
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

The Skyline Algorithm for POMDP Value Function
Pruning

Christopher Raphael · Guy Shani

Received: date / Accepted: date

Abstract We address the pruning or filtering problem, encountered in exact
value iteration in POMDPs and elsewhere, in which a collection of linear func-
tions is reduced to the minimal subset retaining the same maximal surface. We
introduce the Skyline algorithm, which traces the graph corresponding to the
maximal surface. The algorithm has both a complete and an iterative version,
which we present, along with the classical Lark’s algorithm, in terms of the
basic dictionary-based simplex iteration from linear programming. We discuss
computational complexity results, and present comparative experiments on
both randomly-generated and well-known POMDP benchmarks.

Keywords POMDP · Linear Programming · Dynamic Programming

1 Introduction

Many autonomous agents operate in an environment where actions have stochas-
tic effects. In many such cases, the agent perceives the environment through
noisy and partial observations. Perhaps the most common example of this set-
ting is a robot that receives input through an array of sensors [9,8]. These
sensors can provide only partial information about the environment. For ex-
ample, robotic sensors such as cameras and lasers cannot see beyond walls,
and the robot thus cannot directly observe the contents of the next room.
Thus, many features of the problem, such as the existence of hazards or re-
quired resources beyond the range of the sensors are hidden from the robot.
Other examples of applications where partial observability is prevalent are

Christopher Raphael
School of Informatics, Indiana University, Bloomington, IN
E-mail: craphael@indiana.edu

Guy Shani
Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel
E-mail: shanigu@bgu.ac.il

2 Christopher Raphael, Guy Shani

dialog systems [20], preference elicitation tasks [4], automated fault recovery
[15], medical diagnosis [7], recommender systems [14], and many more.

For such applications, the decision-theoretic model of choice is a partially
observable Markov decision process (POMDP). POMDPs provide a principled
mathematical framework to reason about the effects of actions and observa-
tions on the agent’s perception of the environment, and to compute behaviors
that optimize some aspect of the agent’s interaction with the environment.

A POMDP can be solved by casting it into the belief-space MDP — a
Markov Decision Process (MDP) defined over the belief states of the origi-
nal POMDP. The value function for this MDP is convex [18,16] and can be
represented as a maximum of linear functions, often called α-vectors. The tra-
ditional MDP value iteration algorithm [1] can be translated to the belief space
MDP through operations over sets of α-vectors. As the computation time of
each iteration depends directly on the size of the set, it is crucial to maintain
minimal sets of α-vectors. Indeed, as the value function is defined using the
upper envelope of this set, many vectors may be completely dominated and
hence redundant. The task of removing these dominated vectors is typically
known as pruning [2].

The traditional method for removing redundant vectors is by using Lark’s
algorithm [19], that, given a set of α-vectors, attempts to find for each vector
a witness point — a belief state where this α-vector dominates all others [2].
Finding the witness can be defined as a linear program (LP) and solved by any
LP solver. Lark’s algorithm treats LP as a black box, independently solving a
collection of interconnected LP problems ignoring their relationship.

In this paper we propose, instead, an alternative to the popular approach
that we call the Skyline algorithm. Skyline traverses the skyline graph formed
by a set of vectors, as shown in Figure 1. The vertices of this graph are points,
x ∈ S, where D of the linear functions are simultaneously equal and maximal,
while the edges are line segments in S where D − 1 of the linear function are
equal and maximal. We provide first an intuitive, geometric description of the
Skyline algorithm, followed by a more practical implementation drawing on
ideas from LP.

A complete traversal of the skyline graph may by computationally infea-
sible, due to the potentially large number of vertices. We suggest an iterative
variant of the Skyline algorithm that determines the fate of each vector by
traversing only a part of the skyline graph. This modification has the benefit
of uncovering additional dominating vectors as it explores the vector under
consideration.

We present simple complexity analysis of the algorithms in two dimensions.
We present experiments on some artificially constructed examples, as well as
over a number of standard benchmarks from the POMDP literature. These
experiments demonstrate both the merits and disadvantages of the Skyline
algorithm and its iterative sibling. Finally we outline some ways in which
Skyline can take advantage of the special structure of POMDP problems.

The Skyline Algorithm 3

2 Background

We begin with an overview of MDPs and POMDPs, the belief space MDP,
and value iteration for solving POMDPs. We then focus on Lark’s algorithm
for pruning dominated vectors.

2.1 MDPs, POMDPs and the belief-space MDP

Markov Decision Processes (MDPs) are designed to model autonomous agents,
acting in a stochastic environment. Consider for example a robot traveling
through a maze. The robot starts at some location and can either move for-
ward, turn left, or turn right. As the robot moves its location may change,
and thus, the environment, which includes the location of the robot, changes.
The assumption is that the environment changes only as the result of the
agent actions. The robot must reach some goal state, such as the exit door,
or alternatively, collect rewards, such as items that are scattered through the
maze.

Formally, an MDP is a tuple ⟨S,A, tr,R⟩ where:

– S is the set of all possible world states. In the example above the environ-
ment state is the location and orientation of the robot.

– A is a set of actions the agent can execute. Our robot can only turn left,
right, or move forward.

– tr(s, a, s′) defines the probability of transitioning from state s to state s′

using action a. The transition function models the stochastic nature of the
environment, such as the robot attempting to move forward but failing due
to engine malfunction or because the wheels were slipping.

