
ON THE KINEMATICS OF THE OCTOPUS'S ARM

Y. LEVINSON AND R. SEGEV

Abstract. The kinematics of the octopus's arm is studied from the
point of view of robotics. A continuum three-dimensional kinematic
model of the arm, based on a nonlinear rod theory, is proposed. The
model enables the calculation of the strains in the various muscle �bers
that are required in order to produce a given con�guration of the arm�a
solution to the inverse kinematics problem. The analysis of the forward
kinematics problem shows that the strains in the muscle �bers at two
distinct points belonging to a cross section of the arm determine the
curvature and the twist of the arm at that cross section. The octopus's
arm lacks a rigid skeleton and the role of material incompressibility in
enabling the con�guration control is studied.

1. Introduction

This paper presents a kinematical model for the octopus's arm. The arm
of an octopus is an e�cient hyper-redundant manipulator and hence the
motivation for studying it. We focus on the kinematic analysis of a three
dimensional continuum model. Of particular interest is the way the octopus
uses the incompressibility of the arm to overcome the absence of a rigid
skeleton.

In many cases, hyper-redundant robots are modeled as discrete mechanical
systems, e.g., [1, 2, 3, 4]. Two-dimensional discrete kinematical and dynam-
ical models for the octopus's arm are presented in [5] and [6]. In their study,
the authors model the arm as an array of point masses interconnected by
linear or non-linear springs that represent the muscles. The incompressibility
constraint is applied by preserving the area of each compartment created by
four adjacent masses. The model considers external forces, such as gravity,
drag, buoyancy, and internal forces, such as the muscles' active forces and
the forces needed to preserve the area of the compartments.

Following studies such as [7, 8] on continuous models for hyper-redundant
robots, Boyer et al., [9], used a geometrically exact theory of non-linear
beams to simulate the dynamics of swimming of an eel-like robot. In their
analysis the robot is treated as a continuous series of in�nitesimal sections.
The deformation is de�ned by a homogeneous matrix g that describes the
orientation and translation of each section. The authors write the di�erential
equation for the homogeneous transformations of the cross section along the
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axis of the arm, X, in the form,[
∂R
∂X

∂d
∂X

0 0

]
=
[
R d
0 1

] [
K̂ Γ
0 0

]
.

Here, R is the orientation matrix for the cross-section, d is the position
vector for the center of the cross-section, Γ = RT ∂d

∂X , and K̂ = RT ∂R
∂X

is a skew-symmetric matrix whose components describe the bending and
torsion of the robot. The �rst component of Γ describes the stretching of
the centerline of the robot; the two remaining components describe the shear
of the sections relative to one another. The dynamic model considers the
swimming locomotion and the a�ect of forces caused by the �ow.

The present work is similar to Boyer et al. [9], as we also use a geometri-
cally nonlinear continuum theory of rods. However, our kinematic analysis
of the octopus's arm studies what seems to us to be an essential aspect
of the control of its con�guration, namely, the role of an incompressibility
constraint. Speci�cally, it is assumed here that the volume of any segment
of the arm (bounded between two cross sections) remains �xed during a
deformation.

It is noted that the equations governing the mechanics of pointwise in-
compressible rods are formulated and solved by Antman [10]. Antman does
not present any application and his work is concerned with the kinematics
of the cross sections for pointwise incompressible rods. As mentioned, we
use a simpli�ed theory were incompressibility is assumed to hold only for
segments of the arm rather than pointwise.

The present kinematical model describes the relative rotations of the cross
sections due to bending and torsion. As an additional kinematic constraint,
we adopt the Euler-Bernoulli hypothesis and do not consider transverse shear
of the various cross sections.

