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Abstract

Investors want the ability to evaluate the true and complete risk of the financial assets
held in a portfolio. Yet, the current analytic methods provide only partial risk measures.
I suggest that, by viewing a portfolio of securities as a cooperative game played by
the assets that minimize portfolio risk, investors can calculate the exact value, each
security contributes to the common payoff of the game, which is known as the Shapley
value. It is determined by computing the contribution of each asset to the portfolio risk
by looking at all the possible coalitions in which the asset would participate. I develop
this concept in order to decompose the risk of mean-variance and mean-Gini efficient
portfolios. This decomposition gives us a better rank of assets by their comprehensive
contribution to the risk of optimal portfolios. Such a procedure allows investors to
make unbiased decisions when they analyze the inherent risk of their holdings. The
Shapley value is calculated for index classes and the empirical results based on asset
allocation data are contrary to some of the findings of conventional wisdom and beta
analysis.

Keywords Mean-variance portfolios - Mean-Gini portfolios - Efficient frontier -
Systematic risk - Asset allocation

JEL Classification G11

1 Introduction

Itis well known that investment managers are concerned with the risk impact of adding
securities to portfolios. Since the inception of modern portfolio theory, investors have
measured how securities affect each other. The simplest risk as expressed by asset vari-
ance is not sufficient to establish sound investment decisions. For this reason, financial
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theoreticians and practitioners now also take into account correlations, covariances,
and betas to establish the cross-effects among investments.

My claim is that these risk measures although sufficient to build efficient portfolios
are prone to error when measuring the true impact of a risky asset upon an optimal
portfolio. Hence, when presumably rational and efficient efforts misjudge the true risk
of assets in optimal portfolios, a totally new approach is required.

To address this deficiency, I suggest applying the concept of Shapley value (Shapley
1953) to financial management theory and practice. Shapley value theory emerged
from cooperative game theory so as to measure the exact contribution of agents playing
the game. In a cooperative game, players interact in order to optimize a common
objective whose utility is transferable. The Shapley value concept has been applied
successfully in economic theory, politics, sports, and income inequality as evidenced
by a new handbook edited by Algaba et al. (2019). In finance, Shapley value has been
shown for allocating costs of insurance companies (Lemaire 1984), valuing corporate
voting rights (Zingales 1995; Nenova 2003), and measuring the attribution of risk
in banking systems (Tarashev et al. 2015). However, applying the Shapley value in
investments and portfolio theory has been quite limited. Only recently, Ortmann (2016)
and Colini-Baleschi et al. (2018) used the Shapley theory to price the market risk of
individual assets while the present article was composed.

The idea behind the Shapley value is to look at all the possible coalitions of players
in a cooperative game, and calculate the benefits each player contributes to the various
coalitions. As each contribution depends upon the order in which players join the
coalition, the Shapley value is calculated by averaging the marginal contributions
from the arrival of the various players to the specific coalitions.

In a sense, a portfolio of risky assets is a cooperative game played in order to max-
imize expected return or minimize risk. This is a natural way to look at portfolios,
and the Shapley value is similarly a natural concept to decompose optimal portfolio
risk into its various components. The contribution of assets to the portfolio is true
since contributions are derived from all the possible optimal portfolios constructed
by the various coalitions. I apply this major insight to standard mean-variance (MV)
portfolio management and to the more recent application of mean-Gini portfolio opti-
mization. In an analytic sense, MV portfolio optimization, least-squares minimization,
and cooperative game theory share a common ground in linear algebra, and the tools
used in one field can easily be applied to the others.

