SMC-B

Task-Based Decomposition of Factored POMDPs

Guy Shani
Information Systems Engineering
Ben Gurion University
Israel
shanigu@bgu.ac.il

Abstract—Recently, POMDP solvers have shown the ability to
scale up significantly using domain structure, such as factored
representations. In many domains the agent is required to
complete a set of independent tasks. We propose to decompose a
factored POMDP into a set of restricted POMDPs over subsets
of task relevant state variables. We solve each such model
independently, acquiring a value function. The combination of
the value functions of the restricted POMDPs is then used to
form a policy for the complete POMDP. We explain the process
of identifying variables that correspond to tasks, and how to
create a model restricted to a single task, or to a subset of tasks.
We demonstrate our approach on a number of benchmarks from
the factored POMDP literature, showing that our methods are
applicable to models with more than 100 state variables.

Index Terms—POMDP, Point-based Algorithms, Factored
POMDP

I. INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs)
are widely used to model agents acting in a stochastic environ-
ment under partial observability. Exact solution algorithms for
POMDPs can handle only small state spaces, but approximate
solution methods, and in particular, the family of point-based
methods [13], generate good, approximate policies for larger
domains.

In many cases, it is natural to describe the state of the
environment within a POMDP using a set of state variables,
and the effects of actions in terms of their effects on these
variables. Dynamic Bayesian Networks (DBNs) with condi-
tional probability tables (CPTs) in the form of decision-trees or
graphs are often used to represent these effects compactly. This
representation is known as a factored representation. The state
space of such models is exponential in the number of variables,
and quickly grows outside the reach of methods that operate on
an explicit, flat representation, including point-based methods.
To address this problem, researchers suggested the use of
Algebraic Decision Diagram (ADDs) [3], [9], [14], [10], [17].
Recently [15], it was shown how point-based algorithms that
use ADDs as the underlying representation, can solve domains
with up to 25 binary state variables, given sufficient domain
structure. However, it is likely that real world domains will
have many more variables.

In some domains, an agent is required to complete a set
of tasks. For example, in the RockSample domain (Figure 1
[19]), a robot needs to sample a number of rocks. We can
treat the sampling of each rock as an independent task. In the
well known Logistics domain (adapted to POMDPs in [15])

the agent needs to distribute a set of packages to their correct
destinations. We can think of the delivery of each package
as a separate task. In this paper we restrict the discussion to
domains where tasks are independent, in that no task provides
a necessary precondition for the fulfilment of another tasks.
Therefore, the agent can choose any ordering of the tasks, or
make progress on several tasks concurrently. For example, the
Logistics agent can load multiple packages on the same truck.

: A
: A
2 |- A
| Mk

&

2 3 4

Fig. 1. The RockSample example, with a 4 X 4 board and 4 rocks.

Even though the tasks are independent, the optimal pol-
icy must consider all incomplete tasks at each step. In the
RockSample domain, for example, planning a minimal route
between the rocks, cannot be done by always greedily moving
to the closest rock. Therefore, the agent has to consider the
location of all rocks before deciding on the optimal path.

However, considering only a subset of the tasks can also
provide a valid solution for the POMDP. We can decompose
the POMDP into a set of smaller models (which we call
restricted models), each modeling only a small number of
tasks. These models, which are exponentially smaller than
the original one, are much easier to solve. Then, we can
compose the policies of the smaller models into a policy for
the complete POMDP. Such a policy will be suboptimal, as
we did not consider all tasks together. Yet, the solution will be
valid, in that all tasks can be completed following the resulting
policy.

We focus our attention here on factored POMDPs where to
complete each task the agent needs to consider only a small
subset of the state variables. For example, in the RockSample
domain, to move and sample a rock, the agent needs only
consider the X and Y variables, and the rock state variable.
In such domains, focusing on a subset of tasks can be done by
ignoring all variables which are not necessary for completing



SMC-B

the specific tasks. We can now define a smaller factored
POMDP that models only the dynamics of the important
variables, and solve it using a point based method, resulting
in a value function represented as a set of ADDs.

We repeat the above procedure several times, each time
using a different subset of tasks, and a different restricted
POMDP. The union of the value functions from the various
restricted models provides a policy for the complete POMDP.
As the size of the subsets grows, more relationships between
tasks are taken into consideration and the resulting policy is
closer to the optimal policy of the complete POMDP.

In this paper we explain the procedures for identifying the
set of task relevant variables, creating the restricted POMDPs,
and combining the resulting value functions. We experiment
with two factored POMDP benchmarks, showing how the
quality of the resulting policy becomes closer to the policy
computed for the complete POMDP. We continue to demon-
strate the scalability of our approach by providing solutions
for POMDPs with more than 100 binary state variables.

II. BACKGROUND
A. MDPs and POMDPs

A Markov Decision Process (MDP) is a tuple (S, A, tr, R)
where S is a set of world states, A is a set of actions,
tr(s,a,s’) is the probability of transitioning from state s to
state s’ using action a, and R(s,a) defines the reward for
executing action a in state s.