Our objective is to study the kinematics of the octopus's arm from the
point of view of robotics, namely, the inverse kinematics problem and direct
kinematics problem. Thus, one has to de�ne what parameters of the arm's
con�guration should be controlled and what are the actuation parameters.
Subject to the constraints of the three dimensional rod theory described, it
is assumed here that it is necessary to control the con�guration of the arm
completely. In other words, rather than controlling a part of the arm, the
analog of an end e�ector, the geometry of the entire centerline in space and
the twist of the arm about it are considered. This requirement is motivated
by the existence of suction units along the entire length of the arm. The
actuation parameters are the strains in the various muscle �bers of the arm.
Thus, for the inverse kinematics problem one seeks the strains in the various
muscle groups that will induce a required con�guration of the arm. For the
forward kinematics problem, one seeks the con�guration of the arm induced
by given strains in the muscle. An analysis of these two problems is presented
in Section 5, following the introduction of the basic kinematic variables in
Section 3 and the analysis of strain in Section 4.
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2. Octopus's Arm Physiology: An Overview

Organs such as the mammalian tongue, the elephant's trunk and the oc-
topus's arms are termed Muscular Hydrostats [11]. They are characterized
by their lack of vertebras and compressible cavities. The most important
feature of muscular hydrostats is their relatively large bulk modulus that re-
sults from a dense musculature without any gas-�lled cavities or large blood
vessels [12]. This enables manipulation of an organ lacking any vertebrate
skeleton by activating two or more muscle group simultaneously.

The octopus's arm consists of three primary muscle �ber groups surround-
ing a central axial nerve cord (Figure 2.1): the longitudinal muscles, the
transverse muscles and the oblique or helicoidal muscles. The latter appear
in both a right handed coil and a left handed coil.

The transverse muscle �bers are oriented in planes perpendicular to the
axis of the arm. They are laid in an orthogonal array surrounding the ax-
ial nerve cord. Two bundles extend parallel to the lateral plane,1 and two
bundles are parallel to the frontal plane (see Figure 3.1).

The longitudinal �bers surround the transverse �bers in four bundles, an
oral bundle, an aboral bundle and two lateral bundles. The cross section
area is larger in the aboral bundle, in comparison with the oral and lateral
bundles. This enables the exertion of higher moments when the arm is bent
aborally to reveal the suction line.

Helicoidal muscle �bers appear in three di�erent layers: internal, median
and external. In every cross section, the three layers (or groups) spiral
around the centerline both in a right handed helix and a left handed helix.
Kier and Stella examined in [12] two octopus's species and reported mean
pitch angle of 62◦ for external and median oblique muscles �bers. Internal
oblique muscles �bers have a lower mean pitch angle that varies between the
two species: 42◦ for Octopus briareus and 56◦ for Octopus digueti.

As the arm does not contain any rigid skeleton, control of the con�gu-
ration is made possible by combining incompressibility with contractions of
a number of muscle groups. For example, a contraction of the longitudinal
muscle at the oral side will cause shortening of the arm and an increase of
the cross section area. To avoid the contraction and create �exure, the cross
section area is held �xed by contracting the transverse muscles. As a result
of the arm's inability to change its volume, the aboral side must elongate
and thus produce �exure of the arm in the sagittal plane.

3. Configurations of the Arm

3.1. Notation and Preliminaries. The reference con�guration of the arm
is assumed to be an elliptical cylinder in the vector space R3. Each material
point in the arm is described by the reference coordinates (X1, X2, X3) =

1Note that in order to show the suction elements clearly, the lateral plane is drawn
vertically in Figure 3.1.
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Figure 2.1: A schematic cross section of an octopus's arm.
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Figure 3.1: The reference con�guration of the arm

(X,Y, S) in some reference frame and it assumed that at the reference con-
�guration, the centerline occupies the points (0, 0, S) for S ∈ [0, 1] with the
base of the arm being located at S = 0. Thus, the centerline of the arm
is situated along the X3 = S axis and is set to be of a unit length for the
sake of simplicity. The principal axes of the elliptical cross section of the
cylinder are denoted as a0 and b0 and are in the directions of the X and Y
coordinate axes, respectively. The suction elements are located on the points
on the circumference of the cylinder for which Y = 0 and X = a0 (see Figure
3.1).

The radius vector in the reference frame to typical material point of the
arm is R = R (X,Y, S) and the undeformed centerline curve will be denoted
as R0(S) = R (0, 0, S). At each point in the reference state we may de�ne
the base vectors, Gp = ∂R

∂Xp
. As the reference con�guration is a right cylinder,

the vectors {Gp} are orthonormal and are identical to the unit vectors along
the reference coordinate axes.