The paper is laid out as follows: First, I use Roth (1988) essay to introduce the Shap-
ley value theory. The notion of applying the Shapley value to decompose some attribute
by sources of contribution was formulated by Shorrocks (2013) in an article that circu-
lated since 1999. Shorrocks presented a general framework to decompose poverty and
inequality measures by sources of income using the Shapley value. The same approach
was further elaborated by Sastre and Trannoy (2002). Applying this decomposition
theory to financial risk and portfolios follows naturally because inequality measures
and risk measures are closely related. This approach was introduced by Terraza and
Mussard (2007) and Mussard and Terraza (2008) to extract the Shapley value for given
financial portfolios. Following Shorrocks, they decompose the covariance between two
securities and use this decomposition to assess the contribution of each security to port-
folio risk. Yet, their methodology failed to consider relevant MV efficient portfolios.
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Then, I use Merton (1972) derivation of the mean-variance efficient frontier to
calculate the contribution of each security to the various portfolio coalitions and to
formulate the Shapley value in optimal portfolios. The theory is applied asset alloca-
tion. Finally, I calculate Shapley values for mean-Gini (MG) portfolios by applying
Shalit and Yitzhaki (2005) analytic derivation of the MG efficient frontier and obtain
Shapley values for stochastic dominant optimal portfolios.

2 On the Shapley value

First, I begin by describing the concept of Shapley value decomposition in the mean-
variance portfolio and the mean-Gini portfolio. This section draws considerably from
Shorrocks (2013) who developed a unified framework to decompose an attribute by
its factors. In the standard investment model, I present the portfolio of assets as an
n-person cooperative game with transferable utility where the financial assets are
players in the game. The aim is to measure the exact contribution of each player to
the general outcome. For a portfolio of securities, the optimization outcome is the risk
inherent in the portfolio. Hence, the Shapley value allows us to extract the true and
exact contribution of each stock to the portfolio’s total risk.

Harsanyi (1977) has enunciated the postulates that lead to the Shapley value theorem
as the solution to a cooperative game, where a joint payoff is the specific characteristic
function. Here, the joint payoff function is the risk borne by the players (i.e., the assets)
in the game. Shapley value theory ensures that the risk decomposition attributed to
the various shares in the portfolio is anonymous (or symmetric), so that the marginal
contributions are independent of the order in which the shares are added to the portfolio
and exact in the sense that all the securities bear the entire portfolio risk.

Consider a portfolio of securities that play a cooperative game whose purpose is to
minimize the risk therein. For a set N of n securities, the Shapley value calculates the
contribution of each and every security in the portfolio. To capture the symmetric and
exact way each security contributes to the portfolio, we compute the risk v for each
and every subset S C N , and arrive at 2" coalitions including the empty set.

Computations proceed by looking at the marginal contribution of each security to
the risk of a portfolio it is a member of. For a given coalition (portfolio), a security k
in S contributes marginally to the portfolio by v(S) — v(S\ {k}) , where v(S) is the
risk of portfolio S, and v(S\{k}) is the risk of the portfolio composed of S minus
the security k. Portfolios are arranged in some given order, and all the orderings are
equally probable. Hence, S\{k} is the portfolio of securities that precedes k, and its
contribution to coalition S is computed when all the orderings of S are accounted
for. Thus, given all the equally probable orderings, one can calculate their expected
marginal contribution.

For that purpose, one needs the probability that, for a given ordering, the portfolio
S C N, k € Sis seen as the union of security k and the securities that precede it. Two
probabilities are used here: First, the probability that & is in s (s being the number of
assets in S) which equals 1/n, and second, that S\ {k} arises when s — 1 securities are
randomly chosen from N\ {k}; thatis (n — s)!(s — )!/(n — 1)!.
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The Shapley value for security k is obtained by averaging the marginal contributions
to the risk of all portfolios for a set of N securities and the risk function v, which in
mathematical terms is written:

Shi(N,v) = Y W[vw) —v(S\{kD)] VkeN (1

SCN
or
slln—s —1)!
Shr(N,v) = Z T[v(S Uk) —v(S)])) VkeN. 2)
SCN ’

Naturally, the sum of all the Shapley values of the assets equals the total risk of the
portfolio that comes from all the securities as follows:

v(N) = Z Shi(N, v) . (3)

k=0

These equations are the basic formulas for the Shapley value computation. In what
follows, I show how to to define a cooperative game in portfolio optimization as well as
how to set up the common payoff of that game whenever it is played in mean-variance
or mean-Gini analysis.

