Replanning in Domains with Partial Information and Sensing Actions

Guy Shani

Department of Information Systems Engineering

Ben-Gurion University of the Negev
shanigu@bgu.ac.il

Abstract

Replanning via determinization is a recent, popular
approach for online planning in MDPs. In this pa-
per we adapt this idea to classical, non-stochastic
domains with partial information and sensing ac-
tions. At each step we generate a candidate plan
which solves a classical planning problem induced
by the original problem. We execute this plan as
long as it is safe to do so. When this is no longer the
case, we replan. The classical planning problem we
generate is based on the Tj translation, in which the
classical state captures the knowledge state of the
agent. We overcome the non-determinism in sens-
ing actions, and the large domain size introduced
by Ty by using state sampling. Our planner also
employs a novel, lazy, regression-based method for
querying the belief state.

Introduction

Replanning is a popular, recent approach for planning under
uncertainty. Replanning algorithms, such as FF-replan [Yoon
et al., 2007], invoke an offline classical planner with a deter-
ministic domain that is generated from the original stochastic
domain. The solution plan for the deterministic problem is
executed until an outcome unexpected by the deterministic
planner is observed. At that point, the planner is called again,
etc. Although the basic idea may appear simplistic, recent
extensions [Yoon et al., 2008; Kolobov et al., 2010] that tie
it well with the powerful technique of state sampling, work
well in non-deterministic, fully observable domains.

In this paper we extend the replanning method to contin-
gent domains with partial observability and uncertainty about
the initial state. To do this, we could, in principle, select
a concrete initial state, and plan as if it was the true initial
state of the world. If the actions are deterministic (which we
assume for the present), this immediately yields a classical
planning problem. We can execute its solution until an unex-
pected observation occurs, and then replan using a new initial
state consistent with this information. However, as the clas-
sical planner plans as if it has complete information, it will
never make explicit effort to obtain information. For exam-
ple, such a planner will not use pure sensing actions or make
detours from the greedy path in order to obtain information.

Ronen I. Brafman
Department of Computer Science
Ben-Gurion University of the Negev
brafman@cs.bgu.ac.il

We overcome this problem by adapting the more sophis-
ticated knowledge-based translation introduced in [Palacios
and Geffner, 2009]. This method generates a classical plan-
ning problem that implicitly represents and reasons about
the agent’s state of knowledge, rather than the state of the
world. The goal condition now is that the agent know that
the goal is true. However, this transformation suffers from
two problems: First, it may lead to classical domains con-
taining a number of propositions that is exponential in the
input size. Second, it transforms actions with sensing into
non-deterministic actions [Albore et al., 2009]. We use state
sampling to overcome both problems. To reduce the size of
the classical domain generated we sample a small subset S
of the possible initial states, and ignore all others. To re-
move non-determinism, we select a distinguished initial state
s; € S7. Whenever an observation is made, our model en-
sures that the observed value is consistent with s/ being the
true initial state. The resulting classical planning problem
emulates the state of knowledge of an agent that initially be-
lieves that S} are the only possible states of the world, when
the true initial state is .

If the true initial state of the world is s;, then the generated
plan will lead us to the goal. Otherwise, at some point we
will recognize a problem: either because we make an obser-
vation that is inconsistent with s/, or because we realize that
we are about to execute an action whose preconditions do not
necessarily hold, or because we do not reach the goal at the
end. To recognize these problems, we must maintain some
information about the set of states that are currently possible
— known as the belief state. To recover from these problems,
we replan with an updated state of information.

Like other planners that operate under uncertainty, we must
somehow represent the current belief state in order to deter-
mine at each step which actions are applicable (i.e., whether
their preconditions hold) and if the goal has been reached.
Previous planners use one of two general methods: a com-
pact, explicit representation of the set of possible states,
e.g., using BDDs [Cimatti and Roveri, 2000] or logical for-
mulas [To et al., 2009], or an implicit representation via
a propositional formula that captures the history of execu-
tion (e.g., CFF [Hoffmann and Brafman, 2006], Contingent-
FF [Hoffmann and Brafman, 2005]) — an approach that
dates back to situation calculus [McCarthy and Hayes, 1969;
Reiter, 2001]. The explicit representation supports fast infer-

