
Review of Quantitative Finance and Accounting, 12 (1999): 135–157
© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Estimation of Systematic Risk under
Differentiated Risk Aversion: A Mean-Extended Gini
Approach

RUSSELL B. GREGORY-ALLEN
College Retirement Equities Fund (CREF), New York, NY 10017 USA

HAIM SHALIT
Department of Economics, Monaster Center for Economic Research, Ben Gurion University of the Negev,
Beer Sheva, 84105 Israel, e-mail: shalit@bgumail.bgu.ac.il

Abstract. This paper examines a mean-Gini model of systematic risk estimation that resolves some econo-
metric problems with mean-variance beta estimation and allows for heterogeneous risk aversion across investors.
Using the mean-extended Gini (MEG) model, we estimate systematic risks for different degrees of risk aversion.
MEG betas are shown to be instrumental variable estimators that provide econometric solutions to biases
generated by the estimation of mean-variance (MV) betas. When security returns are not normally distributed,
MEG betas are proved to differ from MV betas. We design an econometric test that assesses whether these
differences are significant. As an application using daily returns, we estimate MEG and MV betas for U.S.
securities.
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1. Introduction

As a measure of systematic risk, beta has dominated the world of finance since its
inception in the sixties. Typically, under mean-variance (MV), beta is estimated using
ordinary least-squares (OLS). Notwithstanding its widespread application, there are nu-
merous problems related to the use of beta in the estimation of systematic risk (its
nonstationarity over time (Kim, 1993), to name only one).

In this paper, we address and quantify two specific problems associated with mean-
variance betas. The first deals with econometric biases that may arise in estimating betas;
the second with the implications inherent in assuming normally distributed returns. Both
problems are critical in the estimation of betas because they can bias or invalidate the
evaluation of systematic risk, thereby rendering investor portfolios inoptimal.

To solve these problems, we propose the mean-extended Gini (MEG) model as an
alternative to the MV beta. We demonstrate the econometric advantages of using MEG in
beta estimation. When the market model used to estimate systematic risk is misspecified,
MV betas may be biased. MEG betas, because they are instrumental variables estimators,
provide an econometric solution to the specification bias.
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The mean-Gini (MG) approach in finance has been proven to be a practical alternative
to MV modeling. By using necessary and sufficient conditions for stochastic dominance,
Yitzhaki (1982) shows MG to be compatible with expected utility maximization. Hence,
MG analysis provides a consistent alternative to MV modeling whenever investments fail
to be normally distributed or when investor utility is not quadratic. The MG approach to
finance is used by Bey and Howe (1984) in portfolio analysis, by Okunev (1988) and Pink
(1988) to rate mutual fund performance; by Shalit and Yitzhaki (1989) to derive optimum
portfolio selection; by Cheung et al. (1990) to examine the hedging effectiveness of
options and futures; and by Carroll, Thistle, and Wei (1992) to test whether MV CAPM is
robust with respect to nonnormality.

Mean-extended Gini (MEG) modeling is an extension made by Yitzhaki (1983) to
parametrize risk. The Gini coefficient is extended into a family of dispersion measures
that differ from each other by the degree of risk aversion. Shalit and Yitzhaki (1984) show
that different CAPMs can be developed to account for risk aversion where systematic risk
varies according to investor risk preferences. This key feature is not possible in MV
modeling of financial markets.

We also present the theoretical justification for using the MEG model in systematic risk
analysis. Unless probability distributions of security returns are normal, betas obtained
under the MEG model will be different from MV betas. When returns are not normally
distributed, mean and variance are not sufficient parameters to describe the utility func-
tion, and MV betas will not be valid unless investors have quadratic utility. When investors
and mutual fund managers rank securities according to estimated systematic risk using the
available MV betas, and then follow such a classification to construct portfolios, risk
aversion is ignored, and so the choices may be biased.

Our objective is to use the MEG model to estimate systematic risks for a sample of U.S.
securities and test whether MEG betas are statistically different from MV betas for various
degrees of risk aversion. Application of a model that considers different attitudes toward
risk can produce different rankings for the same securities. For example, securities “ag-
gressive” with respect to the market portfolio according to one risk aversion specification
could be “defensive” under another. As we have no reason to think that risk aversion
characteristics are identical among all individuals, we are compelled to believe that in-
vestors using MV betas might make sub-optimal decisions as betas estimated with differ-
ent risk aversion coefficients yield different portfolio rankings. Such a problem would be
eliminated by using MEG betas.

We address the problem analytically, statistically, and empirically and show the rel-
evance of the MEG approach. Our estimation is that between 1985 and 1993, investors
using MV betas misevaluated systematic risk for 20% of U.S. traded securities, incurring
substantial costs by holding sub-efficient portfolios.

2. Estimating systematic risk

The basic market model of finance is often expressed as a linear relationship between
security returns and the market portfolio. For security i, this requirement implies the
existence of a true b that links security returns Xi with market returns M as:
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Xi 5 ai 1 bi M 1 ei, (1)

where ei is a disturbance variable. The market model has been tested extensively since its
origin in the mid-sixties. Among the most notable specification tests are those of Fama et
al. (1969) and Black et al. (1972), who then use the estimated betas to analyze, across
firms, the linear relation between average return and systematic risk.

Estimation of bis assumes that M and ei are normally distributed and statistically
independent from each other. Under these conditions, the ordinary least-squares (OLS)
estimator of b results in the mean-variance beta, also known as the MV systematic risk.
Statistically speaking, the OLS estimator is a consistent estimator of b if the conditional
expectation of ei given M is zero, and it is efficient if the disturbance variable is homosce-
dastic, i.e., Var(ei/M) 5 si

2 I. Under these conditions, OLS provides the best unbiased
estimator and the most powerful tests.

Financial data, however, present major econometric problems that might violate these
conditions as disturbances may be correlated with the market portfolio leading to biased
estimators. If disturbances are heteroscedastic, generalized least-squares (GLS) should be
used; otherwise tests based on OLS estimators may be less powerful because variance
estimates of OLS estimators are biased. Hence the second-pass regression testing the
CAPM will exhibit greater inconsistencies because of errors-in-variables problems
(Litzenberger and Ramaswamy (1979)). These concerns about bias in systematic risk are
also expressed by Brenner (1977) in an efficient market hypothesis test and Dimson
(1979) in the case of infrequent trading.

