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Privacy Preserving Landmark Detection

Shlomi Maliah! and Guy Shani and Roni Stern

Abstract. In many cases several entities, such as commercial com-
panies, need to work together towards the achievement of joint goals,
while hiding certain private information. Multi-agent STRIPS (MA-
STRIPS) is a new and attractive model for describing collaborative
multi-agent privacy preserving planning, which is appropriate for
such problems. In single agent classical planning, landmarks are key
to constructing strong heuristics for state space search. In this pa-
per we propose a method for identifying landmarks in MA-STRIPS
in a privacy preserving distributed setting. The agents collaborate to
find sound landmarks without revealing their private actions or goals.
In addition, we also propose a novel MA-STRIPS planner that uses
these landmarks. We empirically show that our detected landmarks
improve the performance of previous approaches, and that our new
planner is faster than all existing planners for multi-agent problems.

1 Introduction

Many modern organizations outsource some of their tasks to outside
companies. The organization must then work together with the out-
sourcing companies to achieve its goals, while disclosing as little as
possible about its abilities. Consider for example the case of a mil-
itary organization that has outsourced its food service to an outside
company. The food service company must deliver food into logistics
centers, from where it is picked by army trucks and distributed to the
army bases. The military would not want, however, to disclose the
whereabouts of these bases, the number of people in each base, or
the number and location of army trucks. The two organizations must
then collaborate while maintaining privacy about their actions, and
communicating only over public actions, such as the interactions at
the logistics centers.

More generally, consider the setting where a team of agents col-
laborate to achieve a set of goals while constrained to preserve each
others privacy. The planning task in this setting is to generate a plan
that achieves goals without breaking the privacy constraint. We call
this planning task collaborative privacy preserving planning (CPPP).

A somewhat similar notion to CPPP was previously discussed
in the distributed constraint optimization setting (DCOP), where an
“agent” is responsible for the value of a single variable, and the
overall task is to find an assignment of values to variables so as to
maximize a joint reward. DCOP can be viewed as an instance of
CPPP, where the agents’ actions are assignments of values to vari-
ables. DCOP would then be a special case of CPPP where agents
may perform a single (assign a value to a variable), while in the gen-
eral CPPP each agent can perform a sequence of actions.

CPPP was discussed in the context of the multi-agent STRIPS
(MA-STRIPS) model [1]. MA-STRIPS is an extension of STRIPS
(or PDDL), where instead of a single agent performing one action
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at a time, there are multiple agents acting concurrently, each hav-
ing a different set of capabilities. This model allows partitioning an
agent’s actions to private actions and public actions. Partitioning was
initially intended to improve planning efficiency, but work on MA-
STRIPS also identifies privacy as a desirable attribute on its own.

The best performing privacy preserving MA-STRIPS planner is
MATFS [9, 7]. MAFS was shown to be privacy preserving in the
sense that no private information is revealed to the other agents.
This is achieved by a message passing algorithm in which each agent
searches for a plan concurrently, publishing reachable states to other
agents when public actions are performed. Privacy is preserved by
hiding the private information in the published states.

MAFS relies on an efficient heuristic to guide the search. One
of the best classical planning heuristics, which have also been used
for MAFS, is based on identifying landmarks. A landmark is a lit-
erals/action that must be achieved/performed before achieving the
goal. Discovering all landmarks is computationally hard [5], but there
are polynomial methods that are able to identify some of the land-
marks [5, 10]. In this paper we discuss the identification of landmarks
without breaking the privacy constraints.

One way to do so is for each agent to apply existing landmark
detection algorithms on a projection of the planning problem that
ignores all private actions of the other agents. Such a projection-
based approach has various problems. Landmarks for goals that are
achieved by private actions of one agent would be unknown to all
other agents. As private preconditions of an action are not known to
all agents, then some agents would not be able to detect landmarks
that are required to achieve these private preconditions. We propose
here a distributed, privacy preserving algorithm for detecting land-
marks, called PP-LM, that overcomes these shortcomings.

PP-LM can be used to improve MAFS, identifying more land-
marks and as a results a better search heuristic. In addition to PP-LM,
we also introduce a novel, highly efficient, MA-STRIPS planner that
uses the landmarks found by PP-LM. This algorithm, which we call
the Greedy Privacy Preserving Planner (GPPP), uses synchronized
search for finding a sequence of public actions that would achieve
the goal. GPPP uses the landmarks found by PP-LM to guide this
search. Once a plan of public actions was jointly found, agents plan
independently in their private spaces to achieve the preconditions of
the agreed upon public actions.