3 Therisk decomposition of optimal mean-variance portfolios

In the next stage, I develop the Shapley value for the assets that constitute an optimal
mean-variance portfolio. Given that Shapley value theory considers a single attribute
to be allocated among all game participants, I use the Markowitz (1952) MV model by
looking at optimal portfolios. Hence, by minimizing the variance of efficient portfolios,
one ensures that expected returns are always at their best. Furthermore, Shapley value
theory developed to allocate benefits is used here to distribute risk among the players

To proceed, I begin by calculating the Shapley value of securities that constitute
the global minimum-variance portfolio (MVP). This is a relatively easier task as it
requires only minimizing portfolio risk regardless of the required expected return.
Thereafter, I address the entire set of frontier portfolios delineated in the MV space.
Frontier portfolios are generated by minimizing the portfolio variance for a given
expected return. MVP is the frontier portfolio that has the least variance. Once the
optimal portfolios are calculated, Shapley values are produced for all the assets along
the efficient frontier.

To construct a portfolio frontier in the MV space, I consider N risky assets with
returns r that are assumed to be linearly independent. This ensures that the variance-
covariance matrix of asset returns X' is non-singular. We also assume that at least two
risky assets have different expected returns. We denote by u the vector of the asset’s
expected returns, and by w the vector of portfolio weights, such that ZlN: qw; =L
We assume w § 0 hereby allowing for short sales. A frontier portfolio is obtained
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by minimizing the variance portfolio 05 subject to a required mean . We minimize

%w/ X'w subject to 11, = W'p and the portfolio constraint 1 = w’l, where 1 is an N-
vector of ones. As Huang and Litzenberger (1988) show, the solution is obtained by
minimizing the Lagrangian that includes the two constraints and deriving the first-order
conditions (FOC) for a minimum, with the second-order conditions being satisfied by
the non-singularity of X'

For the sake of presentation, let us define the quadratic forms: A = 'YX~ 'p,
B=w'X 'u,C =VX""1,and D = BC — A?. The scalars B ,C, and D are positive
since matrix X is positive-definite. From the FOC for a minimum variance, the optimal
portfolio weights for a given mean 11, are derived as:

1 _ _ 1 _ _
w;=5[3-211—A-21u]+5[c.21u—A.2ll]up. )

The frontier portfolios delineate a hyperbola in the standard deviation-mean space.
Thus, the frontier portfolio variance for a given ), is formulated by:

c AN? 1
oy =W,Iw, = > <u,, — E) +5 5)

Equation (5) is the basic formula for representing the frontier of optimal MV port-
folios used to calculate the Shapley value of the assets. I examine two specific cases:
(1) the MVP, and (2) the portfolios for a given mean. The reason for this distinction
is that for MVP, the expected value equals A/C, and therefore the variance of MVP
equals 1/C. This simplifies the computation of the Shapley value for the securities in
the MVP as outlined below:

1. Establish all the 2V subsets of the securities in set N.

2. Compute the variance-covariance matrix X'g and Cg = l/SE sls for all the subsets
Sinset N.

The variance of the MVP for each subset S is computed as Gz%/lv pes) = 1/Cs.

4. Following Eq.(2), the Shapley value for each stock i in MVP is obtained as:

W

N-—1
Shigyp) =Y. 3. (”_Sn!_ l)m( ! —i> VieN (6)

s=1 SCN\i Csui Cs

5. Thus, the sum of the Shapley values for all the assets in the MVP is:
N
2 1
> Shi(oyyp) = . (7
: Cy
i=1
Although this formulation seems simple enough when applied to the MVP, it is algo-

rithmically demanding as the number of subsets increases exponentially with the
number of financial assets. Because we are using portfolios that fulfill the optimality
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conditions, Shapley values will measure the exact contributions of the assets to the
risk inherent in the MVP.