– R(s, a) defines a reward the agent receives for executing action a in state
s. Action costs can be modeled as negative rewards. In our example the
robot receives a reward for getting out of the maze or for collecting an
item. The robot may pay a cost each time it moves, modeling the energy
loss incurred by the move.

An MDP models an agent acting in an environment where it can directly
observe the state it is at.

Realistically, a robot does not know where it is located within a maze. It
has sensors that provide observations such as nearby walls. These sensors are
imperfect, meaning that they sometimes detect a wall where none exist, and
sometimes the sensors fail to detect an existing wall. Now, in order to find
its way through the maze the robot must also gather information about the
environment state — its own location within the maze.

A Partially Observable Markov Decision Process (POMDP) is designed
to model such agents that do not have direct access to the current state, but
rather observe it through noisy sensors. A POMDP is a tuple ⟨S, A, tr,R, Ω,O, x0⟩
where:

4 Christopher Raphael, Guy Shani

– S, A, tr,R compose an MDP, known as the underlying MDP. This MDP
models the behavior of the environment.

– Ω is a set of available observations — the possible outputs of the sensors.
In the example above the set of observations consists of all possible wall
configurations.

– O(a, s, o) is the probability of observing o after executing a and reaching
state s, modeling the sensor noise.

As the agent is unaware of its true world state, it must maintain a belief over
its current state — a vector x of probabilities such that x(s) is the probability
that the agent is at state s. Such a vector is known as a belief state or belief
point. x0 defines the initial belief state — the belief of the agent over the state
space before it has executed or observed anything.

Given a POMDP it is possible to define the belief-space MDP — an MDP
over the belief states of the POMDP. The transition from belief state x to belief
state x′ using action a is deterministic given an observation o and defines the
τ transition function. That is, we denote x′ = τ(x, a, o) where:

x′(s′) =
O(a, s′, o)

∑
s x(s)tr(s, a, s′)

pr(o|x, a)
(1)

and
pr(o|x, a) =

∑
s

x(s)
∑
s′

tr(s, a, s′)O(a, s′, o). (2)

As such, τ is computed in O(|S|2) and all the successors of a belief state
are computed in O(|Ω||A||S|2).

2.2 Value Functions for POMDPs

An agent that uses an MDP or POMDP attempts to optimize some function
of its reward stream, such as the sum of rewards, the average reward or, more
often, the discounted reward

∑
i γiri. The discount factor 0 < γ < 1 models

the higher value of present rewards compared to future rewards.
In most cases a solution to an MDP or POMDP is presented as a stationary

policy π : S → A — a mapping from states (MDP) or belief states (POMDP)
to actions. Policies can be computed directly [6] or through a value function
that assigns a value to each state [1]. For the discounted, infinite horizon case
that we discuss here there is a single optimal value function [1] that corresponds
to the fixed point of the Bellman equation:

V (s) = max
a∈A

R(s, a) + γ
∑
s′∈S

tr(s, a, s′)V (s′). (3)

The well known value iteration algorithm finds this fixed point by initializing
a value function and then applying the Bellman update until the function

The Skyline Algorithm 5

reaches its fixed point. An optimal policy, a policy that maximizes the stream
of rewards, can be obtained using:

πV (s) = argmaxa∈AR(s, a) + γ
∑
s′∈S

tr(s, a, s′)V (s′). (4)

As R(x, a), the immediate reward function for the belief space MDP, is lin-
ear and the Bellman equation preserve convexity, the value function V for the
belief-space MDP can be approximated as a finite collection of |S|-dimensional
vectors known as α vectors, and is both piecewise linear and convex [18]. A
policy over the belief space can be defined by associating an action a to each
vector α, such that α·x =

∑
s α(s)x(s) represents the value of taking a in belief

state x and following the policy afterwards. It is therefore standard practice
to compute a value function — a set V of α vectors, inducing a policy πV by:

πV (x) = argmaxa:αa∈V αa · x. (5)

2.3 Value Iteration in Vector Space

The value iteration algorithm over the belief-space MDP can be rewritten in
terms of vector operations, and operations on sets of vectors [18,2]:

V ′ =
∪
a∈A

V a (6)

V a =
⊕
o∈Ω

V a,o (7)

V a,o = { 1
|Ω|

ra + αa,o : α ∈ V } (8)

αa,o(s) =
∑
s′∈S

O(a, s′, o)T (s, a, s′)α(s′) (9)

where ra(s) = R(s, a) is a vector view of the reward function, V is the vector
set prior to the backup, V ′ is the new vector set after the backup, and V1⊕V2 =
{α1 + α2|α1 ∈ V1, α2 ∈ V2}.

This process is known as exact value iteration. In each iteration, the value
function is updated across the entire belief space. There are |V | × |A| × |Ω|
vectors generated at Equation 9, and computing each of these vectors takes
|S|2 operations. In Equation 7 we create |V ||Ω| new vectors for each action,
with a complexity of |S| for each new vector. Hence, the overall complexity of
a single iteration is O(|V | × |A| × |Ω| × |S|2 + |A| × |S| × |V ||Ω|).

The set of α-vectors may grow exponentially with every iteration. As the
computational cost of each iteration depends on the number of vectors in V ,
an exponential growth makes the algorithm prohibitively expensive. To some
degree, the sets of α-vectors can be reduced to their minimal form after each
stage, resulting in more manageable value functions [2].