A Partially Observable Markov Decision Process (POMDP)
is a tuple (S,A,tr,R,Q,0,by) where S, A, tr, R compose
an MDP, ) is a set of observations and O(a,s,0) is the
probability of observing o after executing a and reaching state
s. In this paper we focus on finite state, action, and observation
spaces.

The agent maintains a belief-state — a vector b of probabil-
ities such that b(s) is the probability that the agent is currently
at state s. by defines the initial belief state — the agent belief
over its initial state. The transition from belief state b to belief
state b’ using action q is deterministic given an observation o
and defines the 7 transition function. We denote b’ = 7(b, a, 0)

where:
Bs) — O(a,s',0) >, b(s)tr(s,a,s")
(£)= pr(olb, )

pr(o|b,a) = Z b(s) Z tr(s,a,s)0(a,s’,0) 2)

(O]

An agent operating in an environment described as an MDP
or a POMDP typically tries to optimize some function of the
stream of rewards it achieves. We focus here on optimizing
the infinite stream of discounted rewards > .-, v'r;, where r;
is the reward received at time ¢ and v € (0,1) is a discount
factor.

B. Value Functions for POMDPs

The value function V' for the POMDP can be approximated
arbitrarily closely as a finite collection of |S|-dimensional
vectors known as « vectors [18]. A policy over the belief
space is defined by associating an action a with each vector

«, so that « - b represents the value of taking a in belief state
b and following the policy afterwards. Given a value function
represented as a set V' of « vectors, the policy 7y is derivable
using:

mv (b) = argmax,,, cy 0 b 3)

where « - b is the inner product (or dot product) of vectors:

a-b= Z a(s)b(s) (C))]

£

The value function can be iteratively computed

Vi1 (b) = max(b- 7o+ pr(ofa,b)Va(r(b,a,0))]  (5)
where r4(s) = R(s,a). The computation of the next value
function V;,41(b) out of the current V,, (Equation 5) is known
as a backup step, and can be efficiently implemented [13] by:

backup(b) = argmax . e 4 b - gn (6)
gZ =Te+ Z argmaxggm:aev b- gg,o (7

o

g o(s) = Z O(a, s',0)tr(s,a, s )a'(s") (8)

Updating V' over the entire belief space, hence computing
an optimal policy is computationally hard. A possible approx-
imation is to compute an optimal value function over a subset
of the belief space [13]. Such a value function is only an
approximation of a full solution, but will hopefully generalize
well to other belief states. Point-based algorithms choose a
subset B of the belief space, reachable from by, and compute
a value function only over these belief points using point-based
backups (Equation 6).

Point-based algorithms [13], [21], [19], [16] all use a set of
basic operations, and differ by the way they select the subset
of belief states, and by the order by which backup operations
are executed.

C. Factored POMDPs

Traditionally, the MDP/POMDP state space is defined by
a set of states, which we call a flat representation. For many
problems, however, it is natural to define a set of state variables
X ={Xy,...,,X,,} such that each state s =< x1,...,x, > is
an assignment for the state variables [3]. The transition func-
tion tr(s, a, s') is replaced by the distribution pr(X/|X,a)'.

We can represent state transitions using a dynamic Bayesian
network (DBN) for each action, modeling the transition rela-
tionships between variables. The transition probabilities are
specified using conditional probability tables (CPTs), that
can be coded as decision trees. The reward and observation
functions can also be represented using decision trees, where
the leaves are either probabilities (for observations) or values
(for rewards).

An Algebraic Decision Diagram [1] is an extension of
Binary Decision Diagrams, that can be used to compactly
represent decision trees. A decision tree can have many
identical subtrees, and an ADD unifies these subtrees, resulting

'We follow Boutilier and Poole in denoting the pre-action variables by X
and the post-action variables by X”.



SMC-B

in a rooted DAG rather than a tree. A variable is missing from
a path from the root to a value leaf if it does not influence the
value. We can say that the function is indifferent to the value of
that variable given the path. The ADD representation becomes
more compact as the problem becomes more structured.

Recently, [15] explained how ADDs can be used in point-
based algorithms over factored POMDPs. While a straight
forward implementation scales poorly, they suggest several
special operations for ADDs that allow handling of mid-sized
POMDPs.

In a factored RockSample domain [19], [15], for example,
an agent moves on a two dimensional map trying to sample
a set of rocks that may contain an interesting substance.
In this example we need two (multi-valued) state variables
to represent the X and Y coordinates for the robot, and a
variable for each rock, modeling whether that rock contains
the interesting substance or not. Figure 2 shows a part of the
DBN defining the transitions and a part of the ADD defining
the rewards for this model.

Fig. 2. A part of the transition DBN (a) and the reward ADD (b) for the
action Sample. The change in the rock state and the reward depends on the
previous state of the rock and on the location of the agent, but not on other
rocks. In this figures the variable labels R; represent the rock variables, rather
than rewards.

III. DECOMPOSING FACTORED POMDPSs

Even though ADDs can capture some forms of value
function structure efficiently, when the policy is sensitive to
the value of all variables, ADDs can no longer represent it
compactly. [15] report that the average size of the resulting a-
vectors grows significantly with the number of state variables.
This is an indication that the optimal policy must capture more
variable dependencies.