ence, but its size can become prohibitive, its update step can
be more complicated, and no representation is known to be ef-
fective on all domains. The history-based approach is easier
to maintain and update, but requires calling a SAT solver to
determine the validity of conditions at each state. Our plan-
ner takes the history based method to an extreme, and only
maintains the history of execution: the initial belief state, the
actions executed, and the observations made. To determine
whether c holds, we regress —c through the executed plan.
The resulting formula c; is the weakest condition on the ini-
tial state under which the execution of the current plan would
result in a state in which —¢ holds. If ¢y is consistent with the
initial belief state by, then we know that c does not necessarily
hold. Otherwise, ¢ must be known. Like CFF, we cache this
information, and use it to simplify formulas during the regres-
sion process. The advantage of this lazy approach is that it is
even simpler to maintain and update. Moreover, the formu-
las produced during regression are focused on the condition
in question, as opposed to the general formula maintained by
CFF, and so with the help of simplification, are quite small in
practice.

The resulting planner — SDR (Sample, Determinize, Re-
plan) — compares favorably with CLG, which is the cur-
rent state-of-the-art contingent planner. On most domains it
reaches the goal state faster, sometimes by an order of magni-
tude, can solve problems that CLG cannot solve, and its plans
have similar size.

Problem Definition

We focus on planning problems with partial observability and
sensing actions (PPOS). We shall assume that actions are de-
terministic, following our current implementation. However,
because the replanning approach was originally conceived to
deal with stochastic effects of actions, it is well suited for
non-deterministic actions as well, and we briefly discuss the
needed extensions later.

Formally, PPOS problems can be described by a quadru-
ple: (P, A, p1,G), where P is a set of propositions, A is a
set of actions, (7 is a propositional formula over P that de-
scribes the set of possible initial states, and G C P is the
goal propositions. In what follows we will often abuse no-
tation and treat sets of literals as a conjunction of the literals
in the set, as well as an assignment of value to propositions
appearing in this set. For example, {p, —q} is also treated as
p A —q and as an assignment of true to p and false to q.

A state of the world, s, assigns a truth value to all elements
of P. A belief-state is a set of possible states, and the initial
belief state, by = {s : s = s} defines the set of states
that are possible initially. An action a € A is a three-tuple,
{pre(a),effects(a),obs(a)}. pre(a) is a set of literals denoting
the action’s preconditions. effects(a) is a set of pairs (c, e)
denoting conditional effects, where c is a set (conjunction)
of literals and e is a single literal. Finally, obs(a) is a set
of propositions, denoting those propositions whose value is
observed following the execution of a. We assume that a
is well defined, that is, if (c,e) € effects(a) then cApre(a)
is consistent, and that if both (c,e), (¢, €’) € effects(a) and
s = e for some state s then e A €’ is consistent. In current

benchmark problems, either the set effects or the set obs are
empty. That is, actions either alter the state of the world but
provide no information, or they are pure sensing actions that
do not alter the state of the world, but there is no reason for
this to be the case in general.

We use a(s) to denote the state that is obtained when a
is executed in state s. If s does not satisfy all literals in
pre(a) then a(s) is undefined. Otherwise, a(s) assigns to
each proposition p the same value as s, unless there exists
a pair (c,e) € effects(a) such that s = c and e assigns p a
different value than s. Observations affect the agent’s belief
state. We assume all observations are deterministic and accu-
rate, and reflect the state of world prior to the execution of the
action.! Thus, if p €obs(a) then following the execution of a,
the agent will observe p if p holds now, and otherwise it will
observe —p. Thus, if s is the true state of the world, and b is
the current belief state of the agent, then b, s, the belief state
following the execution of a in state s is defined as:

ba,s = {a(s')|s" € b, s’ and s agree on obs(a)}

That is, all states where the agent would receive the same
observation if it executes action a as if it was at state s. The
new belief state corresponds to the progression through a of
all state in the old belief state b that assign the propositions in
obs(a) the same values as s does.

