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Self-accelerating Airy beams, which are nondiffracting waves in the form of an Airy function that propagate in free
space with constant acceleration, have received considerable attention in recent years. They are typically generated by
manipulation of the phase front of the wave by means of specially designed optical elements. Here we show that
autofocusing, radially symmetric Airy waves can form spontaneously as a laser beam propagates in a defocusing, non-
local thermal nonlinear medium, inside a cylindrical channel with a reflective boundary. The beam forms a ring-
shaped optical caustic, which, following reflection from the boundary, converges to a focal point. We demonstrate
this new method experimentally and numerically, and present a semi-classical analytical model for the wave dynamics
that shows that the self-generated, radially symmetric wave is indeed a caustic with an Airy-function profile. In the
hydrodynamic representation of the nonlinear wave equation, the ring-shaped caustic that we describe can be inter-
preted as a shock wave that forms as the “photonic fluid” bounces off the reflective boundary. These results suggest a
very simple and accessible, yet mathematically accurate, way to obtain autofocusing radially symmetric Airy waves for
various applications. © 2015 Optical Society of America

OCIS codes: (190.4420) Nonlinear optics, transverse effects in; (260.1960) Diffraction theory.
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Self-accelerating Airy beams, namely nondiffracting waves in the
form of an Airy function, with probability density functions (but
not “centers of mass”) that propagate in free space with constant
acceleration, have received considerable attention since they were
first proposed and demonstrated [1–3], and were shown to be
useful for applications such as optical manipulation of small par-
ticles, microscopy, laser machining, and generation of light bullets
and plasma channels in air [4–8]. The idea has been generalized to
nonlinear and nonlocal media [9–11] and to arbitrary convex
trajectories [12], and was also applied to electron beams [13]
and surface plasmons [14]. The majority of works in this field
have focused on one-dimensional Airy beams that propagate in
a plane, but radially symmetric Airy waves, which exhibit abrupt
autofocusing, have also been proposed and demonstrated [15,16].

The generation of Airy waves usually relies on manipulation of
the phase front of the wave by means of a phase mask, diffractive
optical elements, or wave-mixing processes. Here we describe
spontaneously generated, ring-shaped autofocusing Airy waves that
form when an optical caustic in a defocusing, nonlocal, thermal
nonlinear medium is reflected from a cylindrical boundary.
Rings in defocusing thermal media have been known for many
years [17], although their relation to optical caustics was not explic-
itly mentioned. Here we use them to construct a ring-shaped

caustic that autofocuses to a point. We first demonstrate the idea
experimentally and numerically, and then study the wave dynamics
analytically using a semi-classical model.We also briefly discuss the
hydrodynamic representation of the nonlinear wave equation,
interpreting the ring-shaped caustic as a shock wave that forms
as the “photonic fluid” bounces off the reflective boundary.

In the paraxial approximation, the propagation of a coherent
light beam through a nonlinear medium is usually described
analytically by the nonlinear Schrödinger equation:

i
∂ψ
∂z

� −
1

2β0
∇2ψ � U �x; y�ψ � gjψ j2ψ : (1)

Here ψ is the weakly z-dependent complex amplitude of the light
propagating in the z direction, β0 is the propagation constant,
∇2 � ∂2x � ∂2y is the transverse Laplacian, U �x; y� is the equiva-
lent potential created by static spatial variations of the refractive
index, and g is the nonlinear Kerr coefficient, representing the
instantaneous nonlinear response of the medium. The last term
in the equation thus describes the nonlinear refractive index
changes due to local spatial variations of the light intensity.
Strictly speaking, Eq. (1) is not applicable in the case of a thermal
nonlinearity [17,18], where the light-induced refractive index var-
iations are nonlocal in both space and time (due to heat diffusion
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and accumulation, respectively). It is common to take the spatial
nonlocality into account by considering a nonlocal response
kernel [19], but in fact, since in many cases a steady state is
obtained after sufficiently long exposure to laser light (typically
∼1 s for laser intensities of a few watts), it is appropriate to de-
scribe the delayed, nonlocal response as a static potential U �x; y�,
determined by the laser beam characteristics, the heat capacity
and transport coefficients of the nonlinear medium, and the
boundary conditions [20,21].