Biased OLS estimators have compelled analysts to choose other estimation methods
from a variety of econometric solutions. One preferred approach (see Rosenberg and
Marathe (1979) for an example) is the instrumental variables method, which yields con-
sistent estimators for bi.

The ideal instrumental variable (IV) is chosen to be highly correlated with M but not
with ei. A variable that would satisfy these criteria is the cumulative probability distribu-
tion for M, for by its very nature it is correlated with the variate and less dependent on the
error term. This approach was first suggested by Durbin (1954) to solve the errors-in-
variables problem. Here, as an instrumental variable, we use the computed cumulative
probability distribution for M, FM(M), defined as the rank of market returns divided by the
number of observations. The rank of market returns is a vector of integers obtained by
sorting the sample in ascending order and using the ordinal position as the rank for each
observation of M.

For a sample of n observations, the IV estimator for bi, becomes:

b̂ i
IV 5

(
t 5 1

n

[FM (mt ) 2 1
2

] [xi,t 2 x̄i ]

(
t 5 1

n

[FM (mt ) 2 1
2

] [mt 2 m̄ ]

(2)
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where FM(mt) is the rank of the market return given the observation mt, x̄i is the average
return on security i, and m̄ is the average market return. For the entire population of the
returns, this estimator becomes:

b̂ i
IV 5

cov [FM (M),Xi ]

cov [FM (M),M ]
(3)

where cov is the covariance function. Not by coincidence, this outcome for b is exactly the
mean-Gini (MG) beta derived by Shalit and Yitzhaki (1984), where the Gini is a measure
of dispersion and risk similar to the standard deviation.

In summary, when M and ei are not independent, biased MV betas will be obtained
under OLS estimation, but MG betas will be consistent estimators for b. This result is also
found by Carroll et al. (1992). Furthermore, we can extend the econometric procedure by
using as IV other increasing monotonic transformations of FM(M), obtaining alternative
consistent estimators for b that are sensitive to the choice of monotonic transformation.
For example, if we use as an IV the ranking function 2 [1 2 FM(M) ]12n, where n . 1,
the procedure yields mean-extended Gini (MEG) betas are consistent estimators for b.
These betas are dependent upon the power parameter n, which is considered a coefficient
for risk aversion.

Our result is best expressed as a question: To what extent is the MV systematic risk,
obtained through OLS, analytically or statistically different from the various instrumental
variables bs obtained via the MG and the MEG models? First we address the analytical
issue, and then proceed to the question of econometric testing.

3. The mean-extended Gini CAPM

Here we establish the conditions under which MV systematic risk differs from MEG betas
and develops the appropriate CAPMs. The extended Gini coefficient (Yitzhaki, 1983) is a
measure of dispersion that weighs the investor’s relative preference to various ranges of
the probability distribution of returns, thus serving as a measure of risk aversion. Its use
in financial theory and portfolio analysis is proposed by Shalit and Yitzhaki (1984), who
summarize the basic properties of the extended Gini coefficient and its relation to sto-
chastic dominance and systematic risk.

The simple Gini coefficient is defined as the expected absolute difference between all
possible realization pairs of a random variable.1 In finance, it is more convenient to use the
formula that expresses the Gini as twice the covariance between the returns X and their
cumulative probability distribution F(X):

Gx 5 2 cov [ X,F(X) ]. (4)

138 RUSSELL B. GREGORY-ALLEN, HAIM SHALIT

Kluwer Journal
@ats-ss2/data11/kluwer/journals/requ/v12n2art3 COMPOSED: 01/13/99 1:32 pm. PG.POS. 4 SESSION: 43



Equation (4) is easy to evaluate when the rank of the random variable is used as the
cumulative distribution estimate. After the observations are sorted in ascending order, the
covariance between the random variable and its rank is computed.

Use of the Gini has several advantages over the variance as a measure of dispersion for
risk and portfolio analysis. The first advantage is rooted in the existence of mean-Gini
necessary conditions to stochastic dominance. Second, MG sufficient conditions also exist
for all cumulative probability distributions that intersect at most once. Therefore, MG
analysis is consistent with expected utility maximization in cases where MV fails.

Third, MG analysis can be extended by expressing the Gini as a measure of dispersion
that takes into account the investor’s preference toward risk. Depending on their risk
preferences, different individuals will attach different weights to various portions of the
return probability distribution. Highly risk-averse investors will be more concerned about
lower payoff realizations than risk-neutral investors.

To characterize that aversion, the method imputes more weight to the worst outcomes
of the returns distribution. The extended Gini coefficient is defined by:

G( n ) 5 µ x 2 a 2 *
a

b

[1 2 F(x)]vdx for finite a, (5)

where n is the power coefficient expressing the relative weight given to various segments
of the probability distribution. More conveniently, the covariance formulation of the ex-
tended Gini coefficient is used:

G (n) 5 2 n cov {X, [1 2 F(X)]n21}. (6)

As an investor applies a larger n (i.e., has greater risk aversion), the lower portions of the
distribution become relatively more important. The parameter n ranges from 1 to infinity.
A n of 1 represents the coefficient for a risk-neutral investor, in which case Equation (6)
equals zero, implying that the investor is interested only in the expected value of X. A n
5 ` represents the weight for a max-min investor who wants to avoid the worst possible
outcome.

The Gini and the extended Gini coefficients can be used in portfolio analysis to select
optimal portfolios and derive Capital Asset Pricing Models for various ns. The investors’
problem, given the risk coefficient n, is to minimize the extended Gini of portfolios
subject to the budget constraint and a required expected return.

In a market with homogeneous risk-averse investors with identical n and identical
investment opportunities, a pricing equilibrium for each security is established as:

µi 5 rf 1 (µM 2 rf )bi (n) , (7)

where µi is the expected return on the security i, rf is the risk-free rate, and µM is the
expected return on the market portfolio. bi(µ) is the extended Gini beta defined as:

THE ESTIMATION OF SYSTEMATIC RISK 139

Kluwer Journal
@ats-ss2/data11/kluwer/journals/requ/v12n2art3 COMPOSED: 01/13/99 1:32 pm. PG.POS. 5 SESSION: 43



bi (n) 5
2 n cov {X,[ 1 2 FM (M)]n21}

2 n cov {M,[1 2 FM (M)]n21}
. (8)

Equation (7) is the well-known CAPM formula, adjusted for various bi(n) obtained for a
specific n. Given a value of n, the equilibrium relationship between expected returns and
systematic risk holds for the group of risk-averse investors who have that specific value of
n. The MEG model assumes that all investors have the same risk aversion expressed by n.
In principle, however, one is bound to obtain different betas for different ns. The question
is how substantially these betas differ from each other, and how these differences account
for biases that investors are prey to in computing the systematic risk of various securities.

