
Waves in Nonlinear Lattices: Ultrashort Optical Pulses and Bose-Einstein Condensates

Y. Sivan
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

G. Fibich
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

M. I. Weinstein
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

(Received 24 April 2006; published 8 November 2006)

The nonlinear Schrödinger equation i@zA�z; x; t� � r2
x;tA� �1�m��x��jAj

2A � 0 models the propa-
gation of ultrashort laser pulses in a planar waveguide for which the Kerr nonlinearity varies along the
transverse coordinate x, and also the evolution of 2D Bose-Einstein condensates in which the scatter-
ing length varies in one dimension. Stability of bound states depends on the value of � �
beamwidth=lattice period. Wide (�� 1) and � � O�1� bound states centered at a maximum of m�x�
are unstable, as they violate the slope condition. Bound states centered at a minimum of m�x� violate the
spectral condition, resulting in a drift instability. Thus, a nonlinear lattice can only stabilize narrow bound
states centered at a maximum of m�x�. Even in that case, the stability region is so small that these bound
states are ‘‘mathematically stable’’ but ‘‘physically unstable.’’
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The nonlinear Schrödinger equation (NLS) is central to
the understanding of many classical wave and quantum
phenomena. For example, it governs the propagation of
paraxial laser beams in a homogeneous medium with a
Kerr nonlinearity. Recent advances in fabrication technol-
ogy make it possible to manufacture transparent media
with rapidly varying, high-contrast refractive properties
[1]. Until recently, most research focused on the variations
of the linear index of refraction. However, these fabrication
techniques also induce variations in the nonlinear refrac-
tive index. Moreover, these nonlinear variations can be
significantly larger than those of the linear refractive index
[2]. Therefore, in this study, we focus on the effect of a
nonlinear lattice on the propagation. This study is also a
first stage towards a unified theory for the combined effects
of linear and nonlinear lattices.

The NLS also governs the temporal evolution of Bose-
Einstein condensates (BEC) where it is usually referred to
as the Gross-Pitaevskii equation. In this context it is pos-
sible to induce a spatially varying scattering length g�x� �
��1�m��x�� via the Feshbach resonance. Although this
technique is mainly used to change the scattering length in
time, spatial variations of the scattering length can be
induced by varying the local external magnetic field near
the resonant value [3–5]. Spatial variations of the scatter-
ing length can also be optically induced, as was predicted
theoretically [6] and verified experimentally [7]. These
techniques have the potential to enable new technologies
in information storage as well as means to explore funda-
mental physical phenomena such as cavity QED and quan-
tum information science [8]. Note that in the context of

BEC, the nonlinear lattice is not necessarily accompanied
by a linear lattice.

In contrast to the large body of research on linear lattices
(see, e.g., [9,10] and references therein), much less re-
search has been devoted to the effect of nonlinear lattices;
see [11] and references therein. In [11], we used a combi-
nation of rigorous analysis, asymptotic analysis, and nu-
merical simulations to study the structure and dynamic
stability of bound states of the one-dimensional NLS
with a transverse periodic nonlinear lattice. In this Letter,
we extend and apply the methods of [11] to study the
structure and dynamic stability of nonlinear bound states
in a two-dimensional, anisotropic setting. It is well known
that in the absence of a nonlinear lattice, all bound states of
the 2D cubic NLS are unstable, and when perturbed they
either become singular (collapse, blowup) or diffract to
zero [12]. Therefore, an important open question, both
theoretically and for various applications, is whether a
nonlinear lattice can stabilize the bound states.

In the course of studying this question, we make the
following four general observations, which are also rele-
vant to other physical setups, in particular, to the effect of
linear lattices: (1) the bound state structure and (in)stability
properties strongly depend on whether it is wider, of the
same order, or narrower than the lattice period. Specifi-
cally, the same lattice may stabilize beams of a certain
width while destabilizing beams of a different width. (2) A
bound state of the NLS is dynamically stable if and only if
it satisfies (a) a slope (Vakhitov-Kolokolov) condition on
the power (in nonlinear optics) or particle number (in BEC)
versus frequency curve, and (b) a spectral condition
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[13,14]. In particular, it is possible for a bound state to be
unstable even though it satisfies the slope condition, a point
which has often been overlooked in the physics literature.
Violation of the spectral condition implies that the bound
state exhibits a drift instability, rather than the blowup
instability, associated with a failure to satisfy the slope
condition. (3) The size of the stability region, i.e., the
region in function space where the initial condition leads
to a stable solution, depends on the magnitude of the slope
of the power (particle number) versus frequency curve.
(4) A bound state can be ‘‘mathematically stable’’ (i.e.,
satisfy the two conditions for stability) but ‘‘physically
unstable’’ (i.e., cannot be realized experimentally), due to
a small stability region. Therefore, for ‘‘physical stability’’
one should also consider the magnitude of the slope of the
power (particle number) versus frequency curve, and not
only its sign.