Consider a laser beam propagating in a thermal, self-defocusing
medium [meaning that the index of refraction decreases as a func-
tion of the temperature, and corresponding to positive g in
Eq. (1)] along the axis of a cylindrical channel with a reflective
boundary [see Fig. 1(a)]. The material that forms the boundary
has very high thermal conductivity and heat capacity. In the
steady state the heat flux produced by the laser is balanced by
heat diffusion to the boundary, which acts as a heat sink. The
heat diffusion is sustained by a radial temperature gradient,
and the temperature profile that forms inside the channel, and
peaks on its axis, is best described by a static repulsive potential
with radial symmetry. As the laser beam propagates along the z
direction, in the presence of the repulsive potential, its phase
fronts acquire an increasing concave curvature, which corresponds
to defocusing. (Note that the same result would be obtained in
the case of a local, defocusing Kerr nonlinearity, but that the result
here depends only weakly on the details of the light intensity
distribution in the channel.) Now if the laser beam is sufficiently
broad, reflection off the boundary forms another, inward-
propagating wave, with convex phase fronts, the curvature of
which increases as a function of z. As shown in Fig. 1(b), this
is a recipe for formation of a caustic.

To illustrate the above scenario we present one-dimensional
numerical simulations of Eq. (1), for cylindrical symmetry, as-
suming a static potential that is a solution of the heat diffusion
equation for uniform light intensity (i.e., heat generation) in the
channel, namely U �r� � −β0n0Δn�r� � −β0n0Δn�1 − �r∕R�2�,
where n0 is the linear refractive index, r is the radial coordinate,
and R is the radius of the channel. (Although this is not a self-
consistent model, it greatly simplifies the numerical simulation;
moreover, we have verified that the results of the simulation are
not very sensitive to the exact form of repulsive potential that we
assume.) Figure 2 shows simulation results for input parameters
that correspond to the experiment described later. Figure 2(a) is a
contour plot of the light intensity as a function of the radial and z
coordinates, and Fig. 2(b) is a plot of the intensity as a function of
the radial coordinate at the exit of the 8-cm-long channel. The
figure clearly shows the formation of a ring, which propagates
inward as z increases. The cross section of the ring resembles
an Airy function, which is known to be the typical mathematical
form of a caustic [1]. Below we will describe a semi-analytical

model that shows that this conjecture is in fact accurate. At this
point, however, we just show numerically that when propagating
in free space, behind the nonlinear channel, the self-generated
ring is also self-accelerating, and autofocuses to a point in space
[Fig. 2(c)]. Finally, we find that the instantaneous Kerr nonlin-
earity [the last term on the right-hand side of Eq. (1)] does not
play any role in the formation of the ring.

In the experiment we launch the beam of a frequency-doubled
YAG laser (532 nm, continuous wave) into a 3-mm-diameter,
71-mm-long, circular channel, with polished, reflective walls,
drilled in an aluminum block. The latter is enclosed in a cell with
glass windows, filled with iodine-doped ethanol (∼20 ppm)—a
defocusing nonlinear medium. The nonlinear index variations
result from absorption by the iodine, which in turn leads to non-
local, thermally induced changes of the index of refraction
[17,18]. Typically, after ∼1 s exposure to the laser (1–4 W) a
steady state is reached, where the heat flux produced by the laser
is balanced by heat diffusion to the aluminum block, which acts as
a heat sink. Figure 3(a) shows an image of the beam at the output
of the channel, obtained with a CCD camera, for a 1 W input
beam with a ∼2.5 mm waist. A bright ring is clearly observed.
Similar rings are obtained for a wide range of input powers

Fig. 1. (a) Setup described in the text. (b) Sketch explaining the
formation of a caustic from partial waves reflected off the boundary.

Fig. 2. (a) Numerical simulation of Eq. (1) with a 3-mm-diameter,
8-cm-long channel, a centered, 1-mm-diameter Gaussian input beam,
the parabolic potential described in the text, U �0� � 9000 m−1,
β0 � 1.181 × 107 m−1, and gjA�0�j2 � 100 m−1; (a) is a contour plot
of the beam intensity as a function of the radial coordinate and the propa-
gation distance inside the channel; (b) is the intensity profile at the out-
put of the channel; (c) self-acceleration and focusing to a point of the
output beam as it propagates in free space behind the channel. See also
Supplement 1.