We empirically demonstrate that PP-LM finds more landmarks
than the projection-based approach, especially in domains where
agents must collaborate in order to achieve goals. The performance
of MAFS was also improved when using PP-LM. The overall per-
formance was then greatly improved by using GPPP. With GPPP,
problems were solved substantially faster than with MAFS, often ex-
hibiting a speedup of over an order of magnitude.
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2 Preserving Privacy in MA-STRIPS

As a preliminary, we define MA-STRIPS and the privacy preserving
property we wish to achieve.

Definition 1 (MA-STRIPS [1]). An MA-STRIPS problem is repre-
sented by a tuple (P, {A;}5_,, I, G) where:

P is the set of possible literals (facts about the world)

I C P is the set of literals true at the start state

k is the number of agents

A; is the set of actions that agent ¢ can perform.

G C P is the set of literals that needs to be true after executing
the generated plan (i.e., the goal state)

Each action in A; has the standard STRIPS syntax and semantic, that
is a = ( pre(a), add(a), del(a) ). The sets A; are disjoint, that is, no
public action can be executed by two different agents.

To efficiently solve an MA-STRIPS planning problem, Domshlak
and Brafman partition the actions of each agent to private and public
actions [1]. An action is regarded as a private action of an agent if
none of its preconditions or effects are preconditions or effects of an
action of another agent. The literals in the preconditions and effects
of a private action are regarded as private literals.

This partitioning to private and public actions and literals serves
two purposes. First, it suggests a decomposition of the planning
task; Public actions are decided together while private actions can
be planned individually, reducing complexity [1]. Second, it allows
preserving some form of privacy while planning a joint activity.

Privacy is commonly defined with respect to the capabilities of
an adversary agent that attempts to reveal some private information.
We assume that the adversary agent knows about the existence of the
private actions and literals. The adversary agent does not:

e Know about the private literals and actions of other agents.

e Know which private literals are true in the initial state.

e Know the private literals and effects (i.e., which private literals are
literals and/or effects of which actions).

e Observe the execution of private actions during plan execution.

The information an adversary may seek is the private actions in the
generated plan and which private literals hold or do not hold dur-
ing plan execution. Following Nissim and Brafman [8], we say that
a planning algorithm is privacy preserving if none of the private in-
formation, i.e., the private states and actions, are passed between the
agents during planning. A deeper privacy analysis, including theoret-
ical results about the information an adversary can infer indirectly,
are beyond the scope of this work.

2.1 Privacy Preserving Solvers

The best performing MA-STRIPS solver is the MAFS algorithm [9].
MAEFS is a distributed, privacy preserving algorithm, where each
agent searches using its private and public actions. MAD-A* and
Selfish-MAD-A* [8] are variants of MAFS for finding optimal solu-
tions and solutions for self-interested agents, respectively.

In MAFS, each agent runs a best-first search towards the goal,
guided by a heuristic function. The search performed by each agent is
conducted in a state space restricted to the public literals and the pri-
vate literals of that agent. We call this state space the individual state

2 This partition to private and public actions that we considered is based on
the domain description. Accepting a partition as input is also possible.

space of the agent. During the search, when the currently expanded
state is generated using a public action, it is published (broadcast) to
all other agents, masking the private literals in that state. The pub-
lished state is inserted into the other agents’ search lists, allowing it
to be expanded by them with their own private actions. Thus, these
other agents learn about the new public literals that were achieved
and can use them to continue advancing toward the goals. When an
agent achieves the last goal, it broadcasts that all goals have been
achieved. Then, each agent reconstructs its private plan and a com-
plete plan is found.

Key to the success of MAFS is the heuristic used by the agents
when searching their individual state space. As mentioned earlier,
some of the most successful heuristics in planning are based on iden-
tifying landmarks [6, 10, 5]. Next, we provide required background
about landmark heuristics, and discuss their applicability to CPPP.

2.2 Landmarks in Classical Planning

A landmark @ for a classical planning task IT = (P, A,I,G) is a
logical formula over the facts P, which must be satisfied at some
state along every solution of II [5]. As in most literature dealing with
landmarks, we will restrict our attention to landmarks that are facts or
disjunctions over facts. Each planning task has some trivial landmark
consisting of all the goal literals.