We suggest to restrict the dependencies between variables,
by creating smaller POMDPs that model only subsets of
these variables. Therefore, we restrict the maximal size of the
resulting ADDs. As the complexity of all point-based opera-
tions depends on the a-vector ADD size, policy computation
becomes much faster.

Below, we explain how to identify meaningful subsets
of state variables, how to decompose the factored POMDP
into a set of restricted POMDPs, and how to combine the
resulting policies into a policy for the complete POMDP. Our

decomposition methods for identifying task-relevant variables
can be considered to be an extension of similar ideas for fully
observable Markov Decision Processes (MDPs) (see, e.g. [4]).

A. Relevant Variables and Actions for Tasks

In many domains, the agent is required to achieve a goal
— an absorbing end state where the execution terminates.
Sometimes, a goal is composed of several tasks — subgoals
that the agent should achieve. A task could not be unmade —
once the agent completes a task, it remains completed for the
rest of the execution. Upon achieving all the tasks, the goal is
achieved and the execution terminates.

Our method is applicable to domains where the agent must
perform a set of independent tasks {7};}. We say that a task
is independent if it does not depend on completing another
task as a precondition. We further assume that to complete a
task, the agent must consider only a small subset of the state
variables — the relevant variables for the task. We denote the
set of relevant variables for task 7" by {7. To accomplish a
task, we also need to define A7 — the set of relevant actions
that influence the values of the variables in &7.

While in many cases it is easy to identify tasks and
relevant variables for the tasks using domain knowledge, it
is also possible to do so by considering the domain dynamics
(transitions and rewards). We assume here that a successful
completion of a task is followed by a positive reward. In
other cases, e.g., in cost-based POMDPs [2], a successful
completion may be more difficult to identify, and may perhaps
be identified by a specific value set for some state variable. In
this case, we may require that the sub-tasks will be identified
manually.

We start by looking at the reward function of the factored
POMDP — R(< Xy, ..., X,, >, a). By traversing the minimal
ADD representation of the reward, we can find paths that lead
to positive rewards. The set of variables that are specified on
the path to a positive reward X, , ..., X, are the only variables
that are relevant for the reward. That is, for each X; such that
Xi 7é er:

R(< Xpgy ooy Xy Xi >,0) = R(< Xy ooy Xy >,a)  (9)

for any possible value of X;.

For each such path to a positive reward r in a reward ADD
we define a task 7,.. We initialize the relevant variables {7 to
the variable set {X,,, ..., X;,, }. We initialize At to the action
that generated the reward r.

We now look at the transition probabilities, which are
described using a DBN for each action a. We identify each
such DBN that influences a variable X; in &p. That is, a DBN
where X; appears in its influenced variables. Then, we add
all the parents of X; in the DBN to &r. We add the action
associated with the DBN to the set of relevant actions Ar.
We repeat this process until the sets &7 and A do not grow
anymore.

As the sets of relevant variables and relevant actions define
the task, we will write T = {{r, Ar}. After following the
process above for each reward r we may find that some tasks
are subsets of other tasks — 73 C Tb, that is, Ay, C Ap, and
X7, C Xr,. In that case, we remove 77.



SMC-B

Algorithm 1 DiscoverRelevantVariables(M)

Input: A factored POMDP M
Output: A set of tasks 7
7T =¢
2: for each action a € A do

3:  for each path < X, ,..., X,, >€ R(< Xi,..., X;, >, a) ending in a positive reward do

4 r —{Xrgs o0y Xon }

5 Ap — {a}

6: repeat

7 for each action a’ € A do

8 for each variable X; not in {7 do

9: if X; is a parent of any X; € { in pr(Xj|X,a’) then
10: Add X; to &p

11: Add o' to Ap

12: until £ doesn’t change

13: Add {gT, AT} to T
14: for each task {¢7, A7} € 7 do

15: if 3{&, AL} € T such that & C & and Ap C A7, then

16: Remove {{1, Ar} from T
17: return 7

Algorithm 1 describes the identification of the tasks and the
relevant variables for each task. In line 3, we identify paths
that lead to positive rewards. While the number of such paths
can be exponential in the number of state variables, this is
rarely the case, because an exponential number of paths results
from little structure in the state space, making a factored
representation unsuitable. When searching for these paths in
practice, we start from the positive reward leaves, and move
up towards the parents, collecting the paths as we go.

Using some preliminary pre-processing, we can also collect
for each variable X; the set of variables that are affecting it,
i.e. the set of variables X; s.t. X; is a parent of X; in any
pr(X,;|X, a). This requires a single pass over all the ADDs
describing the model transitions. Using this cached data, line
9 becomes trivial to compute.

As such, Algorithm 1 is very fast in practice. In all the
domains that we experiment with, it takes a fraction of a
second to compute Algorithm 1.

For example, in the RockSample example, looking at the
reward ADD in Figure 2(b), we will begin with the positive
leaf reward node 10. Moving upwards, we will find the paths
XY, R; for all rocks R;. We will then observe in the transition
ADD (Figure 2(a)) that X,Y, R, do not have additional
parents, i.e. they are not affected by any other variable. Thus,
in this case, 7 = {;, A;} where {; = {X,Y,R;} and A; =

{MoveUp, MoveDown, MoveLeft, MoveRight, Check;, Sam

is the set of all movement actions, the action used to remotely
sense whether rock ¢ is good, and the rock sampling action.