Consider the propagation of ultrashort pulses in a planar
waveguide for which the linear refractive index �n0 is
constant but the nonlinear Kerr coefficient n2 is periodi-
cally modulated in the transverse spatial coordinate x, i.e.,
n � �n0 � n2�x�jAj2, where n2�x� � �n2�1�m�

x
xms
��, �n2 �

hn2�x�i is the arithmetic average of n2�x� over one lattice
period, andm�x=xms� is a mean-zero periodic function with
period xms. If we rescale x by the input beamwidth xbeam,
the retarded time t by the pulse duration, and z by twice the
diffraction length, then the pulse propagation in the anoma-
lous dispersion regime is governed by the dimensionless
NLS [11]

 i@zA�z; x; t� � r2
x;tA� �1�m��x��jAj2A � 0; (1)

where r2
x;t � @2

x � @2
t . Equation (1) with t replaced by y

describes the dynamics of laser beams in a 2D medium in
which the nonlinear refractive index is modulated in only
one dimension.

The parameter � � xbeam=xms is the ratio of the incident
beamwidth to the lattice period. Therefore, the case �� 1
(�	 1) corresponds to beams which are wide (narrow)
compared with the lattice period. Note that the lattice is
anisotropic, as it varies in x but not on t. In BEC, Eq. (1)
models the temporal (z � time) evolution of 2D conden-
sates in which the scattering length varies along one spatial
coordinate x, but is independent of the second spatial
coordinate t.

Bound states of Eq. (1) are of the form A�z; x; t� �
ei�zR���� �x; t�, where R���� is the solution of
 

r2
x;tR

���
� � �1�m��x���R

���
� �3 � �R

���
� � 0;

lim
r!1

R���� � 0;
(2)

and r �
���������������
x2 � t2
p

. Since the spatial coordinate x was nor-
malized by the beamwidth xbeam, then � � O�1�, see also
Remark 2 in [11]. The necessary and sufficient conditions
for the (orbital) stability of the R���� were found in [13]. In
the case of a positive bound state these conditions are [11]

(i) the slope condition @�
R
�R���� �2dxdt > 0, (ii) the spec-

tral condition that the linearized operator L����;� 
 �r
2
x;t �

�� 3�1�m��x���R���� �2 has exactly one negative eigen-
value. In a homogeneous Kerr medium (m 
 0), Eq. (2)
reduces to r2

x;tR� � R
3
� � �R� � 0. By the dilation scal-

ing, R��r� �
���
�
p
R�

���
�
p
r�, where R satisfies r2

x;tR� R3 �
R � 0. The ground state solution of this equation is known
as the Townes profile [15] and its power is equal to the
critical power for self-focusing, i.e., P cr � P �R� �R
jRj2dxdt [15].
We now study the profiles and dynamic stability of R����

in the three regimes: �� 1, � � O�1�, and �	 1.
Wide bound states.—For �� 1, Eq. (2) can be solved

with a multiple scales expansion, which exploits the scale
separation between the slow O�x� beamwidth and the fast
O�X � �x� variations of the lattice. Since m�X� � m�X�
1�, we can expandm�X� �

P
n�0mnei2�nX. Following [11],

it can be shown that the bound state is given by
 

R���� �x; t� � R��r� �
�

�2

�
3
�Z 1

0
�@�1m�2dX

�
L�1
� �R

5�r��|�������������������������{z�������������������������}
isotropic in �x;t�

� �@�2m�X��R3�r�|������������{z������������}
anisotropic

�
�O���4�; (3)

where @�km�X� �
P
n�0�i2�n�

�kmnei2�nX, L�;� �
�r2

x;t � �� 3R2
�, and L� � L�;��1. The multiple scales

solution (3) shows that to leading order, a wide bound state
experiences only a homogeneous Kerr effect with effective
Kerr nonlinearity of �n2 � hn2�x�i. Moreover, the deviation
of wide bound states from the rescaled Townes profile R� is
small even if the lattice modulations themselves are of
O�1�. This is indeed confirmed in our simulations [see
Fig. 1(a)] where R���2�

� is nearly indistinguishable from
the homogeneous medium bound state R�.

