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ABSTRACT. [Arn74]The stress-energy tensor of field theory is defined
and analyzed in a geometric setting where a metric is not available. The
stress is a linear mapping that transforms the 3-form representing the
flux of any given property, e.g., charge-current density, to the 3-form
representing the flux of energy. The example of the electromagnetic
stress-energy tensor is given with the additional structure of a volume
element.
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CHAPTER 1

Linear Forms and Generalized Forces

July 20, 2009

1.1. The Dual of a Vector Space
1.2. Path Integration and Work
1.3. Alternating Arrays
The presentation below is similar to that in [dR84, pp. 17-18]

1.3.1. The Levi-Civita alternating symbol. The Levi-Civita symbol
provides a tool for working with alternating quantities such as the local
representatives of forms. Fora sequence of indices i1,...,i, we will refer to
the switching of positions of two elements as a transposition. The alternat-

ing symbol is defined by

+1 if the indices in the sequence (iy,...,i;)are distinct
and the sequence (jl,...g'r)may be obtained from
them by an even number of transpositions,
iy . S : . .y
el"7=4-1 if the indices in the sequence (iy,...,i,)are distinct
e d th (i1,...,j.)may be obtained f
and the sequence (jj,...,j,)may be obtained from
them by an odd number of transpositions,
0 otherwise.

We note two particular cases when the Levi-Civita symbol vanishes: the
situation when the two sequences do not contain the same elements, and
the situation when in one (or both) of the sequences two or more indices
are equal (e.g,, iy = ig). We will sometimes use the notation i for the se-

quence ij,...,i, and we can write EJI..

The (somewhat degenerate) case where r = 1 is traditionally referred
to as the Kronecker symbol (usually denoted by ¢ rather than ¢),

C[1 ifi=
Fo—
iTY0 ifiz).
In the special case where any one of the sequences contains the num-
bers {1,...,7} and the other sequence is the ordered sequence (1,...,r) the
3



1.3. ALTERNATING ARRAYS 4
(1,...,r)-sequence will be omitted in the notation. For example,

+1 if (i1,...,iy) may be obtained from (1,...,r) by an
even number of transpositions,

-1 if (i1,...,i;) may be obtained from (1,...,r) by an

ifodr
3 =+ ..

odd number of transpositions,

0 if(i1,...,i;) cannotbe obtained as a permutation of

{1,...,7}, in particular, if two indices are equal.
Cleatly,
oy sil'"’"ej y if the two sequences contain the same elements,
g L
J1dr 0 otherwise.

Assume that indices range in {1,...,m}. We list below a number of
simple properties of the alternating symbol.

In general, we will use the summation convention for repeated indices.
However, in various instances, the summation convention cannot be used
or it may cause confusion. In such cases we will explicitly write the sum-
mation symbol or warn that the implicit summation is not performed.

We first note that o o

8111...1.,,‘,1 _ 811...1,,,,1 (1‘3‘1)

Jiodme1 J1dme1’
If either i, = i orjp :.jq for some p # g, p,g = 1,...,m—1, then both
sides vanish. Assume that each of the two sequences contain distinct in-
dices. Then, since the m — 1 elements in the sequence (iy,...,i,,_1) belong
to (1,...m), they contain all the numbers 1,...,m except for one, say k .
Hence, in the sum over the repeated i all terms vanish except for the term
for which i =k, the missing element. It follows that in a non-vanishing
term the elements of the sequence (j;,...j, ;) also contain the elements
of the 1,...,m except for k. This means that actually there is only one non-
vanishing term and its sign depends only on the number of transpositions
needed to arrive from the i-sequence to the j-sequence.
Similarly,

Hedgiyed,  (m=7)l
il...ipkl...k, (m _ r_p>! g’klkr (1.3.2)

The elements of the given sequence (jy,...,j,) determine the values that the
repeated indices may assume—the m—r values required to complete them
to {1,...,m}—such that no two superscripts will be equal. This implies
that for nonvanishing terms the k-sequence contains the same elements
(possibly in different order) as the j-sequence. Thus, each non-vanishing

term in the sum on the repeated indices is Sﬁjlg , independently of the
ok



1.3. ALTERNATING ARRAYS 5

values of the i-indices. The number of such non-vanishing terms is the

number of ways you can assign the m—r remaining values for the p repeated

indices (choose p symbols out of m —r symbols), i.e., (m—r)!/(m—r—p)!.
In particular, for for r=0,

iy m!