The SDR Planner

The replanning approach we pursue is an online method. The
algorithm generates a plan, and executes it as long as the pre-
conditions of the next action hold in all possible states. When
this is no longer true, it generates a new plan online, and con-
tinues. Like other online planners, such as CLG [Albore et
al., 2009], the method does not attempt to generate a com-
plete plan,” but needs only return a valid action to execute at
each step. Replanning often returns a sequence of actions,
rather than a single action.

The high level scheme of SDR is described in Algorithm 1.
size is a parameter that governs the size of the set of world
states S7. The algorithm generates a classical plan by deter-
minising the contingent planning problem starting from the
current belief state, and executes the resulting plan as long
as it is valid. We now explain the generation (translation)
of the classical planning problem (Step 6), and the valida-
tion of goal and actions preconditions (Steps 3 and 11). The
validation process is closely related to our representation of
histories and beliefs (Steps 2, 14).

Generating a Classical Planning Problem

Given the input PPOS 7 = (P, A, ¢;,G) and current be-
lief state b, we generate a classical planning problem 7. —
(P., A, I.,G.) as follows: First, we generate a set of states
S satisfying b. The size of this set is a parameter (denoted
size, above), which we typically set to a very small value (e.g.,

'One can choose to have the observations reflect the state of the
world following the execution of the action at the price of a slightly
more complicated notation below.

This can be done via simulation. We do not pursue this here.

Algorithm 1 SDR

Input: PPOS Problem: m = (P, A, @1, G), Integer: size
1: b :=initial belief state
2: h := ¢, the empty history
3: while G is not known at the current belief state do
4: Select a distinct set of states S} consistent with b and
hs.t. |S7] <size

5: Select a state s, € S}
6: Generate a deterministic plan C from 7, S}, s, h
7: Find a solution P for C'
8: if no solution exists then
9: return failure
10: endif
11: while P # () and pre(first(P)) is known at the current
belief state do
12: a :=first(P)
13: execute a, observe o
14: regress o through h obtaining ¢, p,
15: append < a,0 >to h
16: b := update the initial belief state given ¢, p,
17: Remove a from P

18: end while
19: end while

2,3). Next, we select one distinguished state s, € S } ‘We now
generate a classical planning problem as follows?:

Propositions P. = P U {Kp,K-plp € P} U
{Kp/s',K-p/s'lp € P,s' € S;} U{K~s'|s' € S}}.
That is: the original set of propositions P; propositions
that capture the agent’s state of knowledge: Kp denotes
knowing that p is true, whereas Kp/s denotes know-
ing that p is true if s was the initial state. K —s denotes
knowing that s was not the initial state.

Actions For every action a € A, A. contains an action a.
defined as follows:

pre(ac) = pre(a) U{Kp|p € pre(a)}. That is, the agent must
know that the preconditions are true prior to applying the
action.

for every (c, e) € effects(a), effects(a.) contains the follow-
ing conditional effects:

e (c,e) —the original effect.

e (Kc, Ke) — if we know that the condition ¢ holds prior
to executing a, we know its effect holds following a.

e (-nK-c¢,~K—e) —if ¢ is not known to be false, prior to
executing a, e will not be known to be false afterwards.

o {(Kc/s',Ke/s')|s'" € St} U{(-K-c/s',~K—-e/s")|
s’ € S} — the above, conditioned on the initial states.

e {(p N K—p/s',K=s),(-p N Kp/s',K=s')lp €
obs(a), s’ € S}} - rule out possible initial states in our
set S7 if the observation is inconsistent with them.

e {(p,Kp),(—p, K—p)|p € obs(a)} — observing the value
of p.

30ur description here focuses on deterministic actions. The ex-
tension to non-deterministic actions is discussed later on.

In addition, for each literal [(w.r.t. P) we have a merge
action that let’s us conclude absolute knowledge from
knowledge conditional on the initial state:

o pre(merge(l)) = {Kl/s' vV K—s'|s' € St}
o effects(merge(l)) = {(true,K1)}

Initial State I. = /\l:s;\zl l /\s'eS} —K-s /\s’ES’I,s’\zl
Kl/s', where the first conjunct sets the value of the reg-
ular propositions to their value in the distinguished state
s € 5. The other two conjuncts state that all initial states

in S are possible, and sets the conditional knowledge to
correspond to these states.