By Eq. (3), the power of R���� for �� 1 is given by (see
[11] )

 P �R���� � � P cr �
�

�2 Cwide �O���4�; (4)

where Cwide� 2�
R

1
0�@
�1m�2dX�

RR
R6�r�dxdt>0 is a

lattice-dependent positive constant. Hence, our multiple
scales analysis shows that a periodic nonlinear lattice al-
ways reduces the power of wide bound states below P cr.

In the absence of a nonlinear lattice, the Townes profile
is unstable, since @�P �R�� � 0. This violation of the slope
condition results in a blowup or total-diffraction instability.
In the presence of a lattice, it follows from Eq. (4) that
@�P �R

���
� �< 0, i.e., a nonlinear lattice further destabilizes

wide bound states. To see this instability, in Fig. 1(b) we
solve Eq. (1) with the initial conditions A0 � �1�

0:01�R���� . As in the homogeneous medium case, the insta-
bility is manifested either by blowup (singularity forma-
tion) or by diffractive spreading to zero.
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� � O�1� bound states.—When the beamwidth is com-
parable to the lattice period, the bound states R���� cannot be
approximated analytically but can be evaluated numeri-
cally [11,16]. Our numerical simulations with various lat-
tices ranging from the smooth lattice m � � cos�2��x� to
a step-function lattice show that when � � O�1�, the sign
of @�P �R

���
� � is negative (positive) when the beam is cen-

tered at a lattice maximum (minimum), see Fig. 2(a).
Hence, O�1� bound states centered at a local maximum
of the lattice are unstable, as they do not satisfy the slope
condition. Indeed, our simulations show that O�1� beams
centered at a local maximum exhibit blowup/diffraction
instability, similar to Fig. 1(b) (data not shown). On the
other hand, while O�1� bound states centered at a lattice
minimum satisfy the slope condition, they are also unstable

since they violate the spectral condition. To see that, we
recall that in the absence of the nonlinear lattice, L����;�
reduces to L�;� which has one simple negative eigenvalue,
a double eigenvalue �0;x � �0;t � 0 with the correspond-
ing eigenfunctions @xR� �

x
r R
0
� and @tR� �

t
r R
0
�, and a

positive continuous spectrum ��;1� [14]. In the presence
of a spatial nonlinear lattice L����;��@tR

���
� � � 0, so that the

corresponding eigenvalue ����0;t remains at 0. However,

@xR
���
� is no longer an eigenfunction of L����;�. Numerical

calculations (not shown) of the eigenvalues of the discre-
tized operator L����;� show that the corresponding eigenvalue

����0;x always becomes positive (negative) for a bound state
centered at a lattice maximum (minimum). Therefore, the
spectral condition is not satisfied for O�1� beams centered
at a lattice minimum so that these beams are also unstable.
In that case, the instability manifests itself as a drift of the
beam toward the nearest lattice maximum, a behavior we
designated as a drift instability [11]. Intuitively, this dy-
namics can be explained by an Ehrenfest-like argument
[11,17] showing that the spatial center of mass of the beam,
hxi �

RR
xjAj2dxdt=

RR
jAj2dxdt, drifts toward regions with

higher index of refraction. Indeed, numerical solutions of
Eq. (1) show that a randomly perturbed O�1� bound state
centered at a local minimum of the lattice drifts towards the
lattice maximum and then blows up [Fig. 2(b)]. A similar
drift instability occurs also for wide beams (�� 1) cen-
tered at a local minimum. However, since in this case ����0;x

is exponentially small [11,18], this drift is negligible com-
pared with the blowup instability that arises from violation
of the slope condition.