6 Christopher Raphael, Guy Shani

2.4 Lark’s Algorithm

The classic filtering approach, due to Lark [19], seeks, for each vector αj′ , a
point, x′ ∈ S, such that αj′ · x′ > αj · x′ for j ̸= j′. Such a point shows
that αj′ is optimal at x′, hence non-dominated. One can determine if such a
point exists by executing the linear program, LP(j′, M), defined in terms of
the variables x1, . . . , xD, δ, where M = {1 . . . , N}\{j′}. This LP is defined by
minimizing δ subject to the constraints

(αj′ − αj) · x + δ > 0 for j ∈ M (10)

with
∑

i xi = 1 and xi ≥ 0. αj′ is dominated if and only if the optimizing
value, δ∗, satisfies δ∗ ≥ 0. The most straightforward use of the above linear
program runs LP(j′, {1, . . . , N}\{j′}) independently for each j′ ∈ {1, . . . , N}.

Lark’s algorithm is a variation on this basic idea that may run faster. The
algorithm manages two sets of vectors — a “clean” set, indexing the currently
non-dominated vectors, initialized to index the maximizers at the “corners”
of the simplex; and a “dirty” set, indexing the vectors whose fate is currently
unknown, and is initialized to the remaining collection of vectors. This process
is described in Algorithm 1.

Algorithm 1 Lark’s filtering algorithm
F ← {1, . . . , N} // the dirty set
Q← ∅ // the clean set
for i ∈ 1, . . . , D do

j(i)← arg maxj=1,...,N αji

Add j(i) to Q and remove it from F .
end for
while F is not empty do

choose j′ ∈ F
(δ, x)← LP(j′, Q)
if δ < 0 then

k ← arg maxj∈F αj · x
Add αk to C and remove it from F

else
Remove j′ from F

end if
end while

The advantage of Lark is that, by comparing each undetermined vector to
the clean set only, we reduce the size of the linear programs to be solved.

3 The Skyline Algorithm

We now describe an alternative to Lark’s algorithm — the Skyline algorithm.
Skyline traces the upper envelope (the skyline) formed by the set of vectors. All
vectors “visited” during this traversal are non-dominated, while vectors that

The Skyline Algorithm 7

are never visited can be pruned. Below we describe formally the skyline algo-
rithm, starting first with an intuitive geometric description, then presenting a
more practical implementation relying on concepts from LP.

3.1 A Geometric View

(0,0,1)

x

x x

x

x

x

x

x
x

x

x

x

x

x = 0

x = 0
x = 0

1
2

3

x

x13

2
25

245

4

8

5

35

235

123

3 356
6

7

3x
(1,0,0) (0,1,0)

23
1

1

x23

x3
36

x13

Fig. 1 The Skyline Graph. xO is the set where the linear functions indexed by O are
simultaneously maximal. For the point xO

I , the functions of O are simultaneously maximal,
while the coordinate variables of I are 0.

Our geometric description is easiest to visualize with D = 3. In this case
the simplex domain, S, can be viewed as the interior of a triangle as indicated
in Figure 1. One can imagine the graph of the function of Eqn. 5, describing
the “upper envelope” over the simplex S. The Skyline algorithm identifies the
minimal index set, Q, by tracing out the complete collection of edges lying on
the maximal surface, as follows. We will ignore, for now, the many possible
kinds of degeneracies that may exist, in favor of simple exposition.

Suppose we begin with a maximal vertex xO ∈ S where O ⊂ {1, . . . , N}
with |O| = D, meaning that xO satisfies

αj · xO = αk · xO j, k ∈ O (11)

8 Christopher Raphael, Guy Shani

αj · xO > αk · xO j ∈ O, k ̸∈ O (12)

We will return to the construction of such a vertex later. For instance, in
Figure 1, x = x235 is the point where α2 · x = α3 · x = α5 · x > αj · x for
j ̸∈ {2, 3, 5}.

Let us remove one of the indices from O, say j′. Equating the remaining
D − 1 linear functions (subject to

∑
i xi = 1) we obtain an under-determined

system of linear equations. The solution to this system will be a line containing
xO. There are two rays emanating from xO that together compose this line,
and along one of them the functions of O − j′ are simultaneously maximal:

αj · x = αk · x j, k ∈ O − j′ (13)
αj · x > αk · x j ∈ O − j′, k ̸∈ O − j′ (14)

For instance, if we drop 2 from O = {2, 3, 5} in Figure 1, there is a line segment
labeled x35 on which α3 · x = α5 · x > αj · x for j ̸∈ {3, 5}.

Suppose we move along this ray until we find the first point where a new
function, indexed by k′ ̸∈ O, is equal to the functions indexed by O − j′. Now
if we define Ō = O + k′ − j′ and let xŌ be the new point, we see that xŌ

is also a maximal vertex. In Figure 1 we have moved from the vertex x235

along the edge x35 until we arrive at vertex x356. Since each of the D elements
of O can be dropped, there are D edges connected to our initial vertex, xO.
The Skyline algorithm will explore all edges out of each vertex encountered
through recursive application of this process.