The actual con�gurations of the arm take place in the physical space which
we do not necessarily identify with the reference frame. The physical space
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is represented by a 3-dimensional Euclidean space and it is assumed that a
speci�c orthonormal frame is given. Thus, denoting the orthonormal base
vectors by ei, i = 1, 2, 3, any point in space may be represented in the form
r = xiei, where summation on repeated indices is implied.

The deformed con�guration of the arm is speci�ed by a function r =
r (R) = r (X,Y, S) giving the position in space corresponding to each mate-
rial point R at the deformed con�guration so that xi = xi(Xp). For simplic-
ity, it is assumed that

Assumption 0. r(0) = 0, and the points (X,Y, 0) are mapped into (a1X, a2Y, 0),
a1, a2 > 0.

In analogy with the notation we introduced earlier, the curve r0(S) =
r(0, 0, S) in the physical space will denote the centerline curve at the de-
formed state.

We now make the basic assumptions regarding the kinematics of the arm.
These assumptions slightly generalize traditional Euler-Bernoulli postulates
for rod theory in solid mechanics where now in-plane deformations of the
cross sections are admissible.

Assumption 1. For each S0 ∈ [0, 1], the ellipse {(X,Y, S0), X2/a2
0+Y 2/b20 ≤

1} representing the cross section of the arm at S0, is mapped onto an ellipse

centered at r0(S0).

Assumption 2. The ellipse containing the points r(X,Y, S0) is perpendic-

ular to the deformed centerline at r0(S0), i.e.,

(r(X,Y, S0)− r0(S0)) · dr0

dS
(S0) = 0 (3.1)

for all X,Y .

Assumption 3. Vectors in the plane {(X,Y, S0)} are mapped linearly to the

plane of the ellipse at r0(S0), i.e., for each S0 the mapping

R(X,Y, S0)−R0(S0) 7→ (r(X,Y, S0)− r0(S0)) (3.2)

is linear.

Assumption 4. The lines {(X, 0, S0)} and {(0, Y, S0)} are mapped to the

principal axes of the ellipse r(X,Y, S0).

We will naturally refer to the points r(X,Y, S0) as the cross section of the
deformed arm at S0.

3.2. The Centerline Triads. For each point in the deformed arm, consider
the base vectors

gp =
∂r
∂Xp

(3.3)

and note that

gp =
∂r
∂Xp

=
∂r
∂xi

∂xi
∂Xp

=
∂xi
∂Xp

ei. (3.4)
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The vector gp at the point r1 = r(R1) is tangent to the curve through r1 that
contains the image of the curve R(Xp) = R1 + X(p)G(p) (no summation).
Thus for example,

g3(0, 0, S) =
∂r
∂S

(0, 0, S) =
dr0

dS
(S) (3.5)

is the tangent (not necessarily of unit length) to the deformed centerline
r0(S). In addition, the vectors g1 and g2 are tangent to the cross section of
the deformed arm.

From Assumptions 3 and 4 it follows that the base vectors g1,g2 are uni-
form and mutually perpendicular in any particular cross-section. In each
elliptical cross section of the deformed arm, g1 and g2 are parallel to the
principal axes. These two vectors represent the directions of the two mu-
tually perpendicular transverse muscle groups in the deformed arm. By
Assumption 2, g3(0, 0, S) is perpendicular to both g1 and g2. We conclude
that the triads gp(0, 0, S) contain mutually orthogonal vectors. The vectors
gp(X,Y, S) at points other than the centerline need not be perpendicular.
If, for example, the deformed arm becomes conical, the longitudinal �bers
are no longer parallel. It is noted that the base vectors are not necessarily of
unit length due to the centerline extension and the change in the principal
axes of the elliptic cross-section.