B. Defining the Restricted Models

Given a factored POMDP M =< X, A, tr, R,0,Q,by >,
which we call the complete POMDP, and a task T =
{fT, AT}, we define M =< &p, Ar.tr,R, 0,0, boT > —
the factored POMDP model restricted to the task 7'.

The set of variables and the set of actions of the restricted
POMDP are taken directly from the task definition. The

transition probabilities of My are identical to the transition
probabilities of M, restricted to the relevant variables and
actions.

The observation space 2 and function O are used as in the
original model, but are restricted only to the actions that are
relevant to the task. Thus, every observation that is relevant
for the current task, i.e., that is the result of some action that
is relevant to the task, can be achieved in the restricted model.

To define by, — the initial belief for the restricted POMDP,
we need to compute the start state probabilities over the
relevant variables only. Given the original initial belief by =
pr(< g, ..., Ty >) we define:

Z pr(< xqy,y o xr,, X' >).
X'¢Tx
(10)

That is, we sum the probabilities over all the possible assign-
ments to the variables that are not in X.

We can define a restricted model over a set of tasks by
joining their relevant variables and actions sets. A POMDP
restricted for a set of tasks models some dependencies between
tasks. It may be desirable for a task to participate in a number
of restricted models, modeling its dependency on a larger
number of tasks. However, even if task Ty was modeled once
together with task 77 and once with task 75, it still does not
i that the complete policy properly evaluates T;y compared

boy = pr(< xqy, ..., T, >) =

tg 1 and 75 together. Nevertheless, even such limited task
dependencies can provide some gain, as we later show.

C. Computing Restricted and Complete Policies

The definition of the restricted models, either for a single
task or for a set of tasks, results in a factored POMDP. We
therefore continue to solve the restricted POMDPs using the
techniques detailed in [15]. We use a point-based algorithm to
compute a value function for the restricted POMDP resulting
in a set of a-vectors.



SMC-B

We now need to “translate” these a-vectors back to the
original POMDP. Here, we use a helpful property of ADDs;
In an ADD, a variable does not appear if it is irrelevant for
the specified value. As such, the a-vectors resulting from the
restricted POMDPs are immediately applicable to the complete
POMDP. One way to understand this is by considering these
a-vectors as computing the value of policies in the complete
POMDP over a restricted set of actions.

When selecting an action to be executed in the complete
POMDP, we apply the resulting a-vectors as if they were
computed for the complete POMDP, i.e., by applying Equa-
tion 3. Thus, the selected action is the one with the highest
reward given the true belief state of the complete POMDP,
in one of the restricted subtask POMDPs. Hence, there is no
policy merging step required, aside for joining all the a-vectors
computed for the restricted POMDPs into a single set. This
method causes the subtask (or subset of tasks modeled in a
single restricted POMDP) with the highest current reward to be
accomplished first. For example, in the RockSample domain,
with a single task for each restricted POMDP, the closest rock
will be handled first, because the values associated with actions
for sampling it will have a higher value, given the effect of
the discount factor on longer planning horizons.

After the task has been completed, e.g. the rock has been
sampled, the belief will change such that the a-vectors associ-
ated with that task no longer have a high value. Therefore, the
beliefs following the completion of a task, will not prefer these
a-vectors, and the agent will not try to re-accomplish the task,
e.g. resample the rock. This is done naturally by our model,
without any external mechanism for removing the policies of
completed tasks from the complete policy.

Therefore, a solution to a set of restricted POMDPs provides
a (non-optimal) solution to the complete POMDP. We can
define for each task a separate restricted POMDP, compute
a policy for that restricted POMDP, and combine the resulting
value functions to obtain a value function (and policy) for the
complete POMDP.

However, even though achieving each separate task can be
done without considering the other tasks, this solution will
not be optimal. In the case of a discounted POMDP, we might
execute the task in a non-optimal sequence, which will result
in a lower expected discounted reward. In a POMDP where
each action has some cost (negative reward) associated with
it, the restricted POMDPs may cause us to suffer the cost of
an action multiple times.

We can reduce this problem by using larger restricted
POMDPs over subsets of tasks, thus optimally modeling the
relationships between tasks in a subset. However, even if we
were to try to model only all pairs of tasks, the number of
restricted models will make the solution no faster than solving
the original model. Instead, we use a sampling approach.

This suggests an anytime approach, where we solve as many
restricted POMDPs as time allows, resulting in a finer solution
for the complete POMDP. Also, we can start with restricted
POMDPs over smaller subsets of tasks, which are faster to
compute, and keep growing the subsets until we reach the full
model, if time permits.

Finally, solving the reduced POMDPs can be done in

parallel. These restricted models have no dependencies and
therefore there is no synchronization needed between the solu-
tions. We can distribute the computation to multiple machines,
making this technique useable for large clusters.