Goal G, = KG

Above we used K¢ as a shorthand notation for Ki; A--- A
Kl,,, where ¢ = 1 A --- A l,,, and =K —c as a shorthand
notation for = K—ly A --- A K=l,,. The latter is actually
stronger than —K —c in the appropriate logic of knowledge,
and implies that we are more “quick” to forget knowledge.
However, this is compensated by the fact that in the case of
conditional knowledge (i.e., =K —¢/s’) the two are equiva-
lent. Consequently, we can always deduce this knowledge
back using merge actions, when appropriate. Finally, recall
that we assume the effect e is a literal.

The above is a variant of the method of [Palacios and
Geffner, 2009; Albore et al., 2009], with some changes:

1. Tags are restricted to the set of sampled initial states S7.
This bounds the size of the classical problem generated,
as opposed to those generated by CLG for its heuris-
tic estimation, allowing us to scale up better. However,
for problems with small conformant width, one can use
their complete set of tags, with some theoretical benefits
discussed later.

2. We keep a copy of the original set of propositions, ini-
tialized to their value in s}. The action definition ensures
that the value of these propositions correspond to their
value in the real world when s/ is the initial state.

3. The result of sensing is deterministic. ~Following 2
above, the observed values correspond to the values of
these propositions when s is the initial state.

Non-deterministic Actions. The replanning approach was
introduced in the context of stochastic planning, and the basic
planning problem solved at each step was obtained by deter-
minizing the effects of these actions. We can pursue an iden-
tical strategy. Suppose that action a has a conditional effects
(c,e1 V ea). In that case a. will have one of two possible
conditional effects (c,eq) or (c,ez). In fact, planners that
use determinization often choose different determinizations
for different instances of the same actions. In addition, we
need to remove the agent’s knowledge following the execu-
tion of a non-determnistic action. That is, in the above case,
we must add (¢, 7 Ke7) and (¢, 7 Kes).

Bias for Observation. It is possible to add to the SDR plan-
ner a simple bias for observation. Namely, at each step, if
it is possible to sense the value of an unknown proposition
without affecting the state, we perform this observation. As
we will see, in the context of current planning benchmarks,

in which sensing actions do not affect the state of the world,
this is a very effective bias.

Histories and Queries

As explained above, we pursue a history-based approach,
where we maintain the sequence of executed actions and ob-
servations, and use it in conjunction with the initial belief
state to reason about the properties of the current state. We
also maintain limited information on each belief state to re-
duce the computational burden of such reasoning.

Querying for current state properties

Throughout the online process we maintain the initial state
formula and the history of actions and observations made. We
use this information to check, prior to applying any action a,
whether its preconditions hold in the current state. We must
also check whether the goal conditions hold in the current
state to determine whether the goal has been achieved. To
check whether a condition c holds, we regress —c through the
current history, obtaining ¢;. A world state currently satisfies
—c iff it is the result of executing the current history in an
initial state satisfying ¢;. Thus, if ¢ is inconsistent with ¢y,
we know that ¢ holds in all states currently possible.

The formulas generated during the regression process can
grow rapidly with history. To avoid such growth, we maintain
partially specified belief states (PSBS) throughout the history.
This helps us simplify the formula generated at each step. For
example, suppose our regressed formula at an intermediate
belief state b has the form ¢ A [, where [is a literal that is
known to hold at b. Then, we need only regress ¢ back from
b. Or, if we know that —[holds in b, we can immediately
conclude that the regressed formula will be inconsistent with
the initial belief state.

Partially-specified states

For each step of execution of the current plan we maintain a
list of literals known to hold at that state. All propositions
that do not appear among the literals in this list are unknown.
We call this construct a partially-specified belief state, and it
serves as a cache. When we execute an action a, we propagate
this set forward and update it as follows:

e If (c,1) is an effect of a, and ¢ must be true before a’s
execution, we add [and remove —I.

e If [and — may both be true (that is, [is known in
the PSBS), a deletes [if [holds (possibly conditional on
other conditions that necessarily hold), and a does not add
[when —![(and some other conditions possible) holds, we
can conclude that —/ must be true after the execution of a.

e If, when checking for the validity of a condition ¢ via
regression, we learn that a literal [is valid in the current
belief, we update the PSBS and its successors accordingly.