We will refer to the triads gp(0, 0, S) as the centerline triads. It follows
from Equation (3.4) that at each S there is a linear mapping T (S) whose
matrix is ∂xi/∂Xp(0, 0, S) such that

gp(0, 0, S) = T (S)ipei. (3.6)

It is recalled that according to the polar decomposition theorem, a non-
singular linear mapping T may be decomposed in the form

T = Q ◦ U (3.7)

where Q is an orthogonal mapping and U is a positive de�nite symmetric
mapping. Applying this to the mappings T (S), so T (S) = Q(S) ◦U(S), one
can write for the centerline triads

gp(0, 0, S) = Q(S)ijU(S)jpei. (3.8)

Each of the triads {dj(S)}, de�ned by

dj(S) = Q(S)ijei, (3.9)

contains mutually orthogonal unit vectors. As the parameter S varies, the
orthonormal triad rotates according to Q(S) (see Figure 3.2). In our case,
as the vectors gp(0, 0, S) are mutually orthogonal, the polar decomposition
is particularly simple. The vectors dj are simply the unit vectors in the
directions of the vectors gj . The matrix Qij contains the components of dj
and the matrix Ujp is diagonal and contains the norms ‖gp‖ of the vectors
belonging to the centerline triad on its diagonal. The various {di} triads
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d1(s)

d3(s + s0)
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Figure 3.2: The triads {gi} and {di}, i = 1, 2, 3.

associated with the points S ∈ [0, l] along the centerline, will be referred to
as the orthonormal rod frames.

It follows that

dp(S) =
1
‖gp‖

gp(0, 0, S) (no summation), (3.10)

the unit vector d3 is tangent to the deformed centerline curve, and

g1(S) = a1(S)d1(S), a1(S) = ‖g1(0, 0, S)‖, (3.11)

g2(S) = a2(S)d2(S), a2(S) = ‖g2(0, 0, S)‖. (3.12)

Using s for the arc length parameter for the deformed centerline and assum-
ing naturally that s(S) is a monotonically increasing function, it follows from
Equation (3.5) that the stretch or extension of the centerline is given by

ds

dS
(S) = ‖g3(0, 0, S)‖. (3.13)

We denote the stretch of the arm's centerline by λ(S) = ‖g3(0, 0, S)‖ and
the length of the deformed centerline is l =

´
λdS.

Using the centerline triads, our assumptions imply that the con�guration
of the arm may be represented by

r(R) = r0(S) +Xg1(0, 0, S) + Y g2(0, 0, S),

= r0(S) +Xa1(S)d1(S) + Y a2(S)d2(S).
(3.14)

3.3. The Extended Darboux Vector. As the parameter s varies, the
triad {di} undergoes a rigid motion. The origin of the triad is displaced
tangent to the deformed centerline. The vectors di are rotated rigidly as
expressed by Equation (3.9). As s(S) was assumed to be monotonically
increasing, one may consider the dependence di(s) = di(S(s)).

Consider the rates

ddi
ds

=
ddi
dS

dS
ds

=
1
λ

dQ(S)ji
dS

ej . (3.15)
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These rotation rates may be represented by a vector u so that,

ddi
ds

= u× di. (3.16)

The components of u may be found by dot multiplying (3.16) by dj obtaining

ddi
ds
· dj = (u× di) · dj . (3.17)

Using εijk to denote the permutation symbol, we have

ddi
ds
· dj = umεijm, um =

1
2
εijm

ddi
ds
· dj . (3.18)

It is straightforward to write similar expressions for the rates relative to the
parameter S and write the relations between the two types of rates.

It is customary in rod theory (see [13]) to denote the components of the
vector u as {κ, κ′, τ}T so

κ
κ′

τ

 =

u1

u2

u3

 =



dd2

ds
· d3

dd3

ds
· d1

dd1

ds
· d2


. (3.19)

Denoting di�erentiation with respect to S by a prime, we immediately get
by the chain rule

d′i = λ
ddi
ds

= λu× di. (3.20)

The linear mapping Ω de�ned by

Ω(v) = λu× v (3.21)

is represented by the matrix

λ

 0 τ −κ′
−τ 0 κ
κ′ −κ 0

 . (3.22)

Thus, one has d′1
d′2
d′3

 = Ω

d1

d2

d3

 . (3.23)

The components of the vector u may be interpreted as follows: κ, κ′

represent the bending of the centerline about the axes d1 and d2, respectively,
and τ is the torsion about the tangent to the curve, d3. The parameter τ is
di�erent from the intrinsic torsion of the deformed centerline (described in
the next subsection) as it accounts for the relative twist of the various cross
sections of the arm. In addition, while the intrinsic torsion of a curve is
not de�ned for the case where the curvature vanishes (see next subsection),
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τ is always well de�ned. It is noted that the rotation rate vector u is an
extension of the Darboux vector used in di�erential geometry.