Although it is PSPACE-hard even to check whether a given literal
is a landmark or not, there are several efficient algorithms that return
a set of landmarks and orderings [5, 10]. Recent landmark detection
algorithm work as follows. First, every literal that is true in the goal
and not in the initial state is identified as a landmark. Then, for ev-
ery landmark p, if all actions that achieve p (denoted as “achievers”
of p) have some literal ¢ € P as a precondition, then ¢ is also a
fact landmark. If there are no common preconditions, a set of literals
that is a hitting set over the preconditions of all achievers of p can
be used as a disjunctive landmark, denoting that at least one of the
literals in the disjunctive landmark must be achieved in every solu-
tion. This landmark detection process continues until all landmarks
are resolved.

Originally, landmarks were used as subgoals [5], guiding a base
planner inside a control loop. More recently, the number of land-
marks which are yet to be achieved plus the number of landmarks
that should be achieved again, was used as a heuristic function for
very successful state space planners [10]. Note that this is an inadmis-
sible heuristic estimate, because an action might achieve more than
one landmark. There are also admissible heuristics that are based on
landmarks [6], which are useful for optimal planning.

To estimate which landmarks should be achieved again, land-
mark detection algorithms also identify various types of ordering be-
tween landmarks, and there are several ways to use these orderings.
In our experiments, we considered two types of orderings: greedy-
necessary and reasonable. Briefly, a landmark L, is ordered before
L2 in a greedy-necessary order if L1 needs to be true to achieve L.
A landmark L1 is ordered after Lo in a reasonable order if L1 is
needed at the same time or after L is achieved, and achieving Lo
deletes L. The heuristic function we used in our experiments counts
alandmark L; as a landmark that should be achieved again if there is
another landmark (or goal predicate) Lo that has not been achieved
yet and either: (1) L; is also are not true in the current state and
there exists a greedy-necessary ordering L1 — Lo (as L is needed
to achieve Lz), or (2) there exists a reasonable ordering Lo — Ly
(since when Ly is achieved it will delete L, which is needed after-
wards).
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Figure 1. A logistics example, with 6 agents. Squares mark public cities,
while circles mark private cities. Private cities are labeled ¢, j where ¢ is the
agent, and j is the city index for that agent. Different circle types represent
different agents. All actions move packages between nearby cities. There are
two packages p1, p2 that must be delivered to g1, g2 respectively.

The exact definitions of the different types of orders can be found
in previous work [10], and the algorithms presented in this paper
are robust to other landmark-based heuristic functions. We reported
above the details of the heuristic function used in our experiment for
completeness and to allow reproducibility of our results

2.3 Projection-Based Landmark Heuristic

In MAFS, each agents searches in its individual state space. Thus, the
heuristics used cannot directly consider private actions and literals
of other agents. The individual state space is, in fact, a projection
of the full multi-agent problem onto the agent’s private and public
literals and actions. Therefore, it can be viewed as a single agent
planning problem, allowing the agent to use landmark heuristics, and
in general any existing heuristic from the planning literature.

An agent may identify some landmarks by running an existing
landmark detection algorithm on its individual state space. There are,
however, a few substantial problems with detecting and using land-
marks in this projection of the full, multi-agent state space.

Projection-based landmark detection algorithm are limited, as ev-
ery agent only identifies landmarks related to goals it can achieve. A
special case of this problem is when a goal is only achievable by a
private action of some agent a1. As a result, the other agents are not
aware of any action that achieves the goal, and therefore cannot find
any landmark for that goal. Moreover, if this is the only goal, then all
other agents would simply search blindly towards achieving it.

As an example, consider the logistic setting in Figure 1 and assume
that the only goal is to move package p: to location g;. The only
action that can put a package in g; is a private action of agent ae.
Thus, all the agents would not be able to infer any landmark and
would search blindly.