IV. EMPIRICAL EVALUATION

In this section we demonstrate our method over two scalable
benchmarks. We first experiment with mid-sized domains,
showing how the policy computed for the restricted POMDPs
is of similar quality to a policy computed for the complete
POMDP. We then move to larger domains, where we cannot
hope to compute a policy over the complete POMDP, yet our
methods rapidly compute a valid solution. All the experiments
below were executed on an 8 core 3 GHz CPU with 16 GB
of RAM, using Java 6.0.

A. Domains and Setup

To provide evidence to the applicability of our methods,
we experimented with two factored POMDP domains. In the
RockSample domain [19], [15], motivated by the Mars Rover,
an agent is required to sample a set of rocks in the surrounding
environment, and then return the samples to its docking station.
To sample a rock the agent must reach its location. A rock
may contain an interesting substance or not, and the agent
has sensors that can detect the interesting substance from
a distance. The accuracy of the sensor diminishes as the
distance grows. In this domain, the sampling of a single rock
is considered a task. The relevant variables are the state of
the rock, and the X and Y coordinates of the agent. The
relevant actions are movement actions, sampling the rock and
activating the long range sensor towards the specific rock. All
tasks share the X and Y variables and the movement and
sampling actions, but the rock variable and the sensing actions
are task specific.

In the Logistics domain [15] the agent is required to deliver
a set of packages. Each package starts at a random city and
must reach a predefined destination city. The agent has a
number of trucks that can drive between cities. A package
can be loaded onto a truck if the package and the truck are at
the same city, or unloaded if the package is on the truck. This
domain is very stochastic — driving, loading, and unloading
may fail. The agent is augmented with noisy ping actions
for finding the current location of a truck or a package. In
Logistics, the delivery of a single package is considered a task.
For each such task the relevant variables are the location of
the package, and the location of the trucks. It is also possible
to further restrict the POMDP by assigning a single truck for
a task. While this does not follow from the relevant variables
algorithm we provide above, such a decomposition is obvious
using domain knowledge.

In both domains we used a large discount factor v = 0.995.
Thus, we ensure that it is important to get to the rewards
(complete tasks) as fast as possible, but that tasks that are
completed late still contribute much to the Average Discounted
Reward (ADR).

For modeling factored domains we use the framework of
Shani et al. [16] for representing factored POMDPs using



SMC-B

ADDs. Our algorithms extend that framework and use the
same underlying ADD functionality. Hence, the “complete”
models that we evaluate are simply the execution of the ADD-
based point-based algorithms discussed in that paper.

In the experiments below we used the FSVI point-based
algorithm [16]>. As FSVI is an approximation algorithm, the
computed policies are not optimal, but FSVI has been shown
in the past to provide good policies. When computing the
complete policy, our ADD-based FSVI implementation uses
equivalent underlying mechanisms for belief update and point-
based backup computation as the two other implementations
of factored POMDP solvers, Symbolic Perseus [14], and
Symbolic HSVI [17].

We experiment with restricted models with increasing num-
ber of tasks. When creating models with multiple tasks we
use the following process to select subsets of &k out of the n
tasks; We iterate over the tasks, and for each task we randomly
select k — 1 additional tasks. This process ensures that each
task will participate in at least 1 restricted model, and each
task is equally likely to participate in multiple models. We
hence always use n restricted models, regardless of k.

B. Evaluating Approximation Quality

We begin our experiments with evaluating the approxima-
tion quality of our approach. As we have explained above,
ignoring some possible dependencies between tasks, will typ-
ically cause the resulting policy to be suboptimal. However, we
currently cannot analytically bound the loss on policy quality.
We therefore experiment with mid-sized instances of the two
domains, where the complete problem can still be solved.

As we take a sampling approach in grouping sub-tasks
together, we ran 50 iterations of the sampling process above
for each value of k (except for £ = 1 and the complete model
where no sampling is used). We ran FSVI on the complete
model and each combination of restricted models for 500
trials, and computed the average collected discounted reward
over these trials.

Table I shows the computed ADR as an indication to the
quality of the policy, and the policy computation time. We did
not execute a distributed version of the algorithm, where each
decomposition is solved on a different machine. However, as
this is a natural extension of our method, we report the policy
computation time per model, as an estimation of the complete
runtime of the entire algorithm in a distributed environment.

When no relationships are being modeled the performance
is relatively low. However, even modeling some task rela-
tionships gets us very close to the quality of the policy
computed for the complete POMDP. This is an indication
that for larger problems, where we cannot possibly compute
a policy for the complete POMDP, our method still provides
good approximations.

In addition we report the size of the combined policy, i.e. the
number of a-vectors in the final value function (denoted |V| in
Table I). The number of vectors increases with the size of the
restricted models, and since we combine the value functions

2There is no particular reason to prefer FSVI for solving the models, and
any other offline solution method that generates a-vectors can be used instead.

of the restricted models together, the result is much larger than
the policy for the complete solution. The required time during
execution is directly related to the number of a-vectors, as
the current belief state must be checked against each a-vector.
That being said, the required inner product operation can be
implemented very efficiently [15] and in practice the selection
of the best vector takes only a few milliseconds.