From the representation of the con�guration in Equation (3.14), as the
centerline triads may be obtained from their derivatives through integration
and using the initial conditions given by Assumption 0, we conclude that the
collection of function {κ(S), κ′(S), τ(S), λ(S), a1(S), a2(S)}, de�nes uniquely
the con�guration of an extensible rod under the assumptions mentioned ear-
lier. For example,

r0(S) =
ˆ S

σ=0
λ(σ)d′3(σ)dσ. (3.24)

3.4. Representation of the Arm's Con�guration Using the Frenet-

Serret Parameters. An alternative approach to the above description of
the arm's con�guration is based on the well known Frenet-Serret parameters
(FS) [14] for a spatial curve represented by a vector function, r0(s) ∈ R3,
where s is the arc length along the curve. It is recalled that for the case
of non-vanishing curvature, a unique Frenet-Serret frame can be associated
with each point on the curve. The Frenet-Serret orthonormal basis at a point
S is given by,

T =
dr0

ds
, N =

1
κFS

dT
ds
, B = T×N, (3.25)

where T, N and B are referred to as the tangent, normal and bi-normal
vectors, respectively. (We omitted the dependence on S for brevity.) The
parameters κfs, the curvature, and τfs, the torsion, are de�ned by

κFS =
∥∥∥∥dT

ds

∥∥∥∥ , τFS =
dN
ds
·B. (3.26)

It can be shown that the curvature function and the torsion function uniquely
de�ne an inextensible spatial curve up to a rigid body displacement [14]. The
Frenet-Serret triads satisfy the di�erential equations

dT
ds

= κFSN,

dN
ds

= −κFST + τFSB

dB
ds

= −τFSN.

, (3.27)

The Frenet-Serret triads describe the geometry of the deformed centerline.
In order to describe the con�guration of the arm completely, we need to
account for the stretch λ, the in-plane deformation and the twist of the arm
about the centerline. In order to describe the twist, we de�ne a parameter
φ, the angle between the normal unit vector N and the image, g1, of the
vector G1 (see Figure 3.3).
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Figure 3.3: (a) Reference con�guration, (b) Current con�guration.

Given the set {κ, κ′, τ}, one can �nd the corresponding F.S. parameters
by,

κFS =
√
κ′2 + κ2, (3.28)

τFS = τ +
1

(κ′2 + κ2)3/2

(
κ

dκ′

ds
− κ′dκ

ds

)
, (3.29)

φ = cos−1

(
κ′√

κ′2 + κ2

)
= sin−1

(
−κ√
κ′2 + κ2

)
. (3.30)

4. The Deformation Gradient and Strain

4.1. The Matrix of the Deformation Gradient. Equation (3.14) for
the description of the con�guration determines the position vector in the
deformed state of a particle having reference coordinates (X, Y, S) by

r(X, Y, S) = xiei = r0(S) +Xg1(0, 0, S) + Y g2(0, 0, S).

We recall that the deformation gradient of solid mechanics, is the linear
mapping

F = Fipei ⊗Gp. (4.1)

represented by the matrix

Fip =
∂xi
∂Xp

. (4.2)

Thus, the �rst two columns of the deformation gradient matrix are given by

Fi1ei =
∂r
∂X

= g1, (4.3)

Fi2ei =
∂r
∂Y

= g2, (4.4)
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and the third column is given by

Fi3ei =
∂r0

∂S
+X

∂g1

∂S
+ Y

∂g2

∂S

= λd3 +X

(
da1

dS
d1 + a1

dd1

dS

)
+ Y

(
da2

dS
d2 + a2

dd2

dS

)
. (4.5)

For any particular S, one may choose the basis {ei} in space to be identical
to the triad {di(S)}. Under this speci�c choice, the last expressions imply
that the matrix of F(X,Y, S) assumes the form

[F]d (X,Y, S) =

a1 0 da1
dS X − τ a2λY

0 a2 τ a1λX + da2
dS Y

0 0 λ− κ′a1λX + κa2λY

 , (4.6)

where the dependence of the various variables on S was omitted on the right.

