proceed, we prove the following lemma:
Lemma B.1. Let U, be the solution of equation (27) and let L, , be given by equation (42).
Then, L;;Z/{,, = —0d,Uy.

Proof. Differentiating equation (27) with respect to n gives
Oy (V2Uy) + 0y UL — 0y (qhy) = V* (05Uy) + pUL ™" (3,Uy) — Uy — 0oy,
=—L,o,U;, —U, =0. a

Since Uy (F) = n71U(,/7i7), then
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Therefore, L7'U = L' Uy—y = —(0,Uy)y=1 = —ﬁu-%ﬂ/{;. Substituting in equation (B.1)

gives

'P](] = P,—1 +2]\~/2/ Vz(fqm)u< u I +r1/i> dx+(9(N4)
p—

Since V; is given by equation (21), equation (B.2) can be written as
diat
Py =Poi — CyN? > vj; + O(NY),
j=1
where Cy is given by

22
Cy z_/xf(p_ 1 +fuu;> d¥.

To bring Cy to the form (36), we note that

V.- (b@)X) = Li(rdb(r))——(dfd b+ 70y = db +7b.

Fd—1

~4

Substituting b(7) = 771 “U>(7) shows that
4
p—1

=251 ( 2w +fuu;> .
p—1
Thus, we can rewrite equation (B.3) as
=2

| [ i
Cy = ——/ L. (f%—du%}) dF
Frie

1 X3
= -/r%f"u%z-v ) dF
2 fp—l_d
~ A ~2A~
:l rﬁfduzi- 2x‘,-e;j B 4 4 x;e; &
2 G p—1 Frid+l

V. G2 (Fx) = di U + ( ) Friay? 4 oy

(B.2)

(B.3)

1 2 (H2 4 AT 1 212 4 -
=—fJuUu(2x;—|———d)x)dx=— u(2- +d ) dx. (B.4)
2 J p—1 J 2d p—1

Finally, by the dilation transformation (14),

d(p=1)

2 " 4,
PN = /(uﬁm(x))zdx =7 /(uﬁ(x))zdx = 20D Py

C. Proof of lemma 4.2

Consider the eigenvalue problem
(N) (N) £(N)
LYV A @) = 2o 15

Multiplying equation (C.1) by f,; o

/f(N)L(N)f(N)dx k(()l,v]')/(ﬂm) dr.

and integrating gives

(C.1)

(C.2)
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We recall that in the absence of a lattice, the operator LiNv) reduces to L. ,, see equation (42),

which has d zero eigenvalues 1o ; = 0, with the corresponding eigenfunctions gi{“ for
J
j = 1,...,d, see equation (43). By equation (26), in the presence of the lattice, u™) =

U, + nl’%l (’)(1\7 2. Similarly, by equations (16), (19) and (21), we can expand the potential as
V(Nxiy) = V(NE1) = V(0) + nV (NEiw) = V(0) + n(N*VaFra) + O(N*))

(11;“ dla!
=VO) + N> ;¥ +n-ON) =V(©0)+ N> vjxi+1-ON*Y.  (C3)
j=1 j=1

Consequently, the operator Lfr , can be expanded as

LY ==V — p™)?P" + v+ V(Nxi)

= V2= pUy +n7TOND)P "+ v+ V(0) + O(N?)
=—V? = pU! + 9+ O(N?) = L, , + O(N?). (C.4)

Therefore, we expand
(e =arown, a8 =5N 0w, ©3)
J
By equations (26) and (C.5), we can also rewrite the eigenfunction fv(,l;{) as
£ @) = agg) (1+O(N?). (C.6)

We now use the approximations (C.5) and (C.6) in order to evaluate the terms in equation (C.2).
By equation (C.5), the right-hand side of equation (C.2) is equal to

2
AL f (SN2 dx = (N?8; + O(N*)) ( / (%) dx+<9<N2>>
J

au,\*
= N28j/ <—”> dx + O(N?). (C.7)
8)Cj
By equation (C.6) the left-hand side of equation (C.2), approximation (C.6) is equal to
N N
/ FOLN £ gy = / s )L(N) M7 e+ ONY), (C8)

where the error term is O(N*) due to the properties of the Rayle1gh quotient, see e.g. [58].
The integral term on the right-hand side of equation (C.8) is equal to

ouN) ou™ 1
— LM dx = / (M)2 —— V (Naxy) dx. c9
/axj W= [ )a (Nt (€9)
Indeed, differentiating equation (13) with respect to x; gives
N)
LiNv)% - _ (M) ul()N). (C.10)
] 8)6.,' ij