TABLE I
MEDIUM SIZE DOMAINS — ROCKSAMPLE WITH A 8 X 8 BOARD AND 8
ROCKS (214 STATES) AND LOGISTICS WITH 4 CITIES, 2 TRUCKS, AND 4
PACKAGES (216 STATES). TIME IS REPORTED IN SECONDS.

RockSample 8, 8,8

Restriction ADR | Total Time per V]
time | restricted model
Complete 37.02 160 N/A 337.1
1 rock 24.235 9 1.12 148.5
2 rocks 27.294 32 4 408.1
3 rocks 33.189 87 10.87 750.1
4 rocks 34.46 178 22.25 1077.7
5 rocks 35.141 387 48.37 1470.4
6 rocks 36.725 991 123.875 1805.6
Logistics 4, 2,4
Restriction ADR | Total Time per V]
time | restricted model
Complete 18.389 | 820 N/A 253.2
1 package 8.41 57 14.25 290.8
2 packages 16.4 679 169.75 565.3
1 package, 15.34 98 12.25 607.9
1 truck
2 packages, 17.38 748 93.5 1140.1
1 truck

C. Large Scale Domains

We now move to larger instances of the two domains, where
solving the complete POMDP using the techniques in [15] is
infeasible. Even the atomic operations of a point-based backup
still takes many minutes to complete, making even a single
iteration of FSVI impossible. These models are also too large
to execute the policies using exact belief updates. Therefore,
we use the product of marginals belief approximation from
[15]. Thus, the belief states that we use are inaccurate, and
when we select an a-vector given the inaccurate belief it is
possible that the selected action will not be as good as the
action selected given the exact belief state.

Table II shows our results on these models. Comparing the
policy computation time per restricted model to the smaller
models we experimented with previously, when a single task
is used (first line of each domain in Table I), we see that the
policy computation time per restricted model is very similar.
That is, the number of tasks hardly changes the computation
time per restricted model. Therefore, our approach scales
linearly with the number of variables, because only the number
of restricted models grows, not the amount of time required
to solve a restricted model.

The reported total time in Table II includes the time required
to define the restricted POMDPs. Although identifying the
tasks is very fast, the technical definition of the restricted
POMDP may take a few seconds for each model. Of course,
this overhead increases with the size of the domain, because



SMC-B

TABLE I
EXPERIMENTS OVER LARGE SCALE DOMAINS USING A SINGLE TASK PER
RESTRICTED MODEL.

RockSample 16 x 16 board

[ IS[ | ADR [ Total time | Time per restricted model

20 rocks 278 38.1 75 3.75
50 rocks 258 | 66.171 189 3.78
100 rocks 2108 1 12246 614 6.14
Logistics 4 cities 2 trucks
[ S| [ ADR [ Total time | Time per restricted model
10 package | 23% | 45.147 147 14.7
20 packages | 264 | 59.212 357 17.85
50 packages | 2% | 88.945 967 19.34

the complete model ADDs which must be processed become
larger, which explains the non-linear growth in total time when
the number of tasks increases.

D. Discussion

Our methods are geared towards parallel solution of task
subsets. It is apparent from the tables that as the subset size
increases, solving all subsets sequentially results in a higher
computation cost with a lower solution quality. However, if
we solve the subsets in parallel, we only care about the time
required for a single subset, which is much less than the time
required for a complete solution of the model.

Our results show that the quality of the solution improves as
the size of the task subset increases. It might be, though, that
smartly selecting the subsets can reduce this phenomena, i.e.,
that we can still achieve good performance while maintaining
a small subset size. It is likely that research in this direction
will have the highest added benefit to our approach.

The sub-tasks can be solved in any order, or even in parallel.
As we assume task independencies, and the results of one
task do not affect other tasks the order by which they are
solved is immaterial. One could, however, imagine an anytime
variation of our algorithm, where subsets of tasks are solved
sequentially, and the accumulated value function is used to
produce a policy for the entire model, even before all subsets
have been solved. In this variation of the algorithm, we must
make sure that as many sub-tasks are included in the earlier
subsets. For example, it may be beneficial to start with disjoint
subsets, and only after all sub-tasks have been considered at
least one, allow repetitions.

Our current algorithm combines the value functions of the
sub-tasks into a single value function. When selecting the
best a-vector for a given belief state, we essentially select
an a-vector that was computed for a single task. We can
think of this as choosing a task to solve, and then selecting
an action (through an a-vector) that will advance us on the
chosen task. A possible concern that may arise here is that
the agent may execute a single step towards the completion
of task 77, and then choose a different task 75. The action
that is currently optimal for 75 may cause some setback in
achieving 7. In our case, however, when tasks are defined
through positive rewards, the agent always advances the task
whose current expected discounted payoff is highest. An action
chosen for that task will (stochastically) result in a belief state

with higher expected reward for that task. Thus, as the task
Ty was originally selected because it had the highest expected
discounted payoff, its payoff following the action is expected
to increase, and it would thus remain the best task to pursue.
Indeed, cycles like that do not occur in any of the domains
that we experimented with.

Our approach assumes that tasks are defined using positive
rewards, which is perhaps the most natural way for a model
designer to denote desirable outcomes. The negative rewards
do not take part in the sub-task identification, but are defined
within each restricted model over the state variables over the
model. That is, our algorithm ignores negative rewards in
identifying the sub-tasks, but not when computing the policies.