We address the first part of the question by exploring the differences in b according to
the probability distribution and the n coefficient. As Nair (1936) shows, the simple Gini
coefficient G(2) becomes syup when the random variable is normally distributed with
mean µ and standard deviation s. Furthermore, as Schechtman and Yitzhaki (1987) have
shown, when X and M have a bivariate normal distribution, the Gini correlation coefficient
shown below becomes the standard (Pearson) coefficient of correlation between X and M:

vX,M [
cov [M,FX (X)]

cov [M,FM (M)]
5 rX, M , (9)

where vX,M is the Gini correlation and rX,M is the standard coefficient of correlation.
Therefore by Nair and Equation (9), when security returns are normally distributed, betas
obtained for n 5 2 are equivalent to mean-variance betas.

For extended Gini coefficients (i.e., n . 2), this result is shown as follows: When X and
M are normally distributed bivariates, then (e.g., see DeGroot (1989)):

E (X ? M ) 5 µX 1 r X, M (M 2 µM )
s X

s M

, (10)

Substituting Equation (10) into Equation (8) yields:

b(n) 5
cov { X, [1 2 FM (M)]n21}

cov {M, [1 2 FM (M)]n21}
5

cov {[µX 1 rX, M (M 2 µM)
sX

sM

], [1 2 FM(M)]n

cov {M, [1 2 FM (M)]n21}
(11)

Given a standard normal variable Z 5 (M 2 µM) / sM with mean 0 and variance 1,
Equation (11) becomes:
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rX, M sX cov {Z, [1 2 FZ (Z)]n21}

cov {M, [1 2 FM (M)]n21}
5

rX, M sX cov {Z, [1 2 FZ (Z)]n21}

sM cov {Z, [1 2 FZ (Z)]n21}

5
rX, M sX

sM

5 bMV

(12)

Hence, if returns are normally distributed, all betas obtained under the various n’s con-
verge to the betas derived using the MV approach.

To conclude, MEG betas are consistent measures of systematic risk since the technique
is compatible with expected utility maximization. In circumstances where MV analysis
does not fail, as with normally distributed returns, MEG betas converge to MV betas.
Hence MV systematic risk can be considered as a special case of MEG betas. Thus,
whenever feasible, the analyst should choose MEG betas over MV betas because they are
less deceptive.

4. Econometric procedures and testing

Although one expects MV betas to be identical to MEG betas when the underlying returns
are normally distributed, the converse is not necessarily true. To test whether these betas
differ, we use Hausman’s (1978) specification test for non-tested models. Designed to
examine an hypothesis in terms of model inconsistency, this test runs an efficient estima-
tor, such as OLS, against a less efficient but consistent estimator such as IV.

To implement the test, we consider two hypotheses: The null, H0, where M and ei are
independent, and the alternative, H1, where M and ei are not independent. Obtained
through OLS, bMV under H0 is a consistent and efficient estimator of b, whereas it is not
consistent under H1. On the other hand, the IV estimator, b(n), is consistent under both H0

and H1, although it is not efficient under H0. Hausman shows that testing the difference
between the betas is appropriate in testing the specification of the model. We use this
approach to examine the equivalence of the betas and to show to what extent MV betas can
lead to unbiased estimators.

The test determines the statistical significance of the difference in betas. Let q̂ 5 b(n)
2 bMV. Hausman proves that the variance of is equal to the variance of b(n) minus the
variance of bMV. With V̂(q̂) as a consistent estimator of that variance, one can establish
that the following m statistic has a x2 distribution with 1 degree of freedom:

m 5
q̂2

V̂(q̂)
, (13)

In the case of OLS vs. IV, the variance estimator V̂(q̂) is shown to be:

V̂(q̂) 5 V̂(bMV)
1 2 r2

r2
, (14)
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where r2 is the squared correlation between the market return and the instrumental
variable, which is here the appropriate rank function 2[1 2 FM(M)]n21. Using the m
statistic, we can test H0 against H1 and establish whether the difference between MV betas
and MEG betas is significant, and whether the MEG model provides superior econometric
results to MV.

Normality plays a leading role in statistical testing and finance. Assuming normality
allows application of the most powerful tests in econometrics and produces conclusions of
mean-variance efficiency in finance. Testing for normality is therefore crucial in asset
pricing, for, as Affleck-Graves and McDonald (1989) note, not all tests are robust in the
presence of non-normalities. Non-normality is also a necessary but not a sufficient con-
dition for systematic risks to differ according to various degrees of risk aversion, so we
use several procedures to test the sample.

Fama (1965) uses the Studentized Range test to show that daily security returns do not
follow a normal distribution. We use the x2 test of goodness-of-fit, the Royston (1982)
procedure to the Shapiro-Wilk (1965) test, the Kolgomorov distance test, and the
D’Agostino (1971) statistic to reach Fama’s conclusion. We present only the results ob-
tained using the D’Agostino statistic as the test compares the standard deviation of a
distribution with its Gini’s mean difference.

The D statistic is defined as:

D 5
GX

2 SX

,

where GX is the sample’s Gini and SX is the sample’s standard deviation. D’Agostino
shows that:

=n(D 2 0.282095 )
0.029986

is asymptotically distributed as a normal N(0,1) variable and can serve as an omnibus
normality test for large samples. This test is appropriate for detecting deviations from
normality resulting from skewness or kurtosis. We will also use the standard methods to
check the persistence of these moments over time to ascertain whether deviations from
normality is a continuing phenomenon.

5. Empirical evidence

5.1 The data

To validate the results, we use two sets of daily returns data. The first is for 1,590 firms
that have no missing daily returns from January 2, 1985, through December 31, 1987, in
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the Center for Research in Security Prices (CRSP) daily file. Our analysis covers three
different time periods, each with 201 observations:

Period I: January 2, 1985, through October 17, 1985;
Period II: February 5, 1986, through November 19, 1986;
Period III: March 18, 1987, through December 31, 1987.
Second, to support the results for a longer range period, we use data from 1,140 firms

with no missing daily returns from January 2, 1985 through December 31, 1993, as
provided in the CRSP daily file. This gives us nine annual periods, each with the same
number of observations as the number of trading days in the year.