Narrow bound states.—For �	 1, the solutions of
Eq. (2) are yet different from the solutions in the regimes
�� 1 and � � O�1� discussed so far. In this case, the
solution is affected only by the local variation of the lattice
and not by the global periodic structure. Following the
perturbation analysis of [11,19], we can derive the follow-
ing asymptotic solution

 R���� �x; t� �

�������������������
1

1�m�0�

s �
R� � �2 m00�0�

2�1�m�0��
L�1
�;��x

2R3
��

�
�O��4�:

Thus, the lattice has an O��2� effect on the bound state
profile. However, the lattice effect on the bound state
power is only O��4� [11,19], i.e.,

 P �R���� � �
P cr

1�m�0�
�
�4

�2 Cnarrow �O��6�; (5)

where Cnarrow� ��m
00�0��2G�m�4��0��1�m�0����RR

x4R4�r�dxdt=�48�1�m�0��3� and G � �12�RR
x2R3L�1

� �x
2R3�RR

x4R4

 �1:085. Equation (4) shows that narrow

beams satisfy the slope condition if and only if Cnarrow > 0.
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FIG. 2 (color online). (a) Power of the solutions of Eq. (2)
centered at a local maximum (dashed line) or minimum (solid
line) of the lattice m � 0:5 cos�2��x� with � � 1. (b) Same as
Fig. 1(b) with the initial condition A0 � �1� 0:05rand�x; t��R����
centered at a lattice minimum for a (mean-zero) random noise.
Inset shows that the spatial center of mass of the beam (solid
line) moves from a lattice minimum (dotted line) toward a lattice
maximum (dashed line).
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FIG. 1. (a) Cross sections R���� �x; t � 0� (solid line), R���� �x �
0; t� (dashed line) of the solution of Eq. (2) with � � 2, � � 1,
and the lattice m��x� � 0:5 cos�2��x� (thin solid line). Cross
sections are nearly indistinguishable from R��r� (dotted line).
(b) Amplitude of the solutions of Eq. (1) with the initial
condition A0 � �1� ��R

���2�
� for � � 0:01 (solid line) and � �

�0:01 (dashed line).
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Since Cnarrow depends not only onm00�0� but also onm�4��0�
and m�0�, by a proper design of a lattice, the sign of the
slope can be positive for beams centered at a lattice maxi-
mum and at a lattice minimum. This is different from the
cases of � � O�1� where the slope is positive only at
lattice minimum, and �� 1 where the slope is always
negative. A perturbation analysis similar to [11] shows that
����0;t � 0 and ����0;x 
 �

m00�0�
1�m�0��

2. Therefore, as in the case
of O�1� beams, ����0;x becomes positive (negative) for beams
centered at a lattice maximum (minimum).

Our stability results are summarized in Table I and show
that a nonlinear lattice can only stabilize beams that are (i)
narrow, (ii) centered at a local maximum of a lattice that
(iii) satisfies Cnarrow > 0. However, the O��4� small posi-
tive slope, see Eq. (4), implies that the stabilization by the
lattice is weak. To illustrate that, in Fig. 3 we show the
amplitude of solutions of Eq. (1) with the initial condition
A0 � �1� ��R

���
� centered at a local maximum. Since

Cnarrow < 0 for the lattice m � 0:5 cos�2��x�, we use the
lattice m � 0:48 cos�2��x� � 0:1 cos�4��x� for which
Cnarrow > 0. As predicted, the bound states remain stable
under the perturbation � � 0:0001. However, when � �
0:004, the beam collapses while for � � �0:004, the beam
undergoes total diffraction. This shows that the beam is

stable, but that the stability region is smaller than �0:8%
of the beam power. Therefore, narrow bound states that
satisfy the three conditions (i), (ii), and (iii) are ‘‘mathe-
matically stable’’, but ‘‘physically unstable’’, since in ac-
tual physical setups the profile of the incident beam can be
controlled only up to a few percent accuracy.

In conclusion, we have demonstrated that the methods
and four general observations of [11] can be easily gen-
eralized to an anisotropic two-dimensional nonlinear
lattice. Generalizations to an isotropic or a square
two-dimensional lattice [m � m�x; y�] or to a three-
dimensional setting are also straightforward. Moreover,
our methods, results, and observations can be useful to
many other problems in nonlinear optics and in BEC,
e.g., with a linear lattice [20].
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TABLE I. (In)stability of the bound states of Eq. (1). Source
for instability is marked by a � or y for a failure to satisfy the
slope condition and the spectral condition, respectively.

Local maximum Local minimum

�� 1 unstable � unstable �

� � O�1� unstable � unstabley

�	 1 determined by sgn�Cnarrow� unstabley
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FIG. 3. Amplitude of the solutions of Eq. (1) with the initial
condition A0 � �1� ��R

���0:2�
� for � � 0:0001 (dotted line),

� � 0:004 (solid line), and � � �0:004 (dashed line).
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