When an observation is obtained, we update the corre-
sponding PSBS by adding its value. Then, we regress this
observation backwards to the initial state. We update the ini-
tial state by conjoining to it the result of this regression. We
also update all intermediate partial belief states, if possible.

Sampling states

Our previous description of the sampling method used to gen-
erate the classical plan was not completely accurate. Recall
that we said that we select a set S from the current belief
state b. However, as we do not explicitly maintain the current
belief state, we do the following: we sample a set of states S
from the initial belief state b; (possibly modified by observa-
tions), and then progress these states forward with the current
history to obtain a set of states that are currently possible.

Relations to CFF

Our method is similar to that of CFF [Hoffmann and Braf-
man, 2006], but lazier. CFF maintains a single complete
formula that describes both the history and the initial state
jointly. This requires using a different copy of the state vari-
ables for each time point. An action applied at step ¢ is con-
joined with this formula as clauses that describe the value of
variables in time ¢ 4+ 1 as a function of their value in time
t. To determine whether condition c holds at the current be-
lief state, the current formula is conjoined with —c. If the
resulting formula is consistent, we know that there are possi-
ble states in which —c¢ holds. Otherwise, we know that ¢ is
valid. For example, if ¢ is the goal condition, we know that
a plan was found. If c is the preconditions to some action a,
we know that a can be applied safely. CFF also caches such
information discovered by simplifying the formula whenever
such a conclusion is obtained, via unit propagation.

The regression method that we use can be though of as con-
structing for each query only the part of the CFF formula that
is needed for answering the current query. The downside of
this approach is that we could, in principle, reconstruct the
same formula, or parts of a formula repeatedly. The advan-
tage is that the formulas that we construct are much smaller
and easier to satisfy than the complete CFF formula.

Theoretical Properties

Our focus in this paper is the algorithm’s description and
its practical efficacy. Given our space constraints, we only
briefly touch upon theoretical properties. Soundness can take
various meanings in the context of online planning. A rea-
sonable requirement is that the method used for checking the
validity of preconditions is sound, which is true for SDR’s
regression-based method. The ideas underlying PAC proofs
for RL algorithms [Kearns and Singh, 2002] are useful in
proving the completeness of replanning algorithms with de-
terministic actions. The typical assumption made is that the
state space is connected (and ergodic in the case of MDPs),
i.e., there are no “dead-ends”. This is a very strong assump-
tion, and domains violating it are the Achilles heel of most
greedy algorithms, replanning included. Thus, complete-
ness results under this assumption can only provide a “sanity
check” for replanning algorithms. Assuming connectedness,
to prove completeness one needs to establish a property called
efficient explore or exploit (E?) in PAC-RL. E3 holds when,
within a bounded number of steps, the online algorithm will
either reach the goal or reduce the uncertainty — i.e., rule out
an initial state of the world. Such an algorithm eventually
reaches the goal or learns the true state of the world. SDR
(with a sound and complete classical planner) satisfies E3

Table 1: Comparing CLG (execution mode) to SDR with and without the observation bias. For domains with conditional actions (localize and medpks) results for
CLG cannot be computed. We denote TF when the CLG translation failed, CSU when CLG cannot run a simulation with a uniform distribution, and PF where the

CLG planner failed, either due to too many predicates or due to timeout.