As we explore an edge leading out of a vertex, xO, by dropping the con-
straint indexed by j′ ∈ O, it is possible that one of the variables, say xi′ ,
decreases to 0 before we encounter another linear function. In this case we let
Ō = O− j′ and Ī = {i′} and define the vertex xŌ

Ī
as the point along this edge

where xi′ = 0. This happens in Figure 1 as we explore the edge x13, out of
vertex x123 leading to the new vertex x13

3 .
More generally, a vertex of our algorithm, xO

I , where |I|+|O| = D is defined
by the intersection of |O| linear functions (|O| − 1 constraints), |I| constraints
xi = 0 for i ∈ I, and the simplex constraint

∑
i xi = 1, making a total of D

constraints. Each iteration of our algorithm will drop an element from either O
or I — if |O| > 1 there will be D such choices each giving an edge emanating
from xO

I . If |O| = 1 we only consider dropping the coordinate constraints. We
follow the edge until a new linear function is encountered or a new coordinate
decreases to 0. Our new vertex is given by xŌ

Ī
where Ī and Ō account for both

the constraint that was dropped as well as the one that was added.
We now return to the initialization of the algorithm. We begin at the i′th

“corner” of the simplex having i′th coordinate equal to 1 while all others are 0,
and suppose that αj′ is the maximizing function at the corner: αj′ · x > αj · x
for j ̸= j′. In this case, our initial configuration has I = {i : i ̸= i′} and
O = {j′}.

The algorithm then proceeds to follow all edges out of each new vertex
encountered, until no unexplored vertices exist. At this point the minimal
index set, Q, will be given by Q =

∪
v Ov over all vertices, v, discovered by

The Skyline Algorithm 9

the algorithm, where Ov is the set of maximal linear functions associated with
vertex v.

3.2 Linear Programming Implementation

Section 3.1 provides an intuitive view of the way that the Skyline algorithm
operates, but this view is not well-suited for actual implementation. Here we
provide a different description of the same algorithm using ideas from Linear
Programming (LP) [3], better suited for computer implementation.

We begin by writing a system of equations subject to constraints in which
certain solutions correspond to vertices of our Skyline graph. To do this we
introduce slack variables, xD+j , for j = 1, . . . , N which represent the difference
between the jth function and the maximal function at x = (x1, . . . , xD):

D∑
i=1

αjixi + xD+j =
D∑

i=1

αj′ixi + xD+j′ (15)

for j, j′ = 1, . . . , N , subject to
∑D

i=1 xi = 1 and xj ≥ 0 for j = 1, . . . , D + N .
We will refer to the variables x1, . . . , xD as coordinate variables.

Suppose we find a solution to all Eqns. 15, subject to our constraints, such
that xD+j′ = 0 for some j′. Then the j′th linear function, αj′x, must be max-
imal at x = (x1, . . . , xD) since xD+j ≥ 0 for j ̸= j′. That is, if x1, . . . , xD+N

solves Eqns. 15 subject to the constraints, then

xD+j′ = 0 ⇐⇒
D∑

i=1

αj′ixi ≥
D∑

i=1

αjixi (16)

for j = 1 . . . , N .
Eqns. 15 are redundant if we consider all possible combinations of j and

j′ — at most N − 1 of these equations can be independent. Suppose we take
N − 1 equations by fixing j′ and letting j range, j ̸= j′. If we augment these
equations with the constraint

∑D
i=1 xi = 1, we have a system with N equations

and N + D unknowns. Such a system must be under-determined. Barring
degeneracies, we can solve for any N variables in terms of the remaining D.
Our LP implementation will choose various partitions of our variable index set
{1, . . . , D + N} = R ∪ L where R = {r1, . . . , rD} (right-hand-side variables)
and L = {l1, . . . , lN} (left-hand-side variables) and solve for the N variables
indexed by L, xL, in terms of the D variables indexed by R, xR. The result is
a system of the form

xl1 = c1 +
∑D

i=1 β1ixri

xl2 = c2 +
∑D

i=1 β2ixri

...
...

...
xlN = cN +

∑D
i=1 βNixri

(17)

subject to xj ≥ 0 for j = 1, . . . , D + N .

10 Christopher Raphael, Guy Shani

Such a system has an interesting connection to our geometric view of the
Skyline algorithm. Suppose xR = 0 leads to an admissible solution — that
is, if we set the variables indexed by R to 0, then xlj ≥ 0 for j = 1, . . . , N .
Consider then the point x = (x1, . . . , xD), noting that the coordinate variables
{x1, . . . , xD} can appear on both sides of Eqn. 17. Let I be the set of indices
of the coordinate variables in R, and O the indices of the linear functions
corresponding to the slack variables in R, then x = (x1, . . . , xD) = bO

I from
the previous section. That is, x is the vertex in our Skyline graph where the
linear functions of O are simultaneously optimal and the coordinate variables
of I are 0.

The linear programming version of our Skyline algorithm will explore all
systems of the form of Eqn. 17 in which xR = 0 gives an admissible solution.