4.2. The Consequences of Incompressibility. As mentioned in Section
2, the octopus's arm is almost entirely composed of virtually incompressible
muscle tissue. Indeed, in earlier treatments of Octopus arm kinematics (e.g.,
[12]) it is assumed that the arm is incompressible. For the sake of simplicity,
we assume the incompressibility constraint holds for segments of the arm
rather than pointwise. A theoretical treatment of rod theory where the rod
is assumed to be pointwise incompressible, was presented only recently in
[10]. Thus, we make

Assumption 5. The volume of any segment, {(X,Y, S)}, 0 ≤ S1 ≤ S ≤
S2 ≤ 1, of the arm does not change under deformation.

Consider a volume element dV0 containing a material point R and its im-
age dV containing r(R). Then, using J , the determinant of the deformation
gradient, one has dV/dV0 = J . The volume V of a deformed segment of the
arm is thus given as

V =
˚

J dXdY dS ,

=
ˆ S2

S1

a1(S)a2(S)λ(S)πa0b0 dS . (4.7)

Assuming that the integrand in Equation (4.7) is continuous, we conclude
that a necessary and su�cient condition for the volume of every segment of
the arm to remain unchanged, i.e., that V = V0 = πa0b0(S2 − S1), is,

λ(S) =
1

a1(S) a2(S)
, ∀S ∈ [0, 1]. (4.8)

Since the last equation cannot determine a unique pair (a1, a2) we make the
following

Assumption 6. The arm preserves the initial ratio between the lengths of

the principal axes of the elliptic cross-section.
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We denote the above mentioned ratio as r := a0
b0
. Consequently, a0

b0
= a1a0

a2b0
,

and so, a1(S) = a2(S) = a(S).

4.3. Strain Analysis. Consider an in�nitesimal vector

dX = dXpGp (4.9)

originating at the point R in the reference con�guration, whose image under
the deformation is

dx = dxiei =
∂xi
∂Xp

dXpei = F(dX) (4.10)

originating at r(R). It is convenient, and indeed of wide use in the mechanics
of continuous media, to describe the extension of the element dX by the
quantity

1
2

[dx · dx− dX · dX] =
1
2
[
FTF− I

]
(dX) · dX = E (dX) · dX, (4.11)

where,

E =
1
2
[
FTF− I

]
(4.12)

is the Lagrangian strain tensor. For the case where the deformed state of
the arm can be obtained by superimposing a small displacement �eld on
the reference con�guration, and the vector dX is normalized to be of unit
length, 1

2 [dx · dx− dX · dX] is the linear approximation to the change in
length of dX during the deformation. Thus, for a unit vector n̂, originating
at (X,Y, S), it is natural to refer to

εn̂(X,Y, S) = (E(X,Y, S)n̂) · n̂ (4.13)

as the strain at the point (X,Y, S) in the direction of n̂.
Once again, the Lagrangian strain tensor has a simpler expression when

written relative to the orthonormal rod frame, and we have

[E]d =
1
2

 a2 − 1 0
0 a2 − 1

a
(

da
dSX − aλY τ

)
a
(

da
dSY + aλXτ

)
a
(

da
dSX − aλY τ

)
a
(

da
dSY + aλXτ

)
(aY λκ− aXλκ′ + λ)2+

(
da
dSY + aλXτ

)2
+
(

da
dSX − aλY τ

)2− 1

 . (4.14)

5. Manipulator Kinematic Analysis

In this section we consider the octopus's arm as a manipulator and we study
its kinematic properties, speci�cally, the inverse and direct kinematics. In
order to perform such an analysis, one has to de�ne what parameters of the
con�gurations should be controlled. The arm is used as a tool along its entire
length and the objective is to bring the suction elements into contact with
some surface in such a way that the arm and the surface are tangent along
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the contact line. Thus, the manipulator kinematic analysis will consider
the control of the con�guration of the arm as described by the deformed
centerline and generalized Darboux vector (rather than just the end of the
arm or a segment of the arm, for example). Speci�cally, such a con�guration
will be given by the set of functions {κ(s), κ′(s), τ(s), λ(S)}, where Equation
(4.8) and Assumption 6 relate the extension parameter, λ(S), with the cross-
section parameter a(S).