Now, we can develop the Shapley value for the assets of all optimal portfolios on
the frontier. Since the MV efficient frontier is a function of the required mean return
W p the variance of a frontier portfolio is provided by Eq.(5), which can be written
equivalently as:

1
ol = B(cuf, —2Ap, + B). (8)

The Shapley value is now computed as follows:

1. Establish all the 2V subsets of the securities in set N.

2. Compute the variance-covariance matrix X'g, Ag = l’SE El Ig, Bs = ;L’SE El g,
Cg = 1/Sz§115, and Dg = BgCyg — A% for all the subsets S C N.

3. Establish an arbitrary set of required mean returns (., > Ay/Cy where Ay and
Cy are the quadratic forms for the entire set N. Compute the frontier portfolio
variance for each subset S Ui C N and for all mean returns i, using Eq. (8).

4. Following Eq. (2) the Shapley value for each stock i in an optimal frontier portfolio
subject to a given (1, is obtained as:

N—1
(n—s—1)ls! . .
Shi(opswp)=) Y —————loy(p, SUi) =07 (up, $)] Vi € N.
s=1 SCN\i

©))

5. For a given expected return i ,, the sum of the Shapley values adds the following
to the optimal portfolio variance at i p:

N
Y Shi(oy: ip) = 0 (1p) - (10)

i=1

Let me elaborate on the Shapley value as expressed by Eq. (9) for a stock in a optimal
portfolio. Given that efficient portfolios possess the lowest variance for a given 1), the
incremental risks 0[% (p, SUID) — 0’[% (i p, S) are non-positive for any asset i and any
set S that does not contain i as explained by Samuelson (1967). However, Shapley
value also includes the incremental risk of a portfolio of only one asset i from an
empty portfolio; that increment being the positive variance. Hence, as it is shown in
the empirical analysis, Shapley values of assets in optimal portfolios can be either
positive or negative.

To validate the Shapley value decomposition of efficient portfolios variance, I com-
pare it to the conventional methods used today, namely “natural” decomposition of
portfolio variance by its securities. This “natural” decomposition would seem to be
tautological unless we address the basic notion of risk in combining securities and the
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need to build portfolios in order to reduce that risk.! The fundamental idea behind
portfolio analysis according to Samuelson (1967) is that diversification pays as it
reduces risk. I use the standard analysis to decompose o> of Eq. (5) into components

p
that attribute the variation to the assets in the portfolio as follows:

N N

N
0§=Z5i=ZZwichov(r,-,rj), (1)
i=i

i=1 j=1

where r;, r; are the returns on assets i and j respectively. Hence, the variation attributed
to asset i is:

N

81’ = wW; Z ijOV(r,', }’j) = wicov(ri, rp) . (12)
j=1

The share of the variance attributed to asset i becomes:

cov(ri, rp)

5.
gi=—5 =w = wif; (13)
9p

%
which sums to unity. This variance decomposition is a function of the stock weights
in the portfolio and their betas and is the basic result when decomposing the risk of
optimal portfolios. If, on the other hand, Eq. (13) were concerned with the variance of
the MVP, then ¢; = w; since cov(r;, rp) = aﬁ for any portfolio or asset. This is valid
only as a special case for the MVP.

Applying the Shapley value to asset allocation

To demonstrate the advantages of the Shapley value in portfolio analysis, I construct
the efficient frontier for six classes of US assets using Ibbotson SBBI’s aggregate data
on stocks, bonds, and bills. The data, which is a standard set used for asset allocation,
consist of 1124 monthly nominal returns from January 1926 through August 2019 for
six indices of US assets: large-company stocks (LCS), small-company stocks (SCS),
long-term corporate bonds (LCB), long-term government bonds (LGB), intermediate-
term government bonds (IGB), and U.S. Treasury bills (TB). The summary statistics
are presented in Table 1, together with two normality tests, the standard Jarque—Bera
statistic and the newer Kolmogorov—Smirnov statistic for the ordinary least-squares
(OLYS) test of Shalit (2012). The two tests strongly reject normality.