Projection-based landmarks can also produce low quality land-
marks, i.e., disjunctive landmarks. For example, assume that a goal
can be achieved by agent a; by several actions, each having also
some set of preconditions. Now, assume that only one of these set
of preconditions are achievable from the start state. If this informa-
tion depends on other agents and a; is not aware of it, then it would
infer a disjunctive landmark, while a more effective landmark would
only consider the preconditions of the achievable action. For exam-
ple, assume that the landmark being developed is the goal at(p2;
[3; 1]) from Figure 1. A projection-based algorithm would detect
{at(p2; A) V at(p2; B) V at(p2;C) V at(p2; D)}, while in fact
at(p2; B) could have been inferred. The next section provides a pos-
sible remedy to these shortcomings, finding more and better (more
refined) landmarks while still preserving privacy.

3 Privacy Preserving Landmark Detection

In this section we present a landmark detection algorithm called
PP-LM (Privacy Preserving LandMark detection algorithm) that im-
proves upon the projection-based approach described above by al-
lowing agents to communicate the public landmarks that they dis-
cover. This collaborative distributed landmark identification algo-
rithm is intended to be performed jointly by the agents prior to a
distributed search (e.g., before running MAFS). A prominent benefit
of PP-LM over the projection-based approach is that PP-LM enables
an agent to find a landmark that is not achievable by it, as well as
finding more refined landmarks.

The algorithm progresses by agreeing on a landmark to explore.
All agents collaborate on the development of that landmark, until it
is resolved as satisfied by the initial state, or by another set of land-
marks. This process proceeds until all landmarks are eventually sat-
isfied by the initial state. We now explain this process in detail.

3.1 Initialization

We say that a landmark is a public landmark if it only contains pub-
lic literals, while we say that a landmark is a private landmark if it
contains at least one private literal. For example, at(p1,[1,2]) is a
private landmark, while at(p1, F) is a public landmark. Each agent
maintains a list of private and public landmarks, initialized by the set
of public and private goals it can achieve.

3.2 Identifying a Landmark to Develop

First, the agents agree on a single landmark to develop. We take a two
step approach. First, prior to each selection the agents must agree on
one leading agent (say, by turn). Then, that agent picks a landmark to
develop, either public or private from its relevant landmark list. If a
public landmark is chosen, then the leading agent informs everybody
about it. When a private landmark is chosen, the leading agent only
informs other agents that it is working on some private landmark.
We do not enforce any particular ordering on the landmarks to be
developed. This can be done by any tie breaking method.

3.3 Identifying Achievable Literals

Once all agents agree on developing landmark [, we begin the pro-
cess of identifying which literals are achievable by the entire team of
agents before the landmark is achieved. To do so, each agents main-
tains a set of public literals it knows are achievable by the team as
well as the set of private literal it can achieve (including those it can
achieve with the help of other team members actions). We call this set
the agent’s set of achievable literals. Initially this set contains only
the literals in the initial state (the public ones and the private ones
known to that agent). The agent then apply all private and public ac-
tions it can perform given its set of achievable literals, ignoring the
delete effects of these actions. Whenever a public literal is achieved,
the agent publishes it to all other agents. The other agents add this
literal to their set of achievable literals, potentially allowing more ac-
tions to be performed, and more literals to be achieved. This process
repeats until no more public literals can be achieved by any agent. To
avoid circular reasoning, such that the achievement of [ requires [ to
be achieved, all agents ignore all actions that achieve [ (or any literal
in [ in the case of disjunctive landmarks).

When this phase is concluded, all agents have the same set of
public literals in their set of achievable literals. These are the public
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literals that can be achieved without achieving [ first (given delete-
relaxation). Note that these sets of achievable literals are an approxi-
mation of the real set of literals that the team can achieve, as we use
a “delete relaxation” approach to construct these sets. Thus, not all
literals in this set are indeed achievable. However, all the literals not
in this set are guaranteed to be unachievable without achieving first
the landmark [. These are used later to detect additional landmarks.

As an example consider the logistics example in Figure 1. Assume
that the landmark being developed is the goal at(p2,[3,1]). Now,
agent 3 must ignore all actions that move py to [3, 1]. Restricting
our attention to literals involving po, the set of agent 3’s achievable
literals contains only at(p2, B). Note that if we did not ignore actions
that achieve at(p2, [3, 1]), then agent 3’s set of achievable literals we
have po at any public city. Note that this set of achievable public
literals is recreated for every landmark we develop, that is, we do not
reuse achievable sets that were computed for other landmarks.