For each of the three time periods and the nine annual periods, we estimate MV and
MEG betas for all the securities in the sample and perform Hausman’s specification test
and D’Agostino’s normality test. Ten values for n [1.5, 2, 2.5, 3, 4, 6, 8, 10, 15, 20] are
chosen arbitrarily to represent a large variation in risk aversion.2 For n 5 2, the results
become the standard MG beta.

5.2 The basic results

As the results are voluminous, in table 1 we present selected estimation results for a small
number of blue chip stocks for Periods I, II and III. In all cases, MEG betas are compared
to MV betas. Hausman’s m statistic (shown in parentheses below each mean-extended Gini
beta estimator) indicates whether the MEG beta is significantly different from the MV
beta.

Table 1 shows that the variability of MEG betas and their difference from MV beta
changes from firm to firm. For American Express, for example, the MEG betas in Period
I range from 1.250 for n 5 20 to 2.10 for n 5 1.5, while the MV beta is 1.885. The
Hausman test shows that for the values of n 5 2, 2.5, and 3, bMV is not significantly
different from b(n) ( m statistic less than 1.32).3 For n 5 1.5, however, the difference
between b(n 5 1.5) and bMV is statistically significant at the 1% level. For n $ 4, the
difference is significant at the 5% level.

Suppose an investor is more risk-averse than implied by the MG (n 5 2) model and has
a n $ 4. In the case of investment in American Express stock, the use of MEG betas
instead of MV beta for this investor would improve the estimation of the true systematic
risk. For this stock, more risk-averse individuals with n $ 6 would overestimate beta if
they used bMV instead of b(n). Indeed, for high risk aversion, the more appropriate beta
is 1.516, 1.422, 1.361, or 1.280, according to the corresponding n, rather than the 1.885
reached by using mean-variance.

Not all stocks in the sample have MEG betas that are significantly different from the
MV beta. Coca Cola stock is one example in Period I. For Pfizer in Period I, the differ-
ences in betas do not necessarily increase with n. On the contrary, for this firm, b(n 5 2.5)
5 1.487 exhibits the largest significant difference from bMV 5 1.677. On the other hand,
for USX stock, the difference in betas can be substantial and highly significant.

Period II was considerably less volatile. Comparison of its results with those in Period
I shows that only minor changes exist in the various betas. The first security, American
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Express, shows that nothing would have been gained by using the MEG approach because
the betas are not significantly different from MV beta. The opposite is true, however, for
J P Morgan, where using b(n 5 3), for example, provides an estimator for beta that is
statistically different from bMV and also more stable for the two periods.

Period III covers the period of October 1987 crash. Results here show the clear advan-
tage of the MEG approach in a more turbulent period. Investors with differentiated risk
aversion in this case would have been clearly mistaken about the true beta had they used
MV beta. For example, highly risk-averse investors (n . 10) investing in Coca Cola,
Eastman Kodak, Goodyear, and USX would have overestimated the aggressiveness of
their investments. On the other hand, moderately risk-averse individuals using MV beta
would have underevaluated the systematic risk of Federal National Mortgage and
Hewlett-Packard.

The case of Philip Morris stock further demonstrates the advantage of MEG beta. For
n # 10, the differences between b(n) and bMV show high statistical significance; hence
less risk-averse investors underevaluated the true beta by using MV. Philip Morris results
in Periods I and II show that MEG betas are basically similar for the three periods, and
therefore relatively more stable than the MV beta. The same conclusion applies for other
stocks, such as RJR Nabisco.

5.3 Testing normality and differentiated systematic risk

We examined the entire sample of securities to assess the importance of normality in
using the MEG approach vs. the MV model for beta estimation. For each period and each
n, we computed the percentage of securities of the total sample of 1,590 that have a
different beta according to Hausman’s m test and are normal or not-normal according to
D’Agostino’s D test. Table 2 shows the results.

The first three columns of table 2 show the percentages of securities where b(n) is
different from bMV at 1%, 5%, and 10% significance levels according to the m test for
securities that test normal under the D test. The next three columns show the percentages
of securities with different b at 1%, 5%, and 10% significance levels for the securities that
are not normally distributed.

For example, for n 5 4 in Period I, only 0.69% of the securities have b(n 5 4) different
from bMV at the 10% significance level and tested normally distributed at the same 10%
level. For the same group of n, 14.65% of the securities had different betas and tested not
normal.

Also note that for any given n in Period I, there is at least a 10.88% chance that b(n)
is different from bMV (for n 5 1.5). Further, there is a 33.33% chance (10% significance
level) that the betas would be different for at least one n, as shown by the last row. In the
more volatile Period III these results are amplified. There is at least a 31.95% chance of
difference for any given n (n 5 10), and a 65.47% chance of different betas for at least
one n.

We interpret these results to indicate that in a moderately stable period like Period I, for
any given investor with a particular n, there is a chance between 11% and 15% that use

146 RUSSELL B. GREGORY-ALLEN, HAIM SHALIT

Kluwer Journal
@ats-ss2/data11/kluwer/journals/requ/v12n2art3 COMPOSED: 01/13/99 1:32 pm. PG.POS. 12 SESSION: 43



of b(n) rather than bMV would result in a better systematic risk estimate and therefore
superior performance. More significantly, there is about a 33% chance that at least one
investor would achieve superior performance.

In especially volatile periods, such as Period III, for any given investor there is at least
a 32% chance of superior performance using MEG betas. Indeed, given a particular n such
as n 5 6, an individual investor would find 33% of the firms with MEG betas different
from their MV betas. Furthermore for the same period, there is a 65% chance that at least
one investor would benefit by estimating systematic risk using MEG.

Table 2. Percentages of securities with b(n) significantly different from bMV, in the class of statistically
“normal” and “non-normal” probability distributions.