[T SDR-obs i SDR i CLG |
| Domain [[#Actions [#Replan | Time [| #Actions [#Replan [Time [| #Actions [Time |
Wumpus035 37.9 (1.39) 3.8(0.18) 2.8(0.09) 20.1 (0.76) 32(0.2) 2.7(0.13) 24(0.58) 1.5 (0.01)
Wumpus10 81.4 (4.86) 6.4 (0.51) 11.9 (0.76) 50.8 (4.1) 8 (0.56) 10.9 (0.72) 57.4 (1.29) 28.3 (0.05)
Wumpus15 135 (8.34) 9.3(0.77) 53.1(3.26) 92.5 (8.05) 11.8(0.81) 42 (2.71) 103 (3.87) 240.7 (0.65)
Wumpus20 163.1 (11.92) | 9.6 (0.8) 169 (12.78) 115.9 (9.88) 17.7 (1.57) 156.1 (13.12) 160 (3.49) 1224.8 (1.65)
doors9 53.5(2.53) 8.6 (0.61) 6.6 (0.38) 744 (2.54) 223 (1.02) 8.8 (0.42) 53.8(2.37) 29.3 (0.05)
doors11 84.4 (2.69) 13.6 (0.8) 22.9 (0.88) 100.4 (4.81) 282 (1.9) 13.6 (0.88) 73.1 (3.42) 95.7 (0.18)
doors13 103.8 (4.95) 12.9(0.93) | 60.1 (3.38) 177.1 (7.39) 33.5(1.73) 25.1(1.28) 111.8 (4.93) 264.5 (0.54)
doors15 147.4 (4.8) 16 (0.85) 183.7 (6.79) 2347 (7.13) 40.5 (1.65) 46.6 (1.81) PF
doors17 210.5 (7.1) 21.7 (1.13) | 541.1(19.99) || 306.8 (10.61) 60 (2.57) 96.9 (4.15) PF
localize9 40.8 (2.83) 2.5(0.21) 2.6 (0.12) 32(2.8) 4.8(0.28) 4.9 (0.18) CSU
Tocalizel1 57.7 (4.29) 3(0.22) 5.9 (0.54) 50.1 (2.81) 6.7 (0.34) 11.7 (0.58) CSU
localize13 69.9 (5.01) 4(0.31) 15.1 (1.43) 54.2 (2.98) 5.9 (0.31) 18.9 (1.21) PF
localize15 89.4 (5.39) 3.9 (0.28) 36.2(2.79) 56.5 (5.22) 6.4 (0.39) 35.6 (3.54) PF
localize17 82.4(7.6) 3.4(0.27) 51 (7.41) 71.7 (4.39) 6.6 (0.28) 75 (7.09) PF
[unix3 [837063 [12112 [41(04) [[123.1(1481) | 16.8(1.8) [5.2(0.55) [[39854 [143(0.13) |
[unix4 [[[2025(29.24) | 256(329) | 11.4(149) [[2362(27.68) | 294(3.11) | 124(134) || 948(11.41) [1603(3.12) |
colorballs-9-1 101.4 (8.91) 143 (1.69) | 15.1(1.74) 217.2(22.98) 62.8 (6.97) 65.1(7.38) 80 (8.96) [98.2(0.71)
colorballs-9-3 || 240.9 (12.23) | 22.8(1.28) | 33.2(1.76) 660.2 (30.69) 156.6 (6.31) | 209.1 (9.25) 2278 (12.15) [707.1 (344
colorballs-9-5 || 387.4 (14.42) | 31.4(1.29) | 66.1(2.89) 874.6 (36.77) 212.1(827) | 346.8(15.59) TF
colorballs-9-7 || 490.1(13.22) | 34.5(1.02) | 103.6 (2.93) 1343.9(50.02) | 310.9 (12.8) | 693.3(35.01) TF
cloghuge 57 (1.24) 5.6 (0.27) 2.5(0.09) 76.1 (2.1) 18 (0.86) 8 (0.36) 52.1(1.16) 47(0.02)
ebtcs-70 36.7 (3.92) 2(0.04) 0.7 (0.01) 35.6 (3.93) 33.6 (3.93) 15.8 (1.81) 40.3 (3.79) 53.7 (0.27)
elog7 20.2 (0.22) 1.9 (0.06) 0.5 (0.01) 20.2 (0.3) 33(0.17) 1.3(0.05) 19.8 (0.24) 0.6 (0)
[medpks150 [[86.7(897) [2(0.09 | 349365 [[88.8(85) [858850 [268(269)] CSU |
[medpks199 [89.9(11.42) [2(0) | 82.8(10.95) [89.9(1142) | 86.9(1142) | 5029 (67.58) || PF |

when S} = by, because the plans it generates are executable
in all possible states, and reach the goal or lead to an obser-
vation that rules out the distinguished initial state, s;. From
E3, completeness follows for SDR if the underlying classi-
cal planner is sound and complete. When |b;| is very large,
two practical options maintain completeness: for problems
with small conformant width, we can use the tag-generation
method of [Palacios and Geffner, 2009]. Alternatively, we
can start with a small value for size (step 4), increasing it if
we reach an unsafe action without learning something new.
It is an open question whether there is a suitable sampling
scheme that satisfies £/ when size remains constant.