3.4 Identifying Satisfying Agents

The next phase identifies which agents can satisfy the current land-
mark [. These are the agents that have an action that achieves [, and
the preconditions of this actions are in their set of achievable literals.
Every agent that can satisfy [ declares so to the entire team.

If only one agent can satisfy ! (e.g., when [ is a private land-
mark) then that agent now identifies new landmarks, public and/or
private, by considering the literals in the preconditions of the ap-
plicable actions that achieve [ that are not true in the initial state
or an existing landmark. * The agent then insert these new land-
marks to its list of landmarks. For example, if at(p2,[3,1]) is the
landmark being developed, and the only public achievable literal is
at(p2, B), then only agent 3 can satisfy this landmark, using the ac-
tion move(pz, B, [3,1]). Then, a new public landmark at(pz, B) is
identified and added to agent 3s landmark list.

When more than one agent can satisfy [, each such agent identi-
fies landmarks required for achieving [ using the same collaborative
process. Then, each of these agents broadcasts the set of public land-
marks it requires to achieve [ (the private landmarks are not published
to preserve privacy). All of these set of public landmarks are joined
together to form a public disjunctive landmark that is added to the
list of landmarks of all the relevant agents.

For example, we may developing at(p1, F), the public achievable
literal set will contain at(p1, C) and at(p:, D). Two agents, 4 and
5, would now be able to satisfy the landmark. Developing their land-
marks, we would eventually learn that at(p1,C) V at(p1, D) is a
public disjunctive landmark. Once a landmark has been satisfied as
explained above (i.e., either by generating more landmarks or by the
initial state), the agents decide on the next landmark. The process
then repeats until no more landmarks are identified.

Table 1 demonstrates the differences between the landmarks de-
tected by the projection approach and our PP-LM method. For ex-
ample, the projection-based landmark detection algorithm would not
identify at(p1, [1, 1]) as a landmark, because it assumes that actions
moving p; to city I, being handled by other agents, have no precon-
ditions. The projection-based approach, which doesn’t run the reach-
ability analysis for landmark detection that we propose (i.e., collabo-
ratively generating the set of public literals achievable by the team),
would identify the landmark at(p2, A) V at(p2, B) V at(p2, A) V
at(p2, B), while we identify the more refined landmark at(p2, B).

3 Literals existing in all preconditions are considered as fact landmarks. If no
such literals exist, then a disjunctive landmark is formed containing the set
of literals that occur in all of these actions preconditions.

[ Method [ Private landmarks | Public landmarks |
Projection {at(p2,[3,1])} {at(p2, A) V at(p2, B)V
landmarks {at(p1,[6,1])} at(p2,C) V at(p2, D)}

{at(p1, E)}

PP-LM {at(p2,[3,1])} {at(p2, B)}

{at(p1,[6,1])} {at(p1, A)}
{at(p1,[3,1])} | {at(p1,C)V at(p1,D)}

{at(p1,[1,1])} {at(p1, B)}

Table 1. Differences in landmark detection between the projection method
of MAFS and PP-LM, over the example in Figure 1

4 Greedy Privacy Preserving Planner

Next, we propose a new algorithm for CPPP called the Greedy Pri-
vacy Preserving Planner (GPPP), which is based on the landmarks
identified by PP-LM. In GPPP, the agents search jointly in the space
of public actions, while each agent searches in the space of its pri-
vate actions. We use a synchronized approach: one of the agents is
designated as the leader, performing the search in the public action
space and contacting the other agents to receive information it needs.
Importantly, even the leader does not know about the private actions
and literals of other agents.

First we define some supporting terms. A private state of an agent
is a set of that agent’s private literals. We assume that a private state
of an agent has a private state identifier (PSI), which is an index to
a specific private state. A key attribute of a PSI is that the only agent
that can map a PSI to a private state is the corresponding agent of that
private state. Thus, sharing a PSI with other agents does not break the
privacy constraints.A public joint state (PJS) is a set of PSIs, one per
agent, and a set of public literals. Formally, we define a PJS as a tuple
({PSI;}%, pub), where PSI; is a PSI for a private state of agent 4,
and pub is a set of public literals.

In GPPP, the leader searches in the space of PJSs. Initially, each
agent generates a single private state according to the initial state.
Then, each agent runs a “private action delete relaxation” process,
which means applying that agent’s private actions and ignoring their
delete effects. This continues until no more private literals are added.
Each agent then sends the PSI of the resulting private state to the
leader along with a landmark-based heuristic computed using the
landmarks known to that agent that it can satisfy. The leader then
constructs a PJS from the PSIs of the agents and the public literals in
the initial state. Each PJS has a heuristic value, computed as the sum
of the heuristics of its constituent private states.