The means and the variance-covariance matrix are computed using these data,
and the MV efficient frontier is calculated from Eq.(5) as depicted in Fig. 1. The
minimum variance portfolio (MVP) allocation weights are provided in Table 2 for
umvp = 0.276% and opy p = 0.2505%. For that allocation, most of the weights go
to T-bills, with only a very small part of the portfolio going to other bonds.

1 Shorrocks (1982) coined the “natural decomposition” terminology when he developed the decomposition
of income inequality by its factors.
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Table 1 Ibbotson’s monthly returns 1926-2019

Statistic LCS SCS LCB LGB IGB TB
Mean 0.95% 1.25% 0.49% 0.48% 0.43% 0.27%
SD 5.37% 8.13% 2.17% 2.44% 1.25% 0.25%
Gini (GMD) 2.73% 4.00% 1.09% 1.27% 0.64% 0.14%
JB-stat 4402.4 8046.2 2083.5 1005.6 3878.3 315.8
KS-OLS 0.127 0.810 0.545 0.197 0.301 0.091
#
g , j,’é-t'
2 45 i
V] 7+
g e
S 43
o
#2
/ MVP
: 4
‘\\

Standard Deviation

Fig. 1 Mean-variance efficient frontier for asset classes

The Shapley values for the MVP assets are computed using Eq. (6). These values
are reported in terms of standard deviations in Table 2 together with the share of the
Shapley value of each class toward the total standard deviation of the MVP. Large
stocks have a Shapley value of 0.78% and contribute 313% of the MVP risk; small
stocks have a Shapley value of 1.37% and contribute 536% to the MVP risk. T-bills have
a negative Shapley value of 1.40%, meaning that they reduce the total risk exposure
by 560% in terms of standard deviation.

These staggering results could not be predicted by looking only at the assets’ stan-
dard deviation and their composition in the MVP. As Eq.(13) shows, the share of
variance attributed to assets in the MVP is given by their holdings there. This is exhib-
ited in the last two rows of Table 2. T-bills, being the main MVP component, also bear
100% of the risk, which provides a completely different picture when considering the
results for the Shapley value in the MVP.

We next explore the Shapley values of portfolio assets on the efficient frontier. For
five arbitrary given means, I minimize the portfolio variance and compute the assets’
optimal weights as reported in Table 3. As the required mean return increases, the
results show a short position in government bonds and in T-bills and an increasing
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position in large stocks, small stocks, and corporate bonds. It appears that the main
positive weight is allocated to corporate bonds.

The Shapley values for the assets on the optimal frontier are computed according
to Eq.(9) and are reported in Table 4, together with their shares from total risk as
shown in Table 5. In terms of standard deviation, the Shapley values of large and small
stocks unexpectedly decline as one moves along the efficient frontier from lower risk
to higher risk portfolios.

This unexpected result is also reflected in the shares of Shapley values shown in
Table 5. In general, bonds, whether corporate, government, or T-bills, become more
dominant with higher-variance portfolios.> These portfolios being on the efficient
frontier also yield higher expected return. As we observe in Table 4, the Shapley
value, which expressed in terms of standard deviation, can be positive or negative
even for assets of portfolios on the efficient frontier. As we recall, the Shapley value
is the weighted sum of incremental risks of assets added to the portfolio. For opti-
mal portfolios, the assets increments are non-positive but not for the increment from
the empty portfolio to the single asset. Negative Shapley values imply an important
contribution to risk reduction, whereas positive Shapley values reflect increasing risk
with increasing mean return.

When we compare these results with the “natural” decomposition of risk as seen on
Tables 6 and 7, we get an entirely opposite picture. The standard deviation attributed
to stocks and corporate bonds increases along the frontier although their shares stay
the same possibly due to the way the betas in Equation (13) are computed for each
portfolio.

It would be difficult to assert that the natural decomposition measures the true
contribution of each asset to portfolio risk since it ignores the basic fact that individual
assets can alter risk in a series of alternative portfolios. Shapley values reflect the
true contribution of assets to the risk of the portfolio because all these alternatives are
considered. The comparison of Tables 5 and 7 clearly shows the superior advantage
of Shapley values in evaluating risky assets and pricing them accordingly.