“Normally Distributed” “Non-Normally Distributed”

Significance Level 1% 5% 10% 1% 5% 10%
Period I
For b(n 5 1.5) 0.13% 0.19% 0.25% 1.07% 5.53% 10.88%
For b(n 5 2) 0.25% 0.50% 0.50% 1.64% 8.11% 13.58%
For b(n 5 2.5) 0.19% 0.69% 0.75% 2.45% 8.30% 14.78%
For b(n 5 3) 0.25% 0.63% 0.88% 2.20% 8.24% 14.72%
For b(n 5 4) 0.19% 0.63% 0.69% 2.26% 8.18% 14.65%
For b(n 5 6) 0.19% 0.63% 0.69% 1.82% 7.11% 14.03%
For b(n 5 8) 0.19% 0.63% 0.69% 1.45% 6.98% 13.58%
For b(n 5 10) 0.06% 0.57% 0.63% 1.38% 6.98% 13.08%
For b(n 5 15) 0.06% 0.31% 0.38% 1.70% 6.79% 12.39%
For b(n 5 20) 0.13% 0.31% 0.25% 1.45% 6.73% 11.95%
For at least 1 n 0.63% 1.32% 1.32% 5.60% 21.32% 33.33%
Period II
For b(n 5 1.5) 0.31% 0.50% 0.75% 2.52% 8.24% 13.71%
For b(n 5 2) 0.25% 0.38% 0.82% 2.39% 7.67% 13.14%
For b(n 5 2.5) 0.19% 0.44% 0.63% 2.26% 6.86% 11.82%
For b(n 5 3) 0.25% 0.57% 0.63% 1.95% 6.48% 11.51%
For b(n 5 4) 0.25% 0.69% 0.50% 1.19% 6.23% 11.82%
For b(n 5 6) 0.13% 0.57% 0.38% 0.88% 5.66% 11.57%
For b(n 5 8) 0.25% 0.38% 0.50% 0.75% 6.16% 11.38%
For b(n 5 10) 0.19% 0.25% 0.57% 0.88% 6.48% 12.39%
For b(n 5 15) 0.13% 0.25% 0.44% 1.32% 7.11% 11.95%
For b(n 5 20) 0.13% 0.50% 0.63% 1.51% 6.92% 12.89%
For at least 1 n 0.69% 1.38% 1.51% 5.47% 19.94% 32.89%
Period III
For b(n 5 1.5) 0.13% 0.06% 0.00% 14.65% 26.79% 35.03%
For b(n 5 2) 0.13% 0.06% 0.00% 17.17% 28.87% 36.79%
For b(n 5 2.5) 0.13% 0.06% 0.00% 16.73% 28.74% 36.42%
For b(n 5 3) 0.13% 0.06% 0.00% 16.42% 28.36% 36.35%
For b(n 5 4) 0.13% 0.06% 0.00% 14.97% 26.48% 35.53%
For b(n 5 6) 0.13% 0.06% 0.00% 12.39% 24.59% 33.33%
For b(n 5 8) 0.06% 0.06% 0.00% 11.51% 24.03% 32.33%
For b(n 5 10) 0.06% 0.06% 0.00% 10.38% 24.03% 31.95%
For b(n 5 15) 0.06% 0.06% 0.00% 12.39% 24.91% 34.40%
For b(n 5 20) 0.00% 0.06% 0.00% 13.02% 27.23% 35.97%
For at least 1 n 0.13% 0.06% 0.00% 32.33% 52.77% 65.47%
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Table 3 provides normality results. In Period I, 94.65% of the securities test non-normal
at the 10% significance level. For the very volatile Period III, this increases to 100%.
Therefore we find, as have previous researchers, that securities returns are overwhelmingly
not normal. In fact, non-normality is so prevalent that any use of bMV is likely to lead to
biased estimates of systematic risk, a good case for use of MEG betas.

5.4 Empirical results for annual periods

To confirm the findings for longer time periods and reduce any concerns that the general
results are firms for the years 1985 through 1993. In table 4, we first present, as an
example, the MV and MEG betas for three securities over the nine year period.

For 1985, 1986, and 1987, the results are not the same as those in table 1 because the
number of observations is now the number of trading days during the year. For the three
firms, the variability and the non-sationarity of the betas over the years are notable. It is
not surprising that the MEG betas do not follow the MV betas (and vice versa). According
to Hausman’s m statistic, the bMEG are statistically different from bMV for only a small
number of n and years.4 This difference, when statistically significant, however, can be
very important. For example, Federal National Mortgage, in 1987 for low risk-averse
investors and in 1992 for high risk-averse investors, exhibits b(n) that are 33% greater
than bMV. The same can be said for Hewlett-Packard where the b(n) in 1987, 1988, and
1991 are statistically different from bMV.

The entire sample of 1,140 firms is summarized in table 5, which presents for each year
the percentages of securities that have a different b(n) according to Hausman’s m test for
at least one n and are normal or not-normal according to D’Agostino’s D test. At a 5%
significance level, combining normal or not-normal, more than 20% of the firms had
different MEG betas in all years except 1993. In 1987, 1988, and 1989, it was more than
30% of the firms.

This is further supported by the normality test shown in table 6. In relatively stable
years, normality is rejected for 83% of the firms at the 1% significance level. For turbulent
years, it is rejected for more than 90% of the firms. Hence, MV betas will be estimated
optimally in all those cases. The longer time period analysis confirms the basic results
that, for any time period, there is a 30% chance that at least one investor would benefit
using b(n), as those are shown to differ statistically from bMV.

Table 3. Percentages of “non-normally” distributed securities. (Three periods).

“Non-Normally Distributed”

Significance Level 1% 5% 10%
Period I

85.22% 91.64% 94.65%
Period II

88.24% 94.40% 95.91%
Period III

99.81% 99.94% 100.0%
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The question remains whether the distributional deviations from normality persist or
not from one year to another (e.g. from an estimation period to a portfolio holding
period).5 Singleton and Wingender (1986) show that skewness does not persist over time
implying that” { investment strategies based on selecting skewed stock are likely to fail.”
Our interest in the skewness persistence issue resides in validating the MEG estimation of
systematic risk over time. To check for skewness and kurtosis, we use the standard

Table 4. Mean-variance and mean-Gini betas for three securities over 9 years. (Daily returns).*

YEAR bMV bn51.5 bn52 bn52.5 bn53 bn54 bn56 bn58 bn510 bn515 bn520

AMERICAN EXPRESS
1985 1.892 1.989 1.948 1.896 1.844 1.751 1.610 1.516 1.451 1.361 1.324

(7.03) (1.58) (0.00) (0.43) (2.11) (4.54) (5.60) (5.94) (5.59) (4.79)
1986 1.494 1.574 1.539 1.515 1.498 1.480 1.472 1.469 1.463 1.428 1.383

(1.15) (0.50) (0.12) (0.01) (0.04) (0.09) (0.09) (0.11) (0.36) (0.83)
1987 1.853 1.536 1.541 1.539 1.534 1.525 1.512 1.500 1.490 1.473 1.464