Experimental Results

To demonstrate the power of our replanning approach we
compared SDR to the state of the art contingent planner CLG
[Albore et al., 2009]. We use CLG in its so-called execu-
tion mode, where it becomes an online planner. We compare
SDR to CLG on all domains from the CLG paper. We im-
plemented our SDR algorithm using C#. The experiments
were conducted on a Windows 7 machine with 4 2.83GHz
cores (although we only use a single core) and 8GB RAM. We
used FF [Hoffmann and Nebel, 2001] compiled under a Cyg-
win environment for solving the deterministic problems, and
we used the Minisat SAT solver [Eén and Sorensson, 2003]
to search for satisfying assignments (or lack there of). As
Minisat does not provide random assignments, we also im-
plemented a naive solver that generates random assignments
for the true environment states.

We tested SDR with and without the observation bias de-
scribed above. When observation bias is active, SDR checks
at every state whether there are unknown (hidden) properties

of the state for which there exists an immediate applicable
sensing-only action. If so, the agent applies all these actions
before continuing with plan execution. As we can see, in
most benchmark domains, this observation bias resulted in
faster execution, because it is typically beneficial to learn as
much as you can concerning the hidden state.

Table 1 list the results for SDR with and without observa-
tion bias and CLG. For each method we report the average
number of actions and the time (seconds) until the goal is
reached over 25 iterations (standard error reported in brack-
ets). Execution time for CLG includes translation time for
the domain, CLG execution, and plan verification time in our
environment, which adds only a few seconds to each exe-
cution. The translation timeout was 20 minutes, and CLG
execution was also stopped after 20 minutes. For SDR we
also report the average number of replanning episodes. We
gave FF a timeout of 2 minutes for each replanning episode,
but that timeout was never reached. In most cases FF solves
the deterministic plan in a few seconds. For each domain
we bolded the shortest plan and the fastest execution. SDR
also computes much smaller translated domain descriptions,
ranging from 10KB to 200KB. However, a direct compari-
son with CLG is impossible because SDR generates parame-
terized domains while CLG generates grounded translations,
and we hence do not provide detailed results for model sizes.
In some domains CLG’s simulator does not support uniform
sampling of initial states (denoted CSU in Table 1). As in
these domains SDR scales up to larger instances than CLG,
this problem is not crucial to the comparison.

As we can see in Table 1, SDR and SDR-obs are typically
about one order of magnitude faster than CLG, and also scale
up to larger problem instances. In domains all planners can

solve, the efficiency (in terms of avg. steps to reach the goal)
is mixed. CLG is clearly better on Unix, but in many other
instances SDR-obs is better, and on Wumpus, SDR is better.

An important parameter of our algorithm is the size of S}
— the number of initial states that the deterministic planner
recognizes. As this number grows, the plan must distinguish
between the various states and hence becomes more accurate.
However, the more states we use the larger is the translation
to the deterministic problem, and the more difficult it is for
FF to handle. To examine the impact of this parameter we
tested the performance of SDR as a function of the size of
S7. As we show in Figure 1, the plan quality (the number of
actions to reach the goal) of SDR does not change consider-
ably with the number of states. The only domain where there
is a significant benefit from adding more states is Wumpus,
and there one sees no farther improvement beyond 6 states.
As expected, the running time grows, with the growth in the
number of states. We can conclude, hence, that, at least in
current domains, there is no need to use more than a handful
of states.