Fig. 3. Experimental: (a) image of the output plane of the 3 mm chan-
nel for a 1 W input beam (note: the cylindrical channel has an opening,
i.e., a groove on one side, which results in a cutoff piece that is seen
ejected to the left); (b) image of the fluorescence at the output plane of
the channel for a 3.5 W input beam and a 27% duty cycle; (c) the ring in
(b) focuses to a point after propagating ∼6 cm in free space.

Research Article Vol. 2, No. 12 / December 2015 / Optica 1054

http://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-2-12-1053&seq=1


and beam waist sizes. As the input power is increased, the ring
moves inward. Reducing the duty cycle of the laser, by means
of a mechanical shutter, has the opposite effect. Using fluorescent
dye on a glass cover slip as a screen allows imaging of the beam
beyond the channel output. Figures 3(b) and 3(c) show images of
the fluorescent screen when it is positioned at the output plane of
the channel (b) and ∼6 cm behind it (c), with a 3.5 W input
beam and a 27% duty cycle [about the same average power as
in Fig. 3(a)], clearly showing that the outgoing beam focuses
to a point. The focusing distance from the output plane can
be controlled by varying the intensity and duty cycle of the laser.
These findings are in excellent agreement with the simulations.

We now turn to the semi-classical model. Since the numerical
simulations of Eq. (1) show that the instantaneous Kerr nonlin-
earity is not important, we replace Eq. (1) with a dimensionless
Schrödinger equation for a quantum particle, with implicit
cylindrical symmetry (i.e., only radial momentum):

i∂tψ �
�
−

1

2m
∇2

r � f �r�
�
ψ�r; t�: (2)

Here r is the normalized radial coordinate �0 ≤ r ≤ 1�; t �
zU r�0, the mass m � β0R2Ur�0 ∼ 105 corresponds to the values
of the experimental parameters, and f �r� � U �r�∕Ur�0 is a nor-
malized potential satisfying f �0� � 1, f �r > 1� � �∞, as well
as f 0�1−� � 0, to simplify the behavior at the boundary.
Furthermore, since the ring forms far from the center of the chan-
nel, the cylindrical term r−1∂r in the Laplacian is neglected (we
have numerically verified the excellent accuracy of this approxi-
mation for the beam configuration that we consider here).
Introducing the notation

ψ�r; t� � A�r; t�eiS�r;t�; (3)
where A and S are real, we obtain

∂S
∂t

� 1

2m

�
1

A
∂2A
∂r2

−

�
∂S
∂r

�
2
�
− f ; (4a)

∂A2

∂t
� ∂

∂r

�
A2 1

m
∂S
∂r

�
� 0: (4b)

We solve the problem in the semi-classical limit in which A
is a slowly varying function of position. The first term on the
RHS of Eq. (4a) can then be neglected, and one obtains the
Hamilton–Jacobi equation:

∂tS �H �r; ∂rS� � 0; (5)

while Eq. (4b) is a current-conservation equation.
To solve the problem semi-classically, we evolve a swarm of

classical test particles in phase space fq; pg with the Hamiltonian
H � p2∕2 m� f �r� and the following initial conditions:
q�t�0��q0∈ �0;1�; p�t�0��p0�∂S∕∂rj�q0 ;t�0� �0. The
density of initial points along the segment [0, 1] is given by the
initial distribution jψ�r; t � 0�j2 � A2�r; t � 0�.

The phase-space curves that describe the distribution of
classical particles as a function of time and that evolve according
to the Hamiltonian flow are Lagrangian manifolds. At t � 0 the
Lagrangian manifold corresponding to our initial configuration
coincides with the line p � 0; q ∈ �0; 1�. For sufficiently short
times the position q�t� of a classical particle is a unique function
q � q�q0; t� of its initial position q0, and one can determine q0
for each r and t by inverting q�q0; t� � r. The standard semi-
classical approach then yields

ψ�r; t� �
���� ∂q0∂q

����
1∕2

A0�q0�r; t��eiS�q0�r;t�;t�; (6)

where A0�q0� � A�q0; t � 0� is the initial amplitude at the initial
position of the particle, and S�q0�r; t�; t� is the actionR
t
0 L�q; _q; t 0�dt 0 calculated along the classical trajectory, which
leads from q0 to q. Figure 4 shows the evolution of the classical
test particles in phase space and the corresponding density profiles
A2�r; t� calculated from Eq. (6).