(0.02) (0.04) (0.03) (0.02) (0.00) (0.01) (0.06) (0.14) (0.39) (0.58)
1988 1.974 1.536 1.541 1.539 1.534 1.525 1.512 1.500 1.490 1.473 1.464

(2.88) (2.55) (1.71) (1.02) (0.28) (0.00) (0.10) (0.23) (0.45) (0.53)
1989 2.065 2.036 1.964 1.922 1.897 1.869 1.846 1.837 1.837 1.855 1.883

(0.06) (0.79) (1.68) (2.40) (3.25) (3.79) (3.75) (3.46) (2.45) (1.62)
1990 1.960 2.081 2.020 1.981 1.955 1.922 1.886 1.868 1.856 1.838 1.822

(1.65) (0.46) (0.06) (0.00) (0.17) (0.54) (0.71) (0.76) (0.76) (0.78)
1991 1.902 1.941 1.934 1.921 1.906 1.876 1.823 1.779 1.745 1.706 1.712

(0.27) (0.13) (0.03) (0.00) (0.04) (0.22) (0.41) (0.56) (0.63) (0.48)
1992 1.225 1.277 1.322 1.343 1.348 1.337 1.304 1.278 1.256 1.202 1.152

(0.46) (1.93) (2.47) (2.14) (1.21) (0.35) (0.11) (0.03) (0.01) (0.09)
1993 1.246 1.013 1.107 1.167 1.209 1.266 1.337 1.398 1.457 1.578 1.650

(2.19) (1.11) (0.41) (0.09) (0.03) (0.39) (0.86) (1.37) (2.41) (2.84)
FED NAT MORTGAGE

1985 2.520 2.600 2.609 2.593 2.573 2.543 2.513 2.489 2.460 2.377 2.302
(1.91) (1.57) (0.58) (0.20) (0.02) (0.00) (0.02) (0.04) (0.16) (0.28)

1986 2.061 2.288 2.203 2.135 2.085 2.024 1.975 1.952 1.934 1.890 1.844
(4.68) (2.47) (0.75) (0.08) (0.16) (0.69) (0.87) (0.98) (1.29) (1.64)

1987 1.264 1.622 1.614 1.592 1.568 1.523 1.458 1.414 1.381 1.320 1.271
(10.7) (9.99) (8.82) (7.60) (5.51) (2.93) (1.55) (0.75) (0.01) (0.34)

1988 1.464 1.622 1.614 1.592 1.568 1.523 1.458 1.414 1.381 1.320 1.271
(0.44) (1.51) (2.31) (2.71) (2.68) (1.70) (0.94) (0.51) (0.12) (0.03)

1989 2.230 2.370 2.308 2.267 2.242 2.221 2.226 2.245 2.264 2.308 2.344
(0.80) (0.04) (0.13) (0.59) (1.48) (1.99) (1.79) (1.51) (1.06) (0.86)

1990 2.356 2.581 2.581 2.572 2.559 2.528 2.455 2.379 2.304 2.140 2.009
(4.76) (2.84) (1.16) (0.29) (0.07) (1.29) (2.29) (2.82) (3.17) (3.17)

1991 1.995 2.001 2.011 2.022 2.029 2.035 2.034 2.024 2.009 1.976 1.953
(0.01) (0.06) (0.13) (0.17) (0.17) (0.11) (0.04) (0.01) (0.01) (0.05)

1992 1.260 1.190 1.279 1.336 1.379 1.440 1.515 1.558 1.582 1.602 1.590
(1.20) (0.10) (1.50) (2.92) (4.53) (5.41) (5.31) (4.93) (3.77) (2.72)

1993 1.775 1.850 1.791 1.752 1.727 1.701 1.697 1.717 1.740 1.779 1.791
(0.47) (0.03) (0.07) (0.32) (0.71) (0.59) (0.26) (0.08) (0.00) (0.01)

(Continued)
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statistics being, for the skewness, the third central moment divided by the cube of the
standard deviation, and for the kurtosis, the fourth central moment over the squared
variance minus 3.

In the spirit of Singleton and Wingender, we check whether a security skewed one year
persists to be skewed the next year. The results are reported on table 7. For each year, we
calculate the percentage of securities whose skewness and kurtosis parameters exceed the
critical values.6 Then the following year, we check whether skewness persists or reverses

Table 5. Percentages of securities with b(n) significantly different from bMV, for at least one n in the class of
“normal” and “non-normal” probability distributions for years 1985–1993, 1140 firms.

“Normally Distributed” “Non-Normally Distributed”

Significance Level 1% 5% 10% 1% 5% 10%
Year
1985 0.96% 2.19% 2.89% 6.32% 18.77% 32.02%
1986 0.96% 1.40% 2.02% 5.26% 19.39% 32.63%
1987 0.09% 0.00% 0.00% 34.21% 56.05% 67.89%
1988 1.23% 1.49% 1.40% 11.14% 30.61% 44.74%
1989 1.67% 1.93% 2.02% 11.32% 28.33% 42.11%
1990 1.05% 2.37% 2.72% 8.77% 25.18% 38.60%
1991 1.23% 2.02% 2.63% 5.96% 20.61% 33.07%
1992 1.40% 2.89% 3.07% 5.18% 17.37% 30.00%
1993 0.61% 1.84% 2.98% 4.47% 14.91% 26.32%

Table 4. (Continued)

YEAR bMV bn51.5 bn52 bn52.5 bn53 bn54 bn56 bn58 bn510 bn515 bn520

HEWLETT-PACKARD
1985 1.923 1.968 1.984 1.990 1.988 1.971 1.922 1.872 1.825 1.722 1.635

(0.93) (1.16) (0.76) (0.47) (0.15) (0.00) (0.06) (0.18) (0.48) (0.74)
1986 1.580 1.685 1.622 1.579 1.554 1.537 1.553 1.578 1.595 1.598 1.563

(1.23) (0.26) (0.00) (0.11) (0.28) (0.08) (0.00) (0.02) (0.02) (0.01)
1987 1.277 1.532 1.567 1.549 1.520 1.466 1.394 1.353 1.327 1.292 1.276

(11.9) (14.2) (13.2) (11.6) (8.81) (5.49) (3.87) (2.96) (1.88) (1.46)
1988 1.704 1.532 1.567 1.549 1.520 1.466 1.394 1.353 1.327 1.292 1.276