An agent a; applying an action A generates another PJS. In the
generated PJS, the public literals are updated according to eff{A). A
new private state for a; is generated by first updating the current
private state with the private effects of A. Then, a; performs again
the “private action delete relaxation” process to update its private
state with all achievable private literals, except those that are mutexes
of preconditions or effects of A. The resulting PJS contains the PSI
of this updated private state, and is returned to the leader, along with
its heuristic value. In addition, a; notifies the leader if in a generated
PJS all the goals known to it have been achieved. If all agents report
that in a given PJS all their known goals were achieved, then that PJS
is identified as a potential goal state.

When a potential goal state has been identified, its corresponding
sequence of public actions are extracted. Each agent then needs to
verify that it can perform the public actions planned for it. This is
done by planning to achieve the private preconditions of each public
action assigned to it, starting from the first public action and pro-
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ceeding sequentially. Note that an agent might discover that it cannot
achieve the public action assigned to it. This may occur, since when
the public actions were planned, each agent considered the list of
achievable private literals by ignoring the delete effects of the private
actions (the “private action delete relaxation” process). If an agent
may not be able to achieve one of the public actions planned for it, it
broadcasts that this action cannot be executed. If the leader receives
this message, it prunes this PJS and the search for a sequence of pub-
lic actions leading to the goal continues.

Finally, if a potential goal state is found to be a goal, i.e., all agents
can locally satisfy the preconditions of the planned public actions
and achieve all goals, then a solution has been found. Then, each
agent maintains both the sequence of public actions in the plan as
well as its private actions (used to satisfy public action preconditions
and achieve its private goals). To ensure completeness the leader per-
forms a best first iterative deepening search on the state space of
PJSs, i.e., a best first search is performed while pruning all PJSs with
heuristic value higher than a give threshold. If all PJSs are pruned,
then the threshold is increased and the process restarts. In our exper-
iments we set the initial bound to the number of found landmarks.

S Experimental Results

We perform a set of experiments to evaluate the proposed privacy
preserving landmark detection algorithm, and the proposed Greedy
Privacy Preserving Planner (GPPP). The experiments were per-
formed on MA-STRIPS translations of a subset of the domains from
the international planning competition: logistics, elevators, zeno-
travel, rover, and satellite.

In addition, we introduce a new MA-STRIPS domain we call
“MA-Blocks”. Like the classical blocksworld domain, the task in
MA-Blocks is to construct a specific blocks formation. In MA-
Blocks, there multiple “arms” that can pick blocks and stack them,
each corresponding to an agent. In addition, blocks can only be
stacked at a finite set of locations, and each “arm” can reach only
a subset of these locations. The reach of the different arms overlap,
allowing agents to pass blocks to other agents.

Domain Proj-LM | PP-LM | Full-LM
ProbLogistics 17.8 38.2 41.6
Elevators 13.9 16.8 22.7
MA-Blocksworld 26.8 72.0 76.8
Zenotravel 7.5 7.8 16.2
Rover 13.6 13.6 24.4
Satellite 15.6 15.8 28.1

Table 2. # landmarks detected with Proj-LM and PP-LM

We compare three landmark detection algorithms: (1) the
projection-based landmark detection algorithm (used by Nissim et
al.), denoted Proj-LM, (2) a landmark detection algorithm that ig-
nores privacy constraints, denoted by Full-LM, and (3) the proposed
privacy preserving landmark detection algorithm (PP-LM). Results
for Full-LM provide an upper bound on the number of landmarks
PP-LM may detect (as Full-LM ignores the privacy constraints).

The average number of landmarks found in each domain with each
of the landmark detection algorithms is given in Table 2. In probLo-
gistics and MA blocksworld domain, the number of landmarks found
with PP-LM is substantially larger than Proj-LM (2.7 times more in
the MA blocks domain). In fact, in these domains PP-LM was able
to find almost all the landmarks found by Full-LM. In the elevators
domain, the number of additional landmarks found by PP-LM was

more modest. Furthermore, in some cases PP-LLM produced more re-
fined disjunctive landmarks, i.e., disjunctive landmarks that where
subsets of disjunctive landmarks found by Proj-LM.