110 \ 35
100 \ - 30
90

\ b 25
— -
80 .
g P - 20
§ 70 +—g ——
~ L
60 ‘3 -— d 15
-
: I 10
50 VA_-_—__._——— —
A - |
40
30 T T T T T T T : T 0
2 a 6 8 10 12 14 16 18 20

— UM pUS #actions doors #actions = unix #actions

= = Wumpus 10time doors time = = unixtime

Figure 1: Effect of | S} | — the number of initial states (tags) on the number of
actions (solid) and the execution time (dashed) for Wumpus10, doors 9, unix 2.

Our results, combined with the simple method underlying
our planner help highlight some deficiencies in current con-
tingent planning benchmarks. First, there are no dead-ends,
which make problems particularly amenable to replanning-
based methods [Little and Thiebaux, 2007]. Second, the fact
that we perform well when a sampled initial belief state of
size 2 seems to imply that the solution is not too sensitive to
the identity of the initial state. This is also related to the fact
that the type and amount of conditional effects we see in cur-
rent domains is quite limited. Finally, the success of the the
sensing bias suggests that we should investigate domains in
which actions carry a cost, and where sensing is not necessar-
ily separate from action. Domains where sensing actions re-
quire substantial effort to attain their preconditions may also
provide interesting insights.

Conclusion

We described SDR, a new contingent planner that extends
the replanning approach to domains with partial observability
and uncertainty about the initial state. SDR also introduces a
novel, lazy method for maintaining information and querying

Time (secs)

the current belief state, and has nice theoretical properties.
Our empirical evaluation shows that SDR improves the state
of the art on current benchmark domains, scaling up much
better than CLG. However, the success of its current simple
sampling techniques also highlights the weakness of current
benchmark problems.

Acknowledgement: The authors are grateful to Alexander Albore,
Hector Geffner, and Son To for their help in understanding and using
their systems. Ronen Brafman is partially supported by ISF grant
8254320, the Paul Ivanier Center for Robotics Research and Pro-
duction Management, and the Lynn and William Frankel Center for
Computer Science.

References

[Albore et al., 2009] A. Albore, H. Palacios, and H. Geffner. A
translation-based approach to contingent planning. In IJCAI,
pages 1623-1628, 2009.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Conformant
planning via symbolic model checking. JAIR, 13:305-338, 2000.

[Eén and Sorensson, 2003] N. Eén and N. Sérensson. An extensible
sat-solver. In SAT, pages 502-518, 2003.

[Hoffmann and Brafman, 2005] J. Hoffmann and R. I. Brafman.
Contingent planning via heuristic forward search witn implicit
belief states. In ICAPS, pages 71-80, 2005.

[Hoffmann and Brafman, 2006] J. Hoffmann and R. I. Brafman.
Conformant planning via heuristic forward search: A new ap-
proach. Artif. Intell., 170(6-7):507-541, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
JAIR, 14:253-302, 2001.

[Kearns and Singh, 2002] M. Kearns and S. Singh. Near-optimal
reinforcement learning in polynomial time. Machine Learning,
49(2-3):209-232, 2002.

[Kolobov et al., 2010] A. Kolobov, Mausam, and D. Weld. Classi-
cal planning in mdp heuristics: with a little help from generaliza-
tion. In ICAPS, pages 97-104, 2010.

[Little and Thiebaux, 2007] L. Little and S. Thiebaux. Probabilistic
planning vs. replanning. In In ICAPS Workshop on IPC: Past,
Present and Future, 2007.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some
philosophical problems from the standpoint of artificial intelli-
gence. Machine Intelligence, 4:463-502, 1969.

[Palacios and Geffner, 2009] H. Palacios and H. Geffner. Com-
piling uncertainty away in conformant planning problems with
bounded width. JAIR, 35:623-675, 2009.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[To et al., 2009] S.T. To, E. Pontelli, and T. C. Son. A conformant
planner with explicit disjunctive representation of belief states.
In ICAPS, 2009.

[Yoon et al., 2007] S. W. Yoon, A. Fern, and R. Givan. Ff-replan:
A baseline for probabilistic planning. In ICAPS, 2007.

[Yoon et al., 2008] S. W. Yoon, A. Fern, R. Givan, and S. Kamb-
hampati. Probabilistic planning via determinization in hindsight.
In AAAI pages 1010-1016, 2008.