I TR 13.3
’1""19 (Wl _p)| ( )
From the definition of the alternating symbol we also have
il J]..]r A | i1 dy i J ) i
&gk, Tk G T e (1.3.4)

Once the indices iy, ...,ir and ky,...,k, are given, for nonvanishing values
of the alternating symbols, the jj,...,j indices should be obtained as per-
mutations of these indices and there r! such permutations that we have to
add up. Similar arguements lead to the slightly generalized rule,
Lendy J1edpP1e-Mp 9 1l llp
elre le . 1.3.5
J1-+Jy kl ...... kr+P kl ...... k1’+}9 ( )
Remark 1.3.1. It is noted that if one requires that the sequences of
indices such as iy,...,i, are of increasing order, i.., i, < i,41, then some
of the expressions above assume simpler forms as the sequences cannot
be permuted any more. Using parenthesis to indicate sequences that are
ordered, e.g, (i), we can write for example
i 0)_ i
€5k = Ei (1.3.6)
Permutation mappings. If the sequences i = (il, e i,) andj = (jl, ... ,jr)
contain elements from the set {1,...,r}, then there is a bijection

p{l,..rt—A{1,..r}
such that j = p(i), or j, = p(ig). It is noted that a permutation mapping is

any bijection on a finite set

p:{ab,...} —{ab,...}. (1.3.7)
However, once the elements of the sets are enumerated, the permutation
piat,....ar} —{a1,..,a:}, (1.3.8)

may be regarded as a permutation on the set {1,...,r}. Conversely, a per-
mutation p: {1,...,r} — {1,...,r} induces a permutation of a sequence

The sign of the permutation p is defined by
sign(p) = sﬁ(l)"'lﬂ(r) — gP(1)p(r) (1.3.9)
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Cleatly,
81‘11(.1.)....;;( ) = sign(p). (1.3.10)
In addition, the definition if the permutation symbol is equivalent to
Jak @ W ko) ke
111122 iy = ZSlgn 11 15 B ZSlgn 5 P 51'; o .51}}0 :
(13.11)

Evidently, on the sum over all permutations of {1,...,r} above, there at
most one permutation for which the product does not vanish. Equation
(1.3.11) is usually referred to as the e — 6-identity.

Ifg: {1,...,14 = {1,...,1} is another permutation, then

° op(r 1))..q(p(r 1
PO el )T = sigm(a) sign),

sign(gqep) =¢
Note that since the inverse permutation mapping p‘l involves the same
number of transpositions as p, sign(p~!) = sign(p).

1.3.2. Alternating Arrays and Anti-Symmetrization. An array of
degree r, wj, i, i1,...,ir €{1,...,m} is alternating or completely antisymmetric
if

Wiy...i, = gjl jr

1. iWj..j» nosum on repeated indices, (1.3.12)

or alternatively, w,;) = sign(p)w; for any permutation p. Clearly, the al-
ternating symbol is an alternating array—the unit alternating array. Thus,
the components of an alternating array reverse their sign under any trans-
position. Using an ordered sequence of indices, the definition may be
written as

wj=eawg. (13.13)
If we want to use the summation convention for repeated indices, the
equation above should be changed to

1 1
1 Jr L= J .
1,.! i1y Wj,..j» Of  Wj=—&Wwj, (1.3.14)

Wiy .y =
as both the alternating symbol and the alternating array change sign under
any permutation.

Let A =(A;, ;) beany array, i.e, not necessarily alternating, The array

A induces an alternating array Alt A = (AltAj - '.jr) by

1 .4 1 ;
(AlcA); 4= 8111 A, or (AltA), = wl &Ai. (1.3.15)
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Again, the factor 1/r! can be avoided if we use ordered sequences so that

(Alea); =V (1.3.16)
Alt A is indeed alterating as
1 11
ﬁ Ej (AltA)k = F Ej F SkAi,
= l‘ei.Ai (using 1.3.4), (13.17)
rl )

In addition, the Alt operation is a projection in the sense that it leaves
alternating mapping unchanges. If w;,_; is alternating, then,

L
(Alew); =3 G (13.18)

—wj (by13.14).

1.3.3. Spaces of Alternating Arrays. From the definition of an al-
ternating array w of degree r over a space of dimension N =, it is clear
thatits components are not independent and that some of its components
vanish identically. Specifically, it is clear that if the components w; are
given for all increasing sequences i = {iy,...,i}, 1 <ij <ip---<i, <N, then
all other componetns may be obained by the anti-symmetry condition in
1.3.12.

Let (i) be an increasing sequence of r indices. We will use the notation
e; for the alternating array such that

iy _ ()
(e)=¢" (1.3.19)
Cleatly, there are
2 (N _ N!
CN_( r )_(N—r)!r!

such arrays. For the collection of distinct sequences (i), the alternating
arrays {¢'} are linearly independent. For if aj;ye' = 0, then,

J
= (e (1.3.20)
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It follows that the CN alternating arrays {e}, form a basis for the space
of alternating arrays and that every alternating array of degree r may be
written in the form

w=we. (1.3.21)
The dual basis {e;}, of the space dual to the space of alternating arrays,

satisfies

ej(ei) = E(I.) ej(w) = W(j)- (1.3.22)

1.3.4. Exterior Product of Arrays. Let w = (wj,..;,) and 7= (7j,.. 'jp)
be two alternating arrays of degrees r and p, respectively. We wish to define
a product, the exterior product, of the two arrays that will give us an array

w AT of degree (r+p) by

1 vy,

Kty = —(r—}—p>' Skl ...... krtp w,'l_“,'r’glmjp, (1323)

<W/\T)k1...kr+p = Alt(w®T)k1..
or
_1
(r+p)!