(2.32) (0.85) (0.26) (0.02) (0.18) (1.47) (3.02) (4.43) (7.17) (9.03)
1989 1.817 2.054 1.959 1.896 1.853 1.796 1.720 1.659 1.608 1.521 1.478

2.53) (1.08) (0.36) (0.08) (0.02) (0.50) (1.23) (2.00) (3.36) (3.87)
1990 1.643 1.835 1.769 1.727 1.695 1.645 1.571 1.521 1.486 1.432 1.390

(3.60) (1.78) (0.82) (0.31) (0.00) (0.44) (1.06) (1.50) (2.00) (2.28)
1991 1.587 1.714 1.761 1.786 1.791 1.762 1.645 1.523 1.417 1.224 1.104

(3.17) (4.12) (3.91) (3.22) (1.69) (0.13) (0.11) (0.69) (2.30) (3.31)
1992 1.568 1.686 1.663 1.620 1.574 1.495 1.394 1.337 1.302 1.248 1.213

(1.16) (0.91) (0.23) (0.00) (0.25) (0.86) (1.09) (1.15) (1.12) (1.07)
1993 1.811 1.788 1.874 1.923 1.953 1.985 1.993 1.971 1.939 1.863 1.814

(0.02) (0.19) (0.69) (1.15) (1.59) (1.33) (0.81) (0.43) (0.05) (0.00)

* Hausman’s m, that tests the hypothesis that the MEG betas are different from the MV betas is in parentheses
under the MEG betas. The bold faced figures indicate the MEG betas significantly different from the MV beta
at the 5% significance level.
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itself to the opposite sign. The percentages reporting persistence and negatively skewed
securities, reinforcing the results obtained by the normality D’Agostino D test. Indeed, the
total percentage of skewed stocks exceed 50% at the 1% significance level, and 60% at the
5% significance level. Now it one looks at the number of securities that remain skewed the
following year, the same picture is obtained. Apart from year 1987, positively skewed
securities persist to be positively skewed (more than 50% at the 1% and 5% significance
level) and a very small proportion reverses to negative skewness. In 1987, because of the
Crash, a larger proportion of stocks appears to be negatively skewed and this modifies the
persistence results for 1986 and 1988.

By valuing the kurtosis of the stocks one notices that only a small number (around
20%) has kurtosis consistent with that of a normal distribution. Of those normal stocks
approximately 30% remain normal the following year. By looking at the kurtosis we
confirm again that most stocks are not normally distributed and remain so over time.

Our results based on daily returns and one-year test periods support some of the
conclusions obtained by Singleton and Wingender for individual simple stock returns.
Using monthly data and five-year test periods, Singleton and Wingender report a 30 to
40% chance for positive skewness to persist, whereas for portfolio returns, the skewness
persistence is reduced to around 10%. The skewness and kurtosis statistics further
strengthen the hypothesis that most securities are not normally distributed and some
efficiency is to be gained by estimating systematic risk using MEG methods.

5.5 Ranking securities with respect to differentiated systematic risk

Taking into account investor risk aversion, how significant are the differences in ranking
securities according to the various systematic risks? If MEG betas produce substantially
different rankings of securities from rankings obtained using MV beta, the importance of
MEG in constructing portfolios becomes further strengthened. Our test ranks securities in
ascending order of beta for a given n and compares the deciles of the different rankings
with the deciles obtained by ranking securities in ascending order of the MV beta. If a

Table 6. Percentages of “normally” vs “non-normally” distributed securities. (1140 firms over 9 years).

“Non-Normally Distributed”

Significance Level 1% 5% 10%
Year
1985 82.54% 87.98% 90.96%
1986 86.93% 91.49% 93.33%
1987 99.91% 100.00% 100.00%
1988 93.07% 96.67% 97.72%
1989 91.93% 95.61% 97.02%
1990 86.23% 91.32% 93.95%
1991 84.30% 89.30% 91.67%
1992 83.33% 88.25% 92.28%
1993 83.95% 88.60% 91.14%

THE ESTIMATION OF SYSTEMATIC RISK 151

Kluwer Journal
@ats-ss2/data11/kluwer/journals/requ/v12n2art3 COMPOSED: 01/13/99 1:32 pm. PG.POS. 17 SESSION: 43



Ta
bl

e
7.

Pe
rc

en
ta

ge
of

se
cu

ri
ti

es
th

at
ex

hi
bi

t
sk

ew
ne

ss
an

d
ku

rt
os

is
in

ye
ar

t
an

d
co

nd
it

io
na

l
pe

rc
en

ta
ge

of
sk

ew
ne

ss
an

d
ku

rt
os

is
pe

rs
is

te
nc

e
fo

r
ye

ar
t1

1.

S
ig

ni
fi

ca
nc

e
L

ev
el

1%

S
ke

w
ne

ss
K

ur
to

si
s

Y
ea

r
Po

si
tiv

e
th

is
ye

ar
Po

si
tiv

e
ne

xt
ye

ar
N

eg
at

iv
e

ne
xt

ye
ar

N
eg

at
iv

e
th

is
ye

ar
N

eg
at

iv
e

ne
xt

ye
ar

Po
si

tiv
e

ne
xt

ye
ar

K
ur

to
si

s
th

is
ye

ar
K

ur
to

si
s

ne
xt

ye
ar

19
85

0.
48

77
0.

44
96

0.
08

45
0.

09
56

0.
22

94
0.

24
77

0.
19

82
0.

28
32

19
86

0.
37

98
0.

26
10

0.
47

11
0.

10
35

0.
55

08
0.

12
71

0.
13

95
0.

01
89

19
87

0.
18

68
0.

53
05

0.
05

63
0.

53
60

0.
11

62
0.

44
03

0.
00

70
0.

75
00

19
88

0.
47

81
0.

52
29

0.
10

64
0.

09
21

0.
27

62
0.

26
67

0.
12

46
0.

32
39

19
89

0.
42

02
0.

47
18

0.
09

39
0.

14
30

0.
15

34
0.

27
61

0.
13

68
0.

28
85

19
90

0.
38

68
0.

64
63

0.
05

44
0.

11
14

0.
04

72
0.

57
48

0.
16

93
0.

32
12

19
91

0.
54

91
0.

53
67

0.
07

83
0.

05
96

0.
26

47
0.

36
76

0.
19

12
0.

37
61

19
92

0.
44

82
0.

45
99

0.
07

83
0.

10
88

0.
26

61
0.