In the rover, zenotravel, and satellite domains, PP-LLM did not find
any additional landmarks over Proj-LM. A deeper look into these
domains explains these results. In MA-Blocksworld, probLogistics,
and elevators, agents need to collaborate to achieve goals. For exam-
ple, in probLogistics the trucks and the planes need to collaborate
to move package from one city to another. By contrast, in satellite,
zenotravel, and rovers, every goal can be achieved by a single agent.
For example, in the rover domain taking an image of a rock can be
done by any single rover. As a result, the agents need to coordinate
which agent will achieve which goal but not to collaborate. This elim-
inates the advantage of PP-LM over Proj-LM, as no public landmarks
would be generated from private landmarks. Thus, using PP-LM in
domains that require only coordination between agents is redundant.

Domain Proj-LM | PP-LM | Full-LM
ProbLogistics 0.02 0.12 0.03
Elevators 0.02 0.19 0.04
MA-Blocksworld 1.69 4.56 4.53
Zenotravel 0.07 2.27 0.14
Rover 0.03 0.03 0.03
Satellite 0.16 7.61 0.00

Table 3. Runtime (sec.) of the landmark detection algorithms

As the results above show, PP-LM is able to find more landmarks
than Proj-LM while still preserving privacy. However, PP-LM re-
quires more runtime and communications between the agents. Ta-
ble 3 shows the average runtimes of running the different landmark
detection algorithms. As expected, PP-LM is slower than Proj-LM.
However, as demonstrated below, this runtime is often well spent.
The overall runtime of PP-LM is small, and the planning time can
be substantially reduced by finding even a few additional landmarks.
Note that PP-LM is also slower than Full-LM even though Full-LM
finds more landmarks. This is because Full-LM does not require a
message passing mechanism to preserve privacy, as every agent had
access to the complete problem definition.

Proj-LM PP-LM Full-LM
Domains MAFS || MAFS|GPPP || MAFS | GPPP|| FF
ProbLogistics (12) 12 12 12 12 12 [[12
Elevators (15) 15 15 15 15 15 ||15
MA-Blocks (15) 13 14 15 15 15 || 13
Zenotravel (13) 13 13 13 13 13 || 13
Rover (13) 13 13 13 13 13 (|13
Satellite (15) 11 11 15 12 15 || 14

Table 4. # instances solved under 30 minutes

Next, we compare the performance of GPPP and MAFS using the
three landmark detection algorithms. Table 4 shows the number of
instances solved by every algorithm under a 30 minutes timeout. For
every domain, the total number of instances is given in brackets near
the domain’s name. We marked in bold the algorithm that solved the
most instances in each domain.

The baseline in this comparison is MAFS with Proj-LM, described
by Nissim et al. According to their experiments, MAFS outperforms
previous MA-STRIPS solvers, and thus MAFS with Proj-LM is the
best privacy preserving MA-STRIPS planner published so far. As can
be seen, using PP-LM with MAFS already improves on this baseline,
solving an additional instance in the MA-Blocks domain. When com-
bined with GPPP, all instances in all domains were solved. Even if
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privacy is ignored when searching for landmarks, GPPP still outper-
forms MAFS, solving 3 more instances in the satellite domain. Fur-
thermore, GPPP with PP-LM is even able to solve more instances
than FF [4], a planner that is neither privacy preserving nor dis-
tributed. This suggests that in domains with a natural decomposition
to multiple agents, GPPP is a more suitable choice. However, our fo-
cus is not in developing fast, single agent planner, but in developing
an efficient distributed and privacy preserving solver. FF is neither,
and thus only serves as a baseline for comparison.*

Proj-LM PP-LM Full-LM
Domain MAFS MAFS | GPPP || MAFS | GPPP
ProbLogistics 5.74 4.61 0.25 4.49 0.11
Elevators 8.34 3.87 0.30 11.80 0.08
MA-Blocks 67.29 29.01 2.72 9.75 1.39
Zenotravel 44.68 46.71 3.36 5.33 1.03
Rover 9.18 9.18 4.22 1.18 0.88
Satellite 178.74 181.47 7.68 162.18 4.74

Table 5. Avg. runtime in sec. Best privacy preserving alg. is in bold

To obtain a finer grained comparison, we analyze the runtime of
the different algorithms. To do so, we averaged the runtime of the
instances solved by all algorithms in each domain. This follows the
maximally conservative approach [2]. Table 5 shows these results,
emphasizing in bold the best privacy preserving algorithm.