Thus, if one believes that asset classes will continue to behave as in the past 90 years,
it is my contention that the most valuable assets in building optimal portfolios are the
classes of government and corporate bonds and not as one would expect the large- and
small-stock classes. This differs radically from United States professional sports where
the Most Valuable Player is determined not by voting but by an actual true contribution
to the portfolio game. Because optimal portfolio composition depends on the asset
required mean return, Shapley valuation of financial assets changes accordingly. For
lower portfolio mean returns and therefore lower-variance portfolios, it is the class of
small stocks that is the most valuable. For the higher-mean returns and higher-variance
portfolios, it is the class of government bonds.

Why should we care about this valuation? Because as we compute the benefits
of a specific asset to the optimal portfolio, we evaluate its true theoretical price and

2 For conservative portfolios, popular advice recommends to allocate more wealth to bonds and cash, and
less to stocks. For aggressive portfolios popular advice recommends more stocks and less bonds and cash.
Using Ibbotson SBBI’s data for an earlier period, these recommendations were found to be not inefficient
by Shalit and Yitzhaki (2003).
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compare it to the market price, revealing some possible arbitrage opportunities. The
true risk valuation ranking of financial assets would follow accordingly.

It has been well-established in the financial economics literature that to be valid with
expected utility the MV model is limited to assets that follow a normal or elliptical
probability distribution. As we see in Table 1, none of the Ibbotson’s asset classes
behave like this. Indeed, the Jarque—Bera test and the OLS-Shalit test both reject
normality at the highest significance level available. The alternative is to use a two-
parameter investment model that follows stochastic dominance such as the mean-Gini.

4 Risk decomposition of optimal mean-Gini portfolios

As alast step, I develop the Shapley value for assets that make up an optimal mean-Gini
(MG) portfolio. In constructing MG portfolios, investors use Gini’s mean difference
(GMD) as a measure of risk. GMD is defined as half the expected absolute difference
between the returns of two randomly drawn amounts invested in the portfolio. How-
ever, the Gini used in risk analysis may be more conveniently defined as the covariance
between returns and cumulative probability distribution function (CDF)?:

I =2cov[r, F,.(r)], (14)

where I" is the Gini, F;.(r) is the CDF, and r the returns. In practice to estimate Eq. (14),
we rank the returns in ascending order and calculate the sample covariance between
the returns and their relative position. The use of the Gini in financial economics is
rooted in its advantage over the variance as a measure of risk. With the mean, the Gini
provides necessary and sufficient conditions for second-degree stochastic dominance
(SSD) as proved by Yitzhaki (1982). Indeed, for two portfolios with means @y, us
and Ginis I'], I, 01 = po and ) — I'1 2 up — I are necessary conditions for SSD.
For portfolios whose CDF intersect at most once, these conditions are also sufficient.
MG theory in finance was established by Shalit and Yitzhaki (1984), and the MG
efficient frontier was delineated by Shalit and Yitzhaki (2005) and further illustrated
by Cheung et al. (2007).

The MG portfolio frontier is obtained by minimizing the Gini of the portfolio I,

subject to a required portfolio mean return and a portfolio constraint. Let r,be the
N

portfolio return defined as r, = > wir; = w'r, where r; are asset returns. The
i=1

portfolio Gini:

N

I, =2covlr,, F.(rp)] = 22 wicov[ri, Fp(rp)] (15)
i=1

is minimized subject to p, = w'p, 1 = w'l, and w § 0. The solution to this problem
becomes more complex than the MV optimization outlined in Sect. 3 because the

3 For more Gini definitions see Yitzhaki (1998).
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covariance between each asset’s return and the portfolio CDF needs to be calculated,
which is not a trivial task. Furthermore, contrary to the variance of a sum of two
variables that produces one covariance and one Pearson coefficient of correlation,
the Gini of two variates generates two coefficients of correlation, namely, the Gini
correlations:

o COV[V,', Fj(l’j)]