5.1. Inverse Kinematics. For the inverse kinematics problem the con�g-
uration of the Octopus's arm is given in terms of the functions κ(s), κ′(s),
τ(s), λ(S), and the actuation variables are the strains in the various muscle
groups. It will be assumed that the �bers of the various groups are present
coincidently at all points in the arm. Accordingly, we will calculate the
strains at each point in the arm in the directions of the various groups.

We set εL, εT1, εT2, εH1, εH2 to be the strains in the directions of the
longitudinal, oral-aboral and lateral transversal, and right and left helicoidal
groups, respectively. Thus,

εL = d3 ·E(d3),

εT1 = d1 ·E(d1),

εT2 = d2 ·E(d2),

εH1 = n̂c ·E(n̂c),

εH2 = n̂cc ·E(n̂cc),

(5.1)

where n̂c and n̂cc are unit vectors pointing at the directions of the right
and left coiled helicoidal muscle �bers, respectively. It assumed that in the
reference con�guration the helicoidal �bers are at 45◦ angle to the centerline2.
Thus,

n̂c =
{
−rY
A
,
r−1X

A
,

1√
2

}T
,

n̂cc =
{
rY

A
,−r

−1X

A
,

1√
2

}T
,

(5.2)

where A =
√

2
√
r2Y 2 + r−2X2.

It is noted that by Assumption 6, εT1 = εT2, and so it is natural to de�ne
the vector �eld

ε(X,Y, S) = {εT1(X,Y, S), εL(S), εH1(X,Y, S), εH2(X,Y, S)}T (5.3)

that contains the values of the analog of the actuation variables controlling
the con�guration of the arm.

For the inverse kinematics problem we seek a mapping Ψ that acts on the
set of functions {κ(s), κ′(s), τ(s), λ(S)} and gives ε, so,

ε(X,Y, S) = Ψ(κ(s), κ′(s), τ(s), λ(S), X, Y, S). (5.4)

2The generalization to any other pitch angle is straightforward.
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By using Equation (4.13) we �nd that,
εT1

εL
εH1

εH2

 = [A]


E11

E33

E13

E23

 , (5.5)

where

[A] =


1 0 0 0
0 1 0 0
1
2

1
2 − sin θ cos θ

1
2

1
2 sin θ − cos θ

 , (5.6)

sin θ = a2
0Y√

b40X
2+a4

0Y
2
, and cos θ = b20X√

b40X
2+a4

0Y
2
.

We de�ne a non-linear function h that takes the con�guration parameters
and gives the four strain components (E11, E33, E13, E23) = h(κ, κ′, τ, λ). By
Equation (4.14) we have

h(κ, κ′, τ, λ) =
1
2


a2 − 1

(aλκY − aλκ′X + λ)2 + (a′Y + aλτX)2 + (a′X − aλτY )2 − 1
aa′X − τY
aa′Y + τX

 .

(5.7)
Hence, the inverse kinematics mapping Ψ is given by

Ψ = A ◦ h. (5.8)

5.2. Forward Kinematics. The forward kinematic problem is concerned
with the inverse Φ = Ψ−1 of the mapping Ψ de�ned above. In the extreme
case one might expect that the domain on which Ψ is the collection of all
continuous strain �elds

{(E11(X,Y, S), E33(X,Y, S), E13(X,Y, S), E23(X,Y, S))}. (5.9)

However, this cannot hold true because of the compatibility restriction

∂Fij
∂Xp

=
∂Fip
∂Xj

=
∂2xi

∂Xj∂Xp
(5.10)

for the corresponding deformation gradient. Furthermore, it is clear that a
generic con�guration induced by a compatible strain �eld need not satisfy
necessarily the assumptions we made in Subsection 3.1. For example, using
Equation (4.14) we �nd that

E13X + E23Y = a
da

dS
(X2 + Y 2). (5.11)