Algorithm 2 Init the matrix at (1, 0, ..., 0).
Let j′ = arg maxj αj1

for j ̸= j′ do
Add to M :

xD+j = (αj′1 − αj1) + xD+j′

+

D∑
i=2

((αj′i − αji)− (αj′1 − αj1))xi

end for
Add to M : x1 = 1−

∑D

i=2
xi

Let L(M) = {x1, xD+1, xD+j′−1, xD+j′+1, . . . , xN}
Let R(M) = {x2, . . . , xD, xD+j′}

First, we must construct an initial admissible system of the form of Eqn. 17
(Algorithm 2). Suppose we begin with Eqn. 15 and consider the i′th “corner”
point where xi = 1, and suppose that αj′x is maximal at this point. As a
consequence we must have xD+j′ = 0 from Eqn. 16. Thus there are D variables
that are equal to 0, indexed by

R = {r1, . . . , rD} = {1 . . . , i′ − 1, i′ + 1, . . . , D, D + j′}. (18)

To write the variables of L = Rc in terms of the variables of R, we first note
that

xi′ = 1 −
D∑

i=1,i̸=i′

xi. (19)

For the remaining variables of L, we solve Eqn. 15 for xD+j , j ̸= j′, and
substitute Eqn. 19 to remove the dependence on xi′ . The result expresses xL

in terms of xR as in Eqn. 17. At xR = 0 we see from Eqn. 15 that, since the
j′th equation is maximal, we must have xD+j ≥ 0 for j ̸= j′. Finally, Eqn. 19
shows that the remaining variable of L, xi′ , is also nonnegative at xR = 0, so
we have an admissible initial system.

The Skyline Algorithm 11

From our initial representation of the form of Eqn. 17 with admissible
solution given by xR = 0, we can easily find others using the basic iteration of
the simplex method [3]. To do this, we choose an R-variable, xi′ , and consider
increasing its value from 0. As we do this some of the L-variables will decrease1.
Suppose that xj′ is the first L-variable to decrease to 0. From Eqns. 17 the
equation for xj′ can be written

xj′ = cj′ +
D∑

i=1,ri ̸=i′

βj′ixri + βj′i′xi′ . (20)

We solve this equation for xi′ giving

xi′ =
cj′

−βj′i′
+

D∑
i=1,ri ̸=i′

βj′i

−βj′i′
xri +

1
βj′i′

xj′ (21)

thus writing xi′ in terms of the variables of R′ = R ∪ {j′} \ {i′}. We drop
Eqn. 20 from the original system of Eqns. 17 replacing it with Eqn. 21. Then
we substitute Eqn. 21 for xi′ in the original system to get an equivalent system
written in terms of the variables of R′. The way the system was constructed
— by increasing an R variable until the first L variable decreases to 0 —
guarantees the new system is admissible at xR′ = 0. Thus we have moved to
a new vertex of our Skyline graph (Algorithm 3).

Algorithm 3 Moving xi′ from R(M) to L(M): MOVE(M, xi′)
M ′ ← ϕ

j′ = arg minj:xj∈L(M)−
cM

j

βM
ji′

Add to M ′:

xi′ = −
cM
j′

βM
j′i′

+
1

βM
j′i′

xj′ +
∑

i:xi∈R(M)−{xi′}

−βM
j′i

βM
j′i′

xi

for j : xj ∈ L(M)− {xj′} do
Rewrite equation for xj substituting for xi′ as above and add to M ′

end for
Let L(M ′) = L(M) ∪ {xi′} − {xj′}
Let R(M ′) = R(M) ∪ {xj′} − {xi′}

The iteration described above is the basic iteration of the simplex algo-
rithm. However, the simplex algorithm tries to optimize an objective function,
and, in doing so, swaps a left-hand side variable with a right-hand side variable
for each system of the form of Eqn. 17 where the swap variables are chosen to
increase the objective function at xR′ = 0. In contrast, the Skyline algorithm
seeks to explore all edges on the maximal surface, thus, in principle, it traces

1 unless we are at a corner point and xi′ is the slack variable for the maximal function at
the corner

12 Christopher Raphael, Guy Shani

all edges out of each vertex. The Skyline algorithm has no objective function.
Thus, given a system of the form of Eqn. 17, admissible for xR = 0 (a vertex),
we allow each right-hand side variable to increase, thus following each edge
out of the vertex.

Our Skyline algorithm is described in pseudo-code in Algorithm 4. Upon
termination, V ′ contains the minimal set of α-vectors.

Algorithm 4 Traversing the skyline.
Init M0 to the feasible solution at (1, 0, ..., 0)
Init L to the empty list
Init V ′ ← ϕ
Add M0 to L
while L is not empty do

Let M be the first element of L
for xi ∈ R(M) : i > n do

If αi−D ̸∈ V ′ add αi−D to V ′

end for
for each variable xi ∈ R(M) do

M ′ ←MOVE(M, xi) — move xi to L, creating M ′

if M ′ was not observed then
Add M ′ to L

end if
end for

end while

4 Complexity Analysis

The version of Skyline presented in Algorithm 4 traverses each edge of the
skyline graph. A more efficient implementation would “hash” all of the out-
going edges of an already-visited vertex. This way we can avoid traversing an
edge (performing a simplex iteration) that leads to an already-visited vertex.
Thus, the number of vertices, V , in the skyline graph is the number of simplex
iterations that must be performed. Since the time complexity of the simplex
iteration (Algorithm 3) is O(ND), the total time complexity of the Skyline
algorithm is O(V ND).