24
19

0.
21

40
0.

29
10

19
93

0.
36

40
--

--
--

--
--

--
0.

13
68

--
--

--
--

--
--

0.
18

86
--

--
--

S
ig

ni
fi

ca
nc

e
le

ve
l

5%
S

ke
w

ne
ss

K
ur

to
si

s
Y

ea
r

Po
si

tiv
e

th
is

ye
ar

Po
si

tiv
e

ne
xt

ye
ar

N
eg

at
iv

e
ne

xt
ye

ar
N

eg
at

iv
e

th
is

ye
ar

N
eg

at
iv

e
ne

xt
ye

ar
Po

si
tiv

e
ne

xt
ye

ar
K

ur
to

si
s

th
is

ye
ar

K
ur

to
si

s
ne

xt
ye

ar
19

85
0.

58
33

0.
54

59
0.

11
13

0.
12

54
0.

27
97

0.
30

77
0.

10
88

0.
20

16
19

86
0.

47
11

0.
26

63
0.

51
58

0.
14

47
0.

59
39

0.
18

18
0.

06
67

0.
03

95
19

87
0.

21
49

0.
65

31
0.

05
71

0.
58

16
0.

15
08

0.
53

85
0.

00
26

0.
66

67
19

88
0.

56
93

0.
56

09
0.

14
79

0.
11

75
0.

29
10

0.
32

84
0.

05
44

0.
25

81
19

89
0.

49
56

0.
55

75
0.

12
74

0.
17

98
0.

20
49

0.
39

02
0.

06
93

0.
25

32
19

90
0.

48
07

0.
72

08
0.

07
48

0.
14

65
0.

07
19

0.
67

66
0.

08
42

0.
22

92
19

91
0.

67
19

0.
61

88
0.

10
97

0.
08

42
0.

25
00

0.
38

54
0.

10
44

0.
23

53
19

92
0.

55
44

0.
53

16
0.

11
87

0.
12

98
0.

30
41

0.
30

41
0.

12
19

0.
18

71
19

93
0.

45
53

--
--

--
--

--
--

0.
16

93
--

--
--

--
--

--
0.

10
35

--
--

--

152 RUSSELL B. GREGORY-ALLEN, HAIM SHALIT

Kluwer Journal
@ats-ss2/data11/kluwer/journals/requ/v12n2art3 COMPOSED: 01/13/99 1:32 pm. PG.POS. 18 SESSION: 43



security remains in the same decile, then estimating beta according to MEG will not
provide additional information to the investor. If the number of firms that move one decile
up or down in substantial, however, investors would be better off estimating beta using
their appropriate MEG model. In addition, if firms move up or down by more than one
decile, the MV systematic risk would hinder investors’ ability to build portfolios that
diversify risk.

Table 8 presents, for the three periods, the number of securities that change deciles
when MEG betas are used as the ranking factor instead of MV betas. The first ten columns
(Panel A) show the number of securities in a decile that change decile following the
application of the MEG model. For the three data samples, the ranking of securities with
respect to the MV beta is not maintained when using MEG beta, particularly for higher
degrees of risk aversion (n . 2). Indeed, more than 50% of the securities change decile.

A claim might be made that the large number of securities changing deciles depends on
the arbitrary boundaries of the deciles themselves. Therefore, a valid evaluation of the
impact of MEG ranking is to count the securities that move more than one decile. This is
shown in the nine columns in Panel B of table 8, which show the total number of securities
that move 1, 2, 3, …, 9 deciles. For example, in the first period, for n 5 4 a total of 854
out of 1,590 securities shift deciles (Panel A). The distribution of those shifts is given in
Panel B. That is 655 securities that move one decile only, 148 securities that move two
deciles, 35 securities that move three deciles, 9 securities that move four deciles, and so
on. The sum of the ten Panel A columns equals the sum of the nine Panel B columns.

The number of securities that move more than one decile is around 20%. With the
number of securities that move just one decile seen to be 40%, the results in table 8 show
that the ranking of securities is substantially different when investors estimate systematic
risk according to their particular risk aversion.

6. Conclusion

Choosing securities according to their risk and mean return is the essential challenge for
investors who want to make investment decisions consistent with risk aversion. Therefore,
ranking assets with respect to systematic risk has been standard practice for investment
and porfolio analysis since the development of betas. As we have seen, however, the
ranking of assets with respect to systematic risk also depends upon investors’ degree of
risk aversion. This is especially significant whenever one cannot assume normally distrib-
uted returns to ensure the validity of the MV model

Our study demonstrates how to incorporate risk aversion into the evaluation of system-
atic risk. We have shown the importance of the issue in terms of its effect in capital
markets. MEG analysis in beta estimation only improves our understanding of systematic
risk.

When investors use MEG betas to rank securities, they will always be at least as well
off as if they had used MV betas. Much of the time they will be better off, particularly
during periods of high volatility.
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To the practitioner, the question remains as to how best to choose the coefficient of risk
aversion n to be used in the analysis. Two solutions are feasible. When capital markets are
in equilibrium, this value can be estimated by comparing the market portfolio with the
position obtained by optimizing the MEG portfolio, as is done by Shalit and Yitzhaki
(1989). Here, the value of n that brings the MEG portfolio closer to the market portfolio
is to be used.

More pragmatically, the choice of n can be secured by checking whether or not returns
are normally distributed. If normality is rejected, the practitioner estimates MEG betas for
several n’s together with the appropriate Hausman statistic to assess whether the MEG
betas are significantly different from MV betas. In this reduced set of statistically different
betas, the analyst can now choose an appropriate n to fit one’s sensitivity to risk.
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Notes

1. The various formulae of the Gini are provided in Shalit and Yitzhaki (1984).
2. The value for n are chosen on the basis of previous research (Shalit and Yitzhaki (1989), Okunev (1988).
3. The critical values for x2 with 1 D.F. are 2.7 for a significance level of 10%, 3.84 for 5%, and 6.63 for 1%.
4. The significantly different betas are shown in bold in table 4.
5. We are grateful to an anonymous referee who pointed out the issue of skewness persistence when checking

for deviations from normality.
6. The critical values are 10.360 and-0.360 for positive and negative skewness at the 1% significance level and

0.251 and -0.251 for positive and negative skewness at the 5% significance level. The critical values interval
for kurtosis are (2.42, 3.87) at the 1% significance level and (2.55, 3.52) at the 5% significance level.
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