As we have stated above, our methods are applicable only
to cases where the agent has achievable tasks, and these tasks
are independent, i.e., where there is no particular order on
accomplishing tasks. In domains where tasks are related, our
method may fail completely, because if n related tasks are not
considered together in a single sub-model, then the proper
ordering of tasks may not be found. In that case, we can
construct cases where the agent fails to achieve some tasks.
An interesting extension to our ideas is to discover such
task dependencies, through the influence of actions on state
variables, and force all related tasks to appear in the same
sub-model. This, however, may cause the sub-models to grow
to an unsolvable size, making our approach useless. A more
interesting method for handling these cases is in changing the
initial states and terminal states of some sub-models, to reflect
the solution of previous tasks, and the desirable conclusion of
the considered tasks. We leave investigation of these ideas to
future research.

In contrast to the independence assumption, in many cases
tasks are dependent, that is, the completion of task 77 requires
the completion of another task 75 earlier on. In such cases
our algorithm would identify two different tasks where the
restricted model for 77 subsumes the restricted model for
T5. In that case, we would compute one redundant policy
(for T5), and we would have a larger restricted model. In
the limit, where all tasks are dependent, the last task would
be equivalent to the complete model, rendering our approach
useless. One can imagine a pre-processing phase where task
ordering is discovered and then restricted models that rely
on task completion are constructed without containing the
relevant variables for the previous tasks, but we leave this
for future research.

Another desirable extension to our method would be to
apply some reuse of already computed sub-tasks. For example,
in relational MDPs [5] allow us to model exchangeable items
efficiently. For example, the goal may be to get a red package
to the destination city, as opposed to package number 5.
It may be possible to use ideas from relational MDPs in
order to extend our approach to “translate” policies that were
learned for one subset of tasks to another subset of tasks.
For example, if we learned a policy for one package whose
destination is city 2, we can apply the same policy to all other
packages whose destination is city 2, reducing the number of
restricted POMDPs that we solve. Such extensions require us
to discover some symmetry in the task definition and leverage



SMC-B

this symmetry. In relational models, this symmetry is a part
of the model definition, but in general POMDPs, discovering
such properties may be difficult. In some cases a reward can be
repeatedly achieved, even though the model could be factored
into sub-models. For example, in the network administration
domain [14], [15] an administrator must keep a network of
computers running, by restarting malfunctioning machines.
In this example, the administrator gets a higher reward for
maintaining one machine (a server) than maintaining the other
machines. In such a case, although the model can be factored
by our algorithm into separate tasks, a task never ends. Thus,
in the resulting combined policy the policy designed to keep
the server running is always dominant, and all other computers
are ignored, leading to very bad performance.

Our approach currently handles a factored state space with
non-factored (flat) observations. In many cases a factored
observation model is also useful (e.g. [23]). Imagine, for
example, in the RockSample domain, a single sensing action
that returns a k bit observation vector, where &k is the number
of rocks, and when the 7th bit is on, then the sensors senses
the mineral in rock 7. In that case, we can find out that the
observation over rock % is influenced only by variable R;
(denoting the rock state), and restrict the model to contain only
that observation variable. Although this seems like a natural
extension of our algorithm, we leave its actual implementation
to future work.

V. RELATED WORK

The decomposition of models for planning under uncer-
tainty has been discussed in the past. Perhaps the most studied
approach to decomposition is to identify regions — clusters
of states — compute a policy within a region and compute a
meta-policy for moving between regions (see, e.g. [3], [12]).

Another approach to decomposition is by adding activities
— actions that accomplish a task, and learning how to execute
each activity independently. Then, we can learn a high-level
policy that switches between activities [11]. Such approaches
accomplish one task at a time.

An alternative to learning value functions represented
through a-vectors is to learn so called Finite State Controllers
[8]. In this context, several researchers suggested to learn
hierarchies of controllers [7], [22]. These hierarchies can
capture structure in a natural way.

All the above methods do not share the restrictions of
our approach. As we have explained, we are interested in
domains where there is no required order by which tasks must
be executed, as no task provides a required precondition for
another task. The above methods are all designed to handle
the more difficult case, where tasks are dependent, and yet
a decomposition is required in order to tackle large models.
Therefore, most of the methods above require significant effort
for the decomposition phase. We are unaware of any POMDP
decomposition method that has shown the ability to scale up
to the model sizes we experimented with.

A different method for scaling up POMDPs is by com-
pression. [14] have suggested a value directed compression
that creates a smaller, solvable, model, showing an impressive

ability to scale up to huge models. The compression techniques
they use, however, eliminates the factored representation —
that is, the compressed model is no longer a factored POMDP.
This property may induce a difficulty when trying to scale up
even more. Our approach keeps the restricted models factored.

[20] has also suggested a compression technique for fac-
tored POMDPs. Like us, they are also interested in a subclass
of POMDPs. Specifically, they are interested in domains where
variables are important only during a limited part of the
policy execution. The result of their compression is, again, non
factored. This line of research demonstrates that for subclasses
of POMDPs, we can exploit the properties of the domain to
achieve a significant improvement.