Since LP forms the “guts” of Lark’s algorithm, Lark can be similarly cast
in terms of simplex iterations. The LP(j′,M) program of Lark would be imple-
mented by introducing slack variables, xD+j , for j ∈ M and writing Eqn. 10
as: Minimize δ subject to

D∑
i=1

αj′ixi + δ =
D∑

i=1

αjixi + xD+j for j ∈ M. (22)

∑
i xi = 1 and δ, xi, xD+j ≥ 0 for j ∈ M , 1 ≤ i ≤ D. Note the close similarity

with Eqn. 15 which was the basis for Skyline. The most straightforward simplex
approach would proceed exactly as we have done with Skyline. That is, we

The Skyline Algorithm 13

rewrite Eqn. 22 as a system of M +1 equations in which the D right-hand-side
variables are 0 by evaluating at a corner point, as in Section 3.2. From there
we run simplex iterations that decrease the left-hand-side variable, δ, until δ
becomes negative or can be no longer decreased. Thus, Lark’s algorithm can
be seen to trace a portion of the skyline graph defined by the vectors of M ,
until either vector αj′ touches the sub-skyline (δ decreases to 0), or is shown to
be dominated (all right-hand-side variables of the equation for δ have positive
coefficients). While a generic use of LP would find an optimizing configuration
for δ, there is no reason to continue the iterations after δ decreases to 0.
This view of Lark’s algorithm facilitates comparisons with Skyline. Thus, we
implement Lark as described above for the experiments in Section 6.

For the two-variable case, the computational complexity of both algorithms
is straightforward. Here, taking the simplex constraint into account, our do-
main, S, is one-dimensional. We consider first the case in which all of our N
vectors are non-dominated — pictorially, this case could be visualized as a
collection of lines whose upper envelope forms a bowl shape. In this case there
are N + 1 vertices in the skyline graph, so, regarding D as a constant, the
total time complexity of Skyline (O(V ND)) reduces to O(N2). On the other
hand, Lark’s algorithm requires that, after the initialization, we solve the LP
problem from scratch for each of the remaining N − 2 vectors. For the nth of
these LP problems the “clean” set has |M | = n+1. Thus, assuming we choose
randomly from the “dirty” set, the LP problem requires n+2

2 simplex iterations
on average (because there are n + 2 vertices of the current skyline graph, all
equally likely to determine the fate of the nth vector). Thus the expected time
complexity for Lark is

∑N−2
n=1

n+2
2 (n + 1) ∈ O(N3). Here the disadvantage of

Lark is that it performs nearly the same calculation repeatedly.
The complexity is similar for the case in which we have N vectors and

assume that some proportion of these, p, are dominated. For Skyline, we must
traverse N(1−p) skyline vertices, each requiring an O(ND) simplex iteration,
thus giving total time complexity again of O(N2). For Lark’s algorithm, still
assuming we choose randomly from the “dirty” set, we must solve N − 2 LPs,
in which the nth of these has E(|M(n)|) = (1 − p)(n + 1). If we choose a
non-dominated vector the expected number of simplex iterations is |M(n)|/2;
however, if we choose a dominated vector it is unclear how many simplex
iterations will be needed to determine this fact. Even if we disregard the con-
tribution from the dominated vectors, we still get time of

∑
|M(n)|2/2 where

the sum is over the non-dominated vectors. The result has expected time com-
plexity of O(N3), as before.

The analysis above shows that for D = 2 Skyline beats Lark by an order of
magnitude. However, as the dimension increases, the number of vertices can
grow rather rapidly, bounded sharply [10] by:(

N + 1 − D+2
2

N + 1 − D

)
− D (23)

which is exponential in the dimension, D. This analysis is consistent with our
experiments in Section 6 which show better performance for Skyline in dimen-

14 Christopher Raphael, Guy Shani

sions 2 and 3, though showing exponential time complexity in the dimension,
thus leading to worse performance for higher dimensions.

5 The Iterative Skyline

Algorithm 5 Iterative Skyline
F ← {1, . . . , N}
Q← ∅
while F is not empty do

Let M be the system at (1, 0, ..., 0) (Algo. 2)
choose j ∈ F
while ∃xi ∈ R(M) s. t. MOVE(M, xi) decreases xD+j do

M ← MOVE(M, xi)
for xi ∈ R(M) : i > D do

Add i−D to Q, remove i−D from F
end for

end while
Remove j from F .

end while

Lark’s algorithm scales well to higher dimensions because the number of
simplex iterations involved in the LP(j′,M) program does not seem to increase
much with dimension. As the complexity analysis shows, one suboptimal as-
pect of Lark is that it tends to repeat the same calculation over and over
in the exploration of new vectors. Here we develop a hybrid algorithm called
Iterative Skyline (IS) (Algorithm 5), designed to incorporate the best of both
worlds.

IS iteratively considers each vector, αj′ , exploring a portion of the com-
plete skyline graph in an attempt to “bring αj′ to the surface.” The simplex
iterations that embody this exploration are very close to those performed by
Lark, except that they are taken with reference to the complete set of vectors
— Lark considers only the current set of “clean” vectors. As with Lark, IS
traverses only a single edge out of each skyline vertex. Since the IS graph
traversal for a single vector takes place on the complete skyline graph (using
all vectors), we continue to visit and revisit the same skyline vertices. To avoid
duplicating computations, we retain the linear systems associated with each
skyline vertex. Thus, when a new vector is considered, we traverse the “already
visited” edges for free, reserving the computation for the unexplored portion
of the skyline graph. IS has an additional benefit: as we traverse the skyline
graph seeking to learn the fate of the j′th vector, we may visit skyline vertices
that uncover other non-dominated vectors.