The situation gets more complex after some of the classical test
particles bounce from the hard wall at r � 1 and propagate back-
ward toward r � 0, against the potential f �r�, which typically
occurs for t ∼ 250 (corresponding to a propagation of 5 cm in
the experiment). This induces a fold catastrophe in the
Lagrangian manifold. As seen in Fig. 5, there are now either
one or three momenta p associated with each position q, which
we denote by p1, p2, and p3. The latter corresponds to a particle
(i.e., wave component) that still propagates outward, while p1 and
p2 are the momenta of particles propagating inward. As we show
below, using standard mathematical analysis, the joint contribu-
tion of these particles forms an interference peak, i.e., a caustic
in the density profile at the turning point r � Rc (to keep the
notation simple we do not write the time dependence of Rc
explicitly).

Since each r > Rc can be reached by three different classical
trajectories [q1�t�, q2�t�, and q3�t� in Fig. 5(b)], a trivial
extension of the semi-classical approach leading to Eq. (6)
yields

Fig. 4. (a) Classical evolution of the Lagrangian manifold in phase
space for short times. (b) Corresponding density profiles—the red dashed
line corresponds to the initial density, which is arbitrarily taken to be
A0�r� � 1 − r2; the purple solid line is the semi-classical result
Eq. (6); and the black dots are brute-force numerical solutions of
Eq. (2); without loss of generality we take f �r� � �1� cos πr�∕2.

Fig. 5. (a) Classical evolution of the Lagrangian manifold in phase
space for t � 400, corresponding to a propagation distance of 8 cm
in the experiment—a caustic appears at r � Rc�t�. (b) The three classical
trajectories q�i��t� correspond to the three momenta pi in (a); q1�t� and
q2�t� merge exactly for r � Rc�t�.
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ψ�r; t� �
X

b∈f1;2;3g
ψ �b��r; t�

�
X

b∈f1;2;3g
eiμbπ∕2A0�q�b��r; t��

���� ∂q
�b�
0

∂q

����
1∕2

eiS�q�b��r;t��; (7)

where q�b�0 � qb�t � 0�, the μb’s are Maslov indices [μ3 � 0 as
in Eq. (6), and �μ1; μ2� � �2; 1�], and ψ �1� and ψ �2� are zero
for r < Rc. The intensity profile obtained from this crude
semi-classical approximation is depicted in Fig. 6(a), for the
same parameters and time as in Fig. 5. Also shown is the in-
tensity profile calculated by numerical integration of Eq. (2).
Figure 6(a) shows that near the caustic (r � Rc) approximation
Eq. (7) diverges—the two classical trajectories q1�t� and q2�t�
coincide, and the stationary phase method, which is at the heart
of the semi-classical approximation, must be refined, since the
factors ∂q�b�0 ∕∂q in Eq. (7) diverge for b � 1; 2. Yet, since there
are no caustics in momentum space, one may obtain a better
solution in the vicinity of the caustic by Fourier-transforming
the wave function at an earlier time, before the caustic forms,
evolving the Fourier components in time, and finally Fourier-
transforming back to real space. The last step must be per-
formed with care because of the presence of two nearby saddle
points in the integral (corresponding to the classical momenta
p1 and p2). The result for ψ �1� � ψ �2� involves the Airy func-
tion Ai [the contribution of ψ �3� in Eq. (7) is not modified]:

ψ �1��r; t� � ψ �2��r; t�

�
ffiffiffiffiffi
2π

p

l
A0�q̃�

���� ∂q
�1;2�
0

∂p

����
1∕2

Rc

Ai
�
Rc − r
l

�
ei�Sc�kc�r−Rc���3π

4 i ; (8)

where q̃ � q�1�0 �Rc; t� � q�2�0 �Rc; t� is the initial position lead-
ing to q1;2�t� � Rc , and the quantities l and Sc are defined by

l 3 � 1

2

∂2q
∂p2

����
Rc

; Sc � S�q̃; t�: (9)