PU= covlr, Fir]
(16)

- covlrj, Fi(r)]

Pii = COV[rj, Fj(rj)]

Shechtman and Yitzhaki (1999) studied of the properties of Gini correlations and
determined that if the variates are exchangeable up to a linear transformation, the Gini
correlations are equal to each other. This simplifies the portfolio optimization problem
as the MG optimal frontier can be derived analytically as in Shalit and Yitzhaki (2005).
Under exchangeability, we define the Gini squared of the portfolio as:

N N
=32 wiwipiliT}, (17)
i=1 j=1
where p;; = 1. Denote as R the matrix of Gini correlations, as I" the diagonal matrix

of asset Ginis, and as V the matrix V = I' RI". Then, the Gini-squared of the portfolio
in Eq.(17) can be written as Flf = w'Vw. The optimization problem becomes:

Min wW'Vw
sty =wp
1=wl (18)

The first-order conditions for a minimum Gini portfolio are similar to those pre-
sented in Sect. 3 for the MV optimization model. Hence, an analytical solution
to problem (18) can be produced if one uses the quadratic forms A = 'V ™'y,
B =pV'u, C =YV, and D = BC — A2. All these scalars are positive
because matrix V is positive-definite. From the FOC for a minimum portfolio Gini
square, the optimal weights for a given (), are obtained as:

Wi =X+ 1,y (19)

wherex = [B(V™ ) —A(V~'p)]/Dandy = [C(V ') — A(V~1)]/D.Eq.(19) is
used to generate the MG portfolio frontier delineated as a hyperbola in the mean-Gini
squared space:

4 A set of random variables is said to be exchangeable if, for every permutation of the variates, the joint
distributions are identical.
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1
ry=w,vw,= B(Cui — 2Apu, + B) (20)

The Gini-square Eq.(20) helps us to determine the Shapley value of assets on
the optimal MG frontier. Assuming exchangeability simplifies the procedure and an
analytical solution is provided as follows:

1. Establish all the 2V subsets of the securities in set N.

2. For all these subsets S € N, compute the matrix Rg of Gini correlations, the
diagonal matrix of asset Ginis I's, and the matrix Vg = I'sRgI's. Calculate the
appropriate quadratic forms Ag = I Vs g, Bs = I8 Vs g, Cs = I Vs ls,
and Dg = BsCs — A%.

3. For an arbitrary set of required mean returns ,, compute the frontier portfolio
Gini-squared for each subset S € N and for all mean returns (1), using Fg =
5(Cus —2Au, + B).

4. Following Eq. (2) the Shapley value for each stock i in an optimal frontier portfolio,
given (i, , is obtained as:

—1
i yMp) = .y

s=1 SCN\i
[5G, SUD) = I (up, )] VieN e2))
5. For a given return (., the sum of Shapley values adds to the optimal portfolio

Gini-squared at 1 p:

N
D Shi(I}: pp) = Tp(up) - (22)
i=1

To validate the importance of Shapley values in MG optimal portfolios I compare
them to the current Gini decomposition known as the “natural decomposition” from
Shorrocks (1982). For MG portfolios, this decomposition was established by Shalit
and Yitzhaki (1984) [see Eq.(15) above]. This decomposition implies that the risk
attributed to asset i is:

5Z.F = 2w; cov[ri, Fp(rp)] (23)

and the relative risk attributed to asset i is:

2w; covlri, Fp(ry)]
o = =wif, (24)
p

where ,Bl.r is the MG beta of asset i with respect to portfolio p. Hence, the “MG natural
decomposition of risk” is basically identical to what was seen with MV portfolios but
now include MG betas.
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Computing the Shapley value for MG portfolios

We again use Ibbotson’s data on six US asset classes as presented in Table 1 to
construct mean-Gini efficient portfolios under the assumption of exchangeability. This
postulation simplifies the procedure, as an analytic solution can be provided, and the
optimization results facilitate calculation of the Shapley values. The Ginis of each
asset are exhibited in Table 1.°

The weights expressed in Eq. (19) delineate the MG efficient frontier in the space
mean-Gini square. The first step is to compute the Shapley values of the global min-
imum Gini portfolio (MGP). The MGP allocation weights are obtained for the mean
upcp = 0.2768% and the Gini I'yygp = 0.136% shown in Table 8.