For example, consider Figure 1 and suppose we begin by determining if
vector 9 is somewhere-maximal. In performing our Iterative Skyline itera-
tions, suppose we trace out a sequence of vertices that progressively decrease
the slack associated with function 9: x1

23, x
13
3 , x123, x235, x245. Suppose that

The Skyline Algorithm 15

we find that the slack for function 9 is still positive at x245 and cannot be
further decreased at a neighboring vertex. In this case we have determined
that function 9 is dominated. However, we also have discovered the functions
1,2,3,4,5 are non-dominated. None of the functions need be investigated fur-
ther. Pseudo-code for the Iterative Skyline algorithm is given as Algorithm
5.

|V | Lark Skyline IS
Cheese |S| = 11

21 6 72 5
Shuttle |S| = 8

92 57 554 41
118 63 469 66
155 168 1583 139

Maze 4 |S| = 11
100 204 29072 93
152 374 46077 244
195 639 98011 543

Tiger grid |S| = 36
100 1639 - 863
162 4191 - 3051
262 11803 - 42278

Hallway |S| = 62
55 1126 - 445
110 6031 - 2275
156 12080 - 3768
229 25786 - 10370

Hallway2 |S| = 96
69 3577 - 3086
150 20644 - 17393
245 49035 - 52412

RockSample 4× 4 |S| = 256
49 3655 - 2077
106 21296 - 16577

Table 1 Pruning results for value functions of different sizes over POMDP benchmarks.
Time is measured in milliseconds. Operations is the number of generated equations ×1000.
For each domain we report results over the largest value function and a few other value
functions.

6 Empirical Results

We performed experiments with both randomly generated and standard bench-
marks problems using the three algorithms: Lark, Skyline, and IS. In these ex-
periments, we used our own implementation of Lark’s algorithm, as described
in Section 4, in order to put the algorithms on equal footing. There are well-
known and more sophisticated implementations of the simplex algorithm than
the dictionary-based implementation we have employed, though they would
apply equally well to all three algorithms discussed here.

16 Christopher Raphael, Guy Shani

Fig. 2 Time of pruning calculation using Lark, Skyline, and IS for various values of N and
D. The dimension is labeled for the various Skyline experiments.

For the randomly generated experiments we synthesized different sized
collections of vectors with random coefficients before applying our pruning
algorithms, with results, presented in Figure 2, showing log(msecs) plotted
against log(N). The plot demonstrates a clear advantage for Skyline in di-
mensions 2 (as is consistent with our complexity analysis) and 3, though also
suggests that, for fixed N , the running time of Skyline increases exponentially
in the dimension. Thus the full-fledged Skyline algorithm is only practical
for problems with low dimension. The comparison between Lark and IS here
is less clear, perhaps showing less variability to IS than Lark with changing
dimension, though not demonstrating a clear winner.

In an attempt to examine more realistic pruning scenarios, we also per-
formed experiments on a collection of standard POMDP benchmarks, dis-
played in Table 1. In these examples we created representations of value func-

The Skyline Algorithm 17

tions using the FSVI [12] point-based algorithm, stopping it after each itera-
tion to prune the dominated vectors. We used the rapid point-wise dominance
method after each vector insertion, as done by most POMDP solvers, still
leaving us with a collection of vectors in which many may be dominated. We
then ran our three algorithms on this resulting collection. This table shows
slightly better results for IS than Lark on the majority of the benchmarks,
though, perhaps no definitive advantage for either algorithm.

7 Conclusions and Future Research

In this paper we presented the Skyline algorithm which traverses the skyline
graph formed by a set of linear functions in an attempt to find the subset
of functions that touch the skyline. Through the notion of the skyline graph,
our discussion sheds light on the close relations between Lark’s algorithm and
the two other skyline-related algorithms we propose. Our approach shows how
to integrate simplex iterations directly into the larger computation, without
treating LP like a “black box.” While we have only demonstrated a compu-
tational advantage to our approach in problems of the lowest dimensions, we
believe the foundation we have presented may lead to computational improve-
ments with further effort. We outline here what we believe to be the most
promising ideas and how they may be further exploited.

First, the Skyline algorithm provides a context, the skyline graph, in which
one can “remember” past calculations that can streamline future calculations.
For instance, if we have an explicit representation of a Skyline graph for a
collection of linear functions, the process of adding a new linear function is
simple. One would trace a path through the skyline graph following only edges
that decrease the slack of the new function, as in Lark or the IS algorithm.
The cost of tracing this path would be greatly reduced if we explicitly store
the systems of equations at the graph vertices, since this is the computation
performed at the vertex. This allows an iterative construction of the skyline
graph. While it may be prohibitively expensive to iteratively construct the
complete skyline graph, this approach also applies to the subsets of the skyline
graph explored by the Lark’s algorithm.

Second, the skyline graph gives information about which functions are
maximal where, and how they intersect. This information may be exploited,
for example, in rapidly merging two or more collections of linear functions,
each with skyline graph representations, into a skyline graph for the union
of functions. As this latter operation is central to exact value iteration in
POMDPs [5], and the focus of the Incremental Pruning algorithm [21], [2], we
hope Skyline may make a significant contribution here. The essential idea of the
skyline “merging” algorithm is analogous to the merging of several sorted lists
into a larger sorted list. In merging the sorted lists it is wasteful to disregard
the sort of each collection; rather, one can simply merge the sorted lists into a
single list using one pass over the lists. Similarly, the individual skyline graphs
can be merged into a single graph through a merging operation. Again, we

18 Christopher Raphael, Guy Shani

face the computational intractability of dealing with the entire skyline graph,
though these ideas may be extended to the partial graph representation of our
IS algorithm.