Thus, our analysis of the forward kinematics of the arm will lead us to the
conclusion that the values of the strain at two points (X1, Y1, S0), (X2, Y2, S0)
in a cross section S0, that are not on the centerline, determine the values
of a(S0), da/dS(S0), κ(s0), κ′(s0), τ(s0) and λ(S0), with some additional
consistency conditions.
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Noticing that the transformation A is singular and using

dE11

dS
=

d
dS

1
2

(a2 − 1) = aa′ (5.12)

and εT1 = E11, we have
εT1

εL
εH1
dεT1
dS

 =


1 0 0 0
0 1 0 0
1
2

1
2 − sin θ cos θ

0 0 X
X2+Y 2

Y
X2+Y 2



E11

E33

E13

E23

 , (5.13)

where now the transformation is invertible.
The inverse of Equation (5.13) will give the vector {E11, E33, E13, E23} in

terms of the modi�ed strain functions vector, {εT1, εL, εH1,
dεT1
dS }. In order

to represent the con�guration parameters {κ, κ′, τ, λ, a1, a2} in terms of the
strain functions, we use Equation (4.14) together with Equation (5.13) to
obtain

a1 = a2 = a =
√

2εT1 + 1, (5.14)

τ =
(a2

0 − b20)XY
b20X

2 + a2
0Y

2
ε′T1 +

√
b40X

2 + a4
0Y

2

2(b20X2 + a2
0Y

2)
(2εH1 − εT1 − εL) ,

(5.15)

κaY − κ′aX =

√
2εL − (a′Y + aτλX)2 − (a′X − aτλY )2 + 1

λ
− 1. (5.16)

Since none of the con�guration parameters are functions of X or Y , we
�nd that the expressions on the right hand sides of Equations (5.14) and
(5.15) depend only on S. Thus, the independence of these expressions on X
and Y , originating from the kinematical assumptions made, may be used as
conditions for the in-plane strain �elds to be compatible with some con�gu-
ration.

To �nd τ, κ, and κ′, we evaluate Equations (5.15) and (5.16) at two points
in a cross-section. For simplicity, we choose to evaluate the strain functions
in Equation (5.15) at X = a0, Y = 0, and thus we obtain,

τ(S) =
1
a0

(
2εH1(a0, 0, S)− εT1(a0, 0, S)− εL(a0, 0, S)

)
. (5.17)

Setting X = 0, Y = b0, and X = a0, Y = 0, alternatively in Equation (5.16),
we obtain

κ(S) =

√
2εL(0, b0, S)−

(
a′2(S) + τ2(S)λ(S)

)
b20 + 1− λ(S)

a(S)λ(S)b0
, (5.18)

κ′(S) =
λ(S)−

√
2εL(a0, 0, S)−

(
τ2(S)λ(S) + a′2(S)

)
a2

0 + 1

a(S)λ(S)a0
. (5.19)
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Figure 6.1: Illustration of the arm's con�guration depicted by Equation 6.1

To conclude, we recall from Equation (4.8) that

λ(S) =
1

a2(S)
. (5.20)

6. Example

To demonstrate the use of the model in computing the strains in the di�erent
muscle �bers, we consider the following con�guration of the arm,

κ(S) = 5S, κ′(S) = 2.7, , τ(S) = 0.5S, λ(S) = 1, (6.1)

illustrated in Figure 6.1. By substituting Equation (6.1) into Equations (5.5),
(5.6), we obtain the following strain �eld,

εT1

εL
εH1

εH2

 =



0
1
2

[
(1− 2.7X + 5SY )2 + 0.25S2(X2 + Y 2)− 1

]
1
2(εL + 0.25 (a2

0Y
2+b20X

2)√
Y 2a4

0+X2b40
S)

1
2(εL − 0.25 (a2Y 2+b2X2)√

Y 2a4
0+X2b40

S)


. (6.2)

Computing the con�guration parameters using Equations (5.14), (5.17)�
(5.20) and the strains in (6.2), will result in the same con�guration param-
eters given in Equation (6.1). Moreover, it is readily shown that Equation
(5.16) holds for all (X,Y ) ∈ {X = αa0, Y = βb0| 0 ≤ α ≤ 1, 0 ≤ β ≤ 1}.
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