As in the case of the MVP most of the weight goes to the T-bills, and only a very
small part of the portfolio goes to other bonds and stocks. The Shapley values for
the assets at MGP are computed using Eq.(21) and are reported with the shares of
the Shapley values from the Gini at MGP. Hence, large stocks contribute 300% of
the portfolio Gini at MGP, small stocks 491% of the risk, and T-bills reduce the total
risk exposure by 515%. These results are similar to the ones obtained for the MVP,
therefore supporting the superiority of the Shapley value decomposition of risk over
the use of the “natural” decomposition of optimal portfolio variance.

The weights of the optimal MG portfolios are reported in Table 9. The positions and
behavior of asset classes along the MG efficient frontier are similar to the positions
recorded for the MV optimal frontier in Table 3. As the required expected return rises,
the portfolio Gini is increased and the optimal shares of large stocks, small stocks,
corporate bonds, and intermediate-term bonds increase. The government bonds and
T-bills exhibit short positions that increase as one moves along the efficient frontier,
implying larger shares in the riskier securities.

The Shapley values of assets on the MG efficient frontier are computed according
to Eq.(21) and are reported in Table 10. Their shares of total GMD are reported in
Table 11. The results show a similar picture to that of the MV Shapley values, as stocks
become less valuable as the portfolio required return rises.

As with the MV portfolios there is a need to explore the “natural” decomposition
of MG optimal portfolio in order to compare the Shapley value results with other
methods int the MG space. We reserve this for future work.

5 Concluding remarks

Theoretical methods and analytical tools have migrated from the field of income
inequality to financial economics. Among these are the Gini which improves the
optimization of financial portfolios and the generalization of the Lorenz curve to
expand the use of stochastic dominance in finance, leading eventually to conditional-
value-at-risk. These are major advances because, unfortunately, financial returns do
not follow a normal distribution.

5 If the asset returns had shown a normal distribution, their Gini values would have been near the standard
deviation divided by the square root of v, which is not the case with our data.
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Applying the Shapley value to portfolio analysis is an intricate procedure as it
requires the mental calculus to observe portfolio selection as a cooperative game
where assets act to reduce risk while increasing expected return. Once this notion
is accepted, risk decomposition follows naturally, in the sense that one can see the
contribution of each security in the portfolio in respect to the overall risk reduction.

Shapley value theory contributes even much more to optimization than the standard
beta analysis when it comes to decomposition of portfolio risk because it enables to
visualize the contribution of each asset to all the possible coalitions. Hence, when
financial analysts propose adding or eliminating specific securities from present posi-
tions the true impact is already expressed within the Shapley value. The brilliance
of Lloyd Shapley is that he looked at all available configurations and averaged their
marginal effects to obtain a multidimensional contribution that is much meaningful
than the standard beta.

The analysis and the results presented here are the offshoots of a new theory of
capital asset pricing. It is my contention that as research on the subject evolves, results
will arise to contradict common financial wisdom. For sake of simplicity, my analysis
has used the first-order conditions of optimal portfolio selection allowing for short
sales, in order to compute Shapley values without the need for specific optimization
techniques. This should lead to many avenues of future research should open to gen-
eralize mean-variance portfolio optimizations and to allow for generalized probability
distributions to find mean-Gini efficient portfolios. This means that portfolio fron-
tiers will be optimized for each and every coalition and Shapley values calculated
accordingly.

As standard Shapley values computation requires large memory allocation, there
will be a need to improve calculation in order to accommodate the risk decomposition
of large portfolios that follow market indices. The same reservation existed in the
1960s when computers could not invert large matrices to solve large MV allocations.
This is the trend of future research if Shapley values are to replace standard beta theory
and leave the flat universe of our current financial analysis behind.
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