The problem of acquiring many redundant α-vectors is still an issue with
modern point-based algorithms [17,13], which incrementally add new vectors
into the value function. These algorithms also benefit from a reduction in the
value function. Still, to date, the cost of running Lark or Skyline does not
pay off in terms of overall computation cost. As such, further exploration of
efficient pruning techniques may potentially help even approximate algorithms
to solve larger domains faster. We hope that the Skyline algorithm may trigger
more ideas on maintaining small value functions.

The filtering operation is also relevant outside the POMDP context. Con-
sider the familiar problem of finding the maximal scoring path through weighted
trellis graph, where the score of the path is the sum of arc scores traversed
by the path. It is well known that the optimal path can be computed with
dynamic programming (DP) [1]. Now consider the variation in which the score
of each arc is a linear function of some D-dimensional parameter, θ, while we
wish to solve the DP problem simultaneously for all θ. The familiar DP recur-
sion computes the cost of the best path to each intermediate trellis node. Since
the score of each individual path to a node is linear in θ, the optimal score
over all possible paths is also of the form of Eqn. 5, where each αj corresponds
to a particular path to the node under consideration and θ plays the role of
x. Again, here, we encounter the rapid increase in the number of terms in the
summation, quickly rendering the calculations infeasible if we cannot reduce
the sum to a manageable size. [11] contains a discussion of this problem in
the context of supervised training a DP-based sequence estimator. There are,
likely, many other scenarios in which this same filtering problem emerges.

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press (1962)
2. Cassandra, A.R., Littman, M.L., Zhang, N.: Incremental pruning: A simple, fast, ex-

act method for partially observable Markov decision processes. In: Proceedings of the
Conference in Uncertainty in Artificial Intelligence (UAI’97), pp. 54–61 (1997)

3. Chvatal, V.: Linear Programming (Series of Books in the Mathematical Sciences). W.
H. Freeman (1983)

4. Doshi, F., Roy, N.: The permutable POMDP: fast solutions to POMDPs for preference
elicitation. In: Proceddings of the International Conference on autonomous Agents and
Multiagent Systems (AAMAS), pp. 493–500 (2008)

5. Feng, Z., Zilberstein, S.: Region-based incremental pruning for POMDPs. In: Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence, UAI ’04, pp. 146–153
(2004)

6. Hansen, E.A.: Solving POMDPs by searching in policy space. In: Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 211–219 (1998)

7. Hauskrecht, M., Fraser, H.S.F.: Planning treatment of ischemic heart disease with par-
tially observable markov decision processes. Artificial Intelligence in Medicine 18(3),
221–244 (2000)

8. Hsiao, K., Kaelbling, L.P., Lozano-Pérez, T.: Grasping POMDPs. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pp. 4685–4692
(2007)

The Skyline Algorithm 19

9. Huynh, V.A., Roy, N.: icLQG: Combining local and global optimization for control in
information space. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 2851–2858 (2009)

10. Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Math.
Prog. (Ser. B) 79, 217–234 (1997)

11. Raphael, C., Nichols, E.: Linear dynamic programming and the training of sequence
estimators. In: J.W. Chinneck, B. Kristjansson, M. Saltzman (eds.) Operations Research
and Cyber-Infrastructure, vol. 47, pp. 219–231. Springer, US (2009)

12. Shani, G., Brafman, R.I., Shimony, S.E.: Forward search value iteration for POMDPs.
In: Proceedings of the Interantional Joint Conference on Artificial Intelligence (IJCAI),
pp. 2619–2624 (2007)

13. Shani, G., Brafman, R.I., Shimony, S.E.: Prioritizing point-based POMDP solvers. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 38(6), 1592–1605 (2008)

14. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. Journal
of Machine Learning Research 6, 1265–1295 (2005)

15. Shani, G., Meek, C.: Improving existing fault recovery policies. In: Proceddings of the
Neural Information Processing Systems (NIPS), pp. 1642–1650 (2009)

16. Smallwood, R., Sondik, E.: The optimal control of partially observable processes over a
finite horizon. OR 21 (1973)

17. Smith, T., Simmons, R.: Point-based POMDP algorithms: Improved analysis and im-
plementation. In: Proceedings of the 21st Conference in Uncertainty in Artificial Intel-
ligence (UAI) (2005)

18. Sondik, E.J.: The optimal control of partially observable Markov processes. Ph.D. thesis
(1971)

19. White, C.C.: Partially observed Markov decision processes: A survey. Annals of Oper-
ations Research 32 (1991)

20. Williams, J.D., Young, S.: Partially observable Markov decision processes for spoken
dialog systems. Computer Speech & Language 21(2), 393–422 (2007)

21. Zhang, N., Liu, W.: Planning in stochastic domains: Problem characteristics and ap-
proximation. Tech. Rep. HKUST-CS96-31, Dept. of Comp. Sci., Hong Kong Univ. of
Sci. and Tech. (1997)