The results show two very clear trends. First, GPPP with PP-LM is
the best performing privacy preserving algorithm, substantially out-
performing the baseline MAFS with Proj-LM, as well as MAFS with
PP-LM. Furthermore, GPPP substantially outperformed MAFS even
if privacy is ignored and Full-LM is used. In fact, except in the rover
domain GPPP with PP-LM outperforms MAFS even if MAFS ig-
nores privacy and uses Full-LM. In general, GPPP is in most do-
mains at least an order of magnitude faster than MAFS when using
the same landmark detection algorithm.

The second trend that can be seen in Table 5 is that using a stronger
landmark detection algorithm, i.e., an algorithm that detects more
landmarks, results, in general, in better performance. GPPP with
Full-LM performs better than GPPP with PP-LM. Not presented in
this table, we also report that in preliminary experiments we also ob-
served that GPPP with Proj-LM resulted in inferior results to GPPP
with PP-LM. The same trend is shown in MAFS. With Proj-LM
it performed worse than PP-LM in domains where PP-LM found
more landmarks. Even in domains where PP-LM did not find more
landmarks (xenotravel, rover, and satellite), MAFS with PP-LM per-
formed the same or only slightly worse than MAFS with Proj-LM.
By contrast, the gain of using PP-LM over Proj-LM when more land-
marks are found, is substantial. MAFS with either Proj-LM and PP-
LM performed worse than Full-LM, which detects more landmarks.

Proj-LM PP-LM Full-LM
Domain MAFS MAFS | GPPP || MAFS | GPPP
ProbLogistics 65.8 55.4 58.5 55.4 58.7
Elevators 33.1 321 33.5 349 31.1
MA-Blocks 40.1 41.8 38.0 35.7 37.6
Zenotravel 329 33.1 27.7 24.2 27.5
Rover 34.4 34.4 43.9 37.6 44.4
Satellite 34.7 34.7 36.5 35.9 36.5

Table 6. Avg. solution length. Best privacy preserving alg. is in bold

4 A comparison with centralized, privacy ignoring planners is not the focus
of this paper, and requires a more comprehensive evaluation of recent state-
of-the-art planners

As both MAFS and GPPP do not directly attempt to find short
solutions, most of our analysis has focused on runtime. However,
for completeness, we report in Table 6 the average solution length
found by each of the algorithms. We marked in bold the algorithm
that found the shortest solution. As can be seen, the found solution
lengths are very similar, and there is no clear winner in this aspect.
If guarantees on solution length are required, one may use PP-LM
to detect landmarks and incorporate them in the optimal MAD-A*
algorithm (the optimal variant of MAFS) [7].

6 Conclusion and Future Work

In this paper we proposed a new privacy preserving landmark de-
tection algorithm called PP-LM. PP-LM is especially suited for the
MA-STRIPS model, finding more landmarks than a projection-based
landmark detection algorithm in domains where agents must collab-
orate in order to achieve goals. Experiments show that the identified
landmarks of PP-LM can substantially improve the performance of
the corresponding planner, while the additional overhead of finding
them is usually small.

Using the landmarks found by PP-LM, we propose a novel, highly
effective, privacy preserving MA-STRIPS planner named Greedy
Privacy Preserving Planner (GPPP). GPPP uses the found landmark
to first plan the public actions and then check if these public actions
can be performed. In our experiments, GPPP was able to solve more
instances, and more than an order of magnitude faster than MAFS,
the best previously proposed privacy preserving planner.

We focused on the privacy preserving aspect of the MA-STRIPS
model. As in previous work [1], we defined private and public ac-
tions and literals according to the domain description. In a more gen-
eral setting, defining which information should be private would be
done by the user. Furthermore, the definition of privacy preserving in
this and previous MA-STRIPS works was binary: either private in-
formation is shared or not. Even if private information is not directly
shared, an intelligent agent might infer some knowledge about it only
by observing the publicly shared information. We are currently pur-
suing a more quantifiable privacy measure, possibly adapting exist-
ing privacy metric from the DCOP literature [3].
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