This result, combining an isolated classical path and two others
forming a caustic, is identical to rainbow scattering from a
Lennard–Jones-type central potential [22]. The corresponding
intensity profile depicted in Fig. 6(b) validates the interpreta-
tion of the experimental and numerical results in terms of a
caustic, with a typical Airy-function form. Note, however, that
the divergence of Eq. (7) at r � Rc has been eliminated in
Eq. (8) at the price of loss of accuracy away from the caustic,
in the region 0.8 ≲ r < 1 [cf. Fig. 6(b)]. Yet the discrepancy
can be resolved by more uniform treatment, following [23].
The final result is

ψ �1��r;t��ψ �2��r;t�� ffiffiffi
π

p
eiSc�iπ

×
��

A0�q�1�0 �r;t��
����∂q

�1�
0

∂q

����
1
2

�A0�q�2�0 �r;t��
����∂q

�2�
0

∂q

����
1
2
�
ς
1
4Ai�ς�

�i
�
A0�q�2�0 �r;t��

����∂q
�2�
0

∂q

����
1
2

−A0�q�1�0 �r;t��
����∂q

�1�
0

∂q

����
1
2
�
ς−

1
4Ai 0�ς�

�
;

ς� ς�r;t��
�
3

4
�S�q�2�0 �r;t�; t�−S�q�1�0 �r;t�; t��

�
2∕3

;

Sc � Sc�r;t��
S�q�1�0 �r;t�; t��S�q�2�0 �r;t�; t�

2
: (10)

Figure 7(a) compares the results of this uniform approxima-
tion with a numerical solution of Eq. (2). Figure 7(b) is a sketch
of the semi-classical trajectories and the position of the (time-
dependent) caustic obtained in this approximation. Considering
all the approximations made, and in particular the impossibility of
measuring the exact shape of the static potential, it is quite re-
markable that the position of the ring in the experimental data
is in excellent agreement with the prediction of the semi-classical
model, for similar laser powers and propagation lengths.

In the hydrodynamic representation of the nonlinear wave
equation, the Madelung transformation [24] maps Eq. (1) to
coupled equations for the amplitude and phase, which have
the form of continuity and Euler equations for an equivalent
“photon fluid.” This approach has been used successfully to model
dispersive shock waves that appear around laser beams that propa-
gate in isotropic self-defocusing media [25]. Similarly, when the
nonlinear term in Eq. (1) is predominant, the caustics can be in-
terpreted as shock waves in the photon fluid. The increasing cur-
vature of the reflected wave fronts as a function of z [see Fig. 1(b)]
corresponds to increasing velocity of the partial waves as a func-
tion of time, leading to steepening of the wave and formation of a
shock. We checked numerically and qualitatively that the caustic
associated with the fold singularity of the Lagrangian manifold
indeed turns into a dispersive shock wave when the nonlinear
term is sufficiently large.

Finally, the simple method that we suggest for generating au-
tofocusing, radially symmetric Airy waves has several advantages
compared to established methods. Unlike a typical spatial light
modulator, it can handle high average powers. Moreover, as
the autofocusing distance is power-dependent, the autofocusing
element can be combined with a pinhole in a nonlinear switching
device, the pinhole position defining the threshold power above
which transmission is high. The abrupt autofocusing of the
non-Gaussian beam will result in a sharp transition.

Fig. 6. (a) Numerical A�r; t� (red dashed line) and crude semi-classical
result Eq. (7) (blue solid line) for t � 400 (z � 8 cm); the semi-classical
result diverges at the caustic. (b) Same as (a), for the semi-classical result
Eq. (8), supplemented with the contribution ψ �3� from Eq. (7).

Fig. 7. (a) Numerical A�r; t� (red dashed line) and semi-classical result
Eq. (10) (blue solid line) for t � 400 (z � 8 cm). (b) Sketch of semi-
classical trajectories (black lines) and the (time-dependent) caustic (red
lines) obtained from Eq. (10); the curves show the evolution of
A�r; t� See also Supplement 1.
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