Multiplying equation (C.10) by (3/dx;)u'", integrating over x and integrating by parts gives
equation (C.9). Using equation (C.3), the right-hand side of equation (C.9) is given by

1 2 92
Ef(ugM) ﬁV(lem)dxznzvzujj/u,fdx+0(N4). (C.11)
j
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Comparing the approximation (C.7) for the left-hand side of equation (C.2) with the
approximation (C.11) for the right-hand side of equation (C.2) shows that

au,\
5,/(8—%") =nuj,/u3. (C.12)

Hence,
Ju; Ju
SJ_nv”—zzdvjj—z. (C.13)
au, u’
7(5) /

Similar results were obtained in [34] for a soliton centred at a general non-degenerate critical
point of the lattice (i.e. without assuming that the critical point is symmetric with respect to xl(gl) ).

By the Pohozaev identities for equation (18) (see [59, p 76]) f[LL{{Z = % = %
Therefore, we get that
8j :8Ujj. (Cl4)

D. Computing small eigenvalues of a very large matrix

Whend > 2, the discretized operator LM is represented by an extremely large matrix. Hence,
straightforward application of standard numerical routines (such as Matlab’s eig/eigs)
usually either fails to give accurate results or does not converge.

In order to overcome this numerical problem, we used a more efficient and robust numerical
method based on the Arnoldi algorithm (performed by ARPACK [60], which is available in
Matlab through the function eigs). Essentially, we compute the largest-magnitude eigenvalues
of the inverse matrix A~! which correspond to the smallest eigenvalues of the matrix A.

We compute the LU factorization of A with complete pivoting. Then, we shift the values
on the main diagonal of U by a small value in order to avoid numerical errors that might result
from singularity of the matrix during the computation of A~!. Then, in order to avoid working
with the explicit form of the inverse matrix A~! which is dense, we compute A~! implicitly
through the subfunction LUPinv and apply it to the function eigs. This way, we exploit the
sparsity of the LU factorized matrices U and L. The function eigs then computes the desired
number of eigenvalues of largest magnitude.

The following code was given to us by Professor S Toledo:

function [V,d] = ev_calculation(A,ev_number,eps)

[m n] = size(A); normA = norm(A,1);
[L,U,P,Q] = lu(A,1.0);
for j=1:n

if (abs(U(j,j)) < eps*normA)

U(j,j) = eps*normh;

end
end
h = @LUPinv;
opts.issym = true;
opts.isreal = true;
opts.tol = eps;
[V,D] = eigs(h,n,ev_number,’LM’,opts);

function Y = LUPinv(X)
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Y1 = Px*X;
Y2 =L\ Yi;
Y3 = U\ Y2;
Y = Q*Y3;
end
end
E. Proof of lemma 4.3

Multiplying equation (3) by A* and subtracting the conjugate equation gives
d
—|AP? = iA*V?A +cc., (E.1)
dz

where c.c. stands for complex conjugate. Multiplying by x and integrating over x gives

d
d—/x|A|2 = /ixA*V2A+c.c. = —i/VA(dA*+x-VA*)+c.c.
Z

=2d Im/A*VA. (E.2)
Differentiating equation (E.2) yields
d2
— fx|A|2 =2dIm | (A*VA+A*VA,)
dz? : )

=2d Im /(AjVA — A,VA") =4d Im /AjVA

= —4d Re/(VzA* +|AIPTTA* — V(Nx)A")VA.

The first two terms vanish since they are complete derivatives. Therefore,

d2
— | x|AP? =4d Re/V(Nx)A*VA

dz?
=2d/ V(Nxi)V]AI> = —Zd/ APV V (NX1a). (E.3)
Finally, by equation (22),
d2
d—ZZ/xj|A|2 = —4N2dnvjj/xj|A|2+O(N4). (E.4)
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