The idea of masked a-vectors [19] also bears some resem-
blance to our approach. Masked a-vectors obtain a non-zero
value only in a subset of states. Our approach is more generic,
however, because while we limit the values only to a subset of
variables, the absence of a variable does not result in a value
of zero.

Another approach to solving POMDPs also shares interest-
ing relationships with our method. [6] suggest to solve large
domains by limiting the value function to be a composition of
basis functions. Our approach also creates value functions of
limited structure because our a-vectors are limited to subsets
of variables. However, we do not impose further restrictions on
the structure of the a-vectors and we do not need to discover
good basis functions.

VI. CONCLUSION AND FUTURE WORK

This paper suggests a novel method for the decomposition
of factored POMDPs, focusing on domains where the agent
needs to complete multiple independent tasks. Our method
creates restricted models over subsets of state variables. We
explain how to identify state variables that must be grouped
together, and how to create models that capture some of the
task dependencies. Our methods can be used in an anytime
setting, where a policy refinement is constantly computed, and
in a distributed setting, where each restricted model is solved
on a different machine without synchronization.

We experimented with two domain benchmarks, showing
that our methods produce policies with reasonable quality
within seconds for mid-size domains. We also showed results
on computing policies for large scale models with 2154 =
2.2 x 10*0 states in about 16 minutes. Still, our methods can
scale up to much larger domains.

In the future, we intend to explore informed methods for
combining tasks together. Currently, we sample subsets of
tasks uniformly. However, it is likely that a smart selection
of subsets of tasks will create better policies. Also, we
intend to continue experimenting with larger domains and with
distributed architectures. Another problem that we currently
face is the large number of vectors that we compute. In the
future, we plan to reduce this overhead by combining vectors
that suggest the same action or by pruning unneeded vectors.

REFERENCES

[1]1 R. I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, and
A. Pardo. Algebraic Decision Diagrams and Their Applications. In
International Conference on CAD, pages 188-191, 1993.



SMC-B

[2]

[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]
[12]

[13]

[14]
[15]
[16]

[17]

(18]
[19]

[20]

[21]
[22]

(23]

B. Bonet and H. Geffner. Solving POMDPs: RTDP-Bel vs. Point-based
algorithms. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1641-1646, 2009.

C. Boutilier and D. Poole. Computing optimal policies for partially
observable decision processes using compact representations. In AAAI-
96, pages 1168-1175, 1996.

Craig Boutilier and Richard Dearden. Using abstractions for decision-
theoretic planning with time constraints. In In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 1016-1022, 1994.
C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans
to new environments in relational MDPs. In IJCAI-03, 2003.

C. Guestrin, D. Koller, and R. Parr. Solving factored POMDPs
with linear value functions. In IJCAI workshop on Planning under
Uncertainty and Incomplete Information, 2001.

E. Hansen and R. Zhou. Synthesis of hierarchical finite-state controllers
for POMDPs. In ICAPS-03, 2003.

E. A. Hansen. Solving POMDPs by searching in policy space. In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 211-219, 1998.

E. A. Hansen and Z. Feng. Dynamic programming for POMDPs using a
factored state representation. In Artificial Intelligence Planning Systems,
pages 130-139, 2000.

J. Hoey, A. von Bertoldi, P. Poupart, and A. Mihailidis. Assisting persons
with dementia during handwashing using a partially observable Markov
decision process. In International Conference on Vision Systems (ICVS),
2007.

A. Jonsson and A. Barto. Causal graph based decomposition of factored
MDPs. Journal of Machine Learning Research, 7:2259-2301, 2006.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in
reinforcement learning via clustering. In ICML-04, 2004.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 1025 — 1032, August 2003.

P. Poupart.  Exploiting Structure to Efficiently Solve Large Scale
POMDPs. PhD thesis, University of Toronto, 2005.

G. Shani, R. Brafman, P. Poupart, and S. Shimony. Efficient ADD
operations for point-based algorithms. In ICAPS-08, 2008.

G. Shani, R. Brafman, and S. Shimony. Forward search value iteration
for POMDPs. In IJCAI-07, 2007.

H. S. Sim, K. Kim, J. H. Kim, D. Chang, and M. Koo. Symbolic heuristic
search value iteration for factored POMDPs. In AAAI-08, pages 1088—
1093, 2008.

R. Smallwood and E. Sondik. The optimal control of partially observable
processes over a finite horizon. OR, 21:1071-1088, 1973.

T. Smith and R. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. In UAI 2005, 2005.

T. Smith, D. R. Thompson, and D. Wettergreen. Generating exponen-
tially smaller POMDP models using conditionally irrelevant variable
abstraction. In ICAPS-07, 2007.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value
iteration for POMDPs. JAIR, 24:195-220, 2005.

M. Toussaint, L. Charlin, and P. Poupart. Hierarchical POMDP controller
optimization by likelihood maximization. In UAI-08, 2008.

Z. Zamani, S. Sanner, P. Poupart, , and K. Kersting. Symbolic dynamic
programming for continuous state and observation POMDPs. In 26th
Annual Conference on Advances in Neural Information Processing
Systems (NIPS-12), 2012.