If we use only increasing sequences, we can use Equation (1.3.13) and
write

(wWAT) = eEaJiTj. (1.3.24)

j o 40  (m)
Skwl’(J—Eksi w(l)sj T(

=rlp! el((l)(m) W (1) Tem) (1.3.25)

m)

so the definition of the exterior product may be written in the form

! D(m
(WAT) = (r—fp)!gl(‘)( )w(l)r(m). (1.3.26)

Exampie 1.3.2. For the particular case where w is a 1-dimensional
array, one has (suspending the summation convention in the third row)

(wAT) __7 glmmp) o
kkpet ™ () ke © (m1..mp)”

1 ml(ml..ﬁtl...mp_,_l)

P+ 1 Ekl ......... kp+1 ZT(

mlm”/ﬁlmmwrl)’

_ 1 P+1<_ )1_1 ml("”l---”?‘l-"mpﬂ)w . ~
Pl 5 T
1 or
VRS 121<_1> Dl Tk k1)

(1.3.27)
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It is noted that it is not necessary to use increasing sequences only in the
equations above and one can write alternatively
1 jmi.m

iy
WAT =——¢
( )kl--~kp+l (P + 1)[ klmkarl

1 MY e Ry ]

w] Tml...ﬂ’lp;
(1.3.28)

Wiy Ty ...y g1+

Now in the sum over m it takes values from the fixed sequenceky, ..., k1.
When mj = ki, Wy, = wy, and

mlmlmﬁ"l'"merl | mlml-nW‘anerl ! m1-~~ﬁ"l~~~mp+l
€ = (— ~ = (- & ~ ]..3.29
SR k’erl ) klklmkl"karl ) k1-~~kl~~-kp+l ( )
Thus,
1 P+1 -1 ml...r'hl...m +1
WAT - P o T ,
( b, kol (p+1)! l;( ) Rpokiky g R L
1 P+1 -1 ml..ﬁzl...m
p+1
= - s ~ Wi T, n ’
(p+1)! l:Zl< kl...kl...kp+1 m Wll...ml...mp+1
p+1
_7p -1
(p + 1)' 1:21< ) Wy Tkl...kl...kp+1’
+1
-1t (-1 wy
p + 1 = { kl---kl---kp+1

(1.3.30)

In case A and B are two arrays of degrees r and p respectively, one can
set

AAB=(AltA) A (AltB). (1.3.31)

It follows that

1 fevip jredy 1p L 1 mym,
k = — gk k ‘gi i Allly 1S
Ry+p (r+p)| Loer oo r+p !l el P' J1-dp

(AAB),.

ml...mp;

1 Lh..lymi..m
wlymymy
..l Bml...mp;

using the identity (1.3.5). Thus, one can define the exterior product of
any two arrays by

AAB=Alt(A®B)=(AltA)A(AltB). (1.3.32)
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It is noted that the exterior product is associative. For arrays A, B, and
C of degrees r, p, and s, respectively, we have

((AAB)AC)y, .k s =
__ 1 i1wirpfy
(r+P+S)' Ek] ...... kr+p+5 AN B)tl...ipﬂqlmjg
1 ieirapiyds Llrmy..my

(r+p+s)'(r+p)' Ry kegps e Irtp 11---lme1"'mP(:j1"~j;’

— o I A B, G
=(AN(BAC)),. Kripis
(1.3.33)
and one can write
((AAB)AC=(AA(BAC))=AABAC. (1.3.34)

A number of authors use a somewhat alternative definition of th ex-

terior product. See the discussion in [War83, pp. 59-60].

1.3.5. Inner Products. Let w = (wj, ;) be an alternating array and

let A = (A*1+*) be any array with p < r. The inner product, denoted as
AL w oripw, is the alternating array of degree r — p defined by

(Asw), .| =w g A (1.3.35)

i1drp endr—pk1.k

Cleatly, A1w inherits the skew-symmetry property from w. Since w is
alternating, one has by Equation (1.3.14)

(Asw), . = =gl Ak (1.3.36)

i eeniy—p 7l 11 dr—pki..ky Jl oy

In addition, using Equation (1.3.14),

o Jl"""Jr 1...p ky...k
(AJ w)il...i,«_p 1,] 811 tf—P 1. lp pl kl k Jl .]YA P
1 .
A ey l...l (1.3.37)
= 1 G, Y (AleA)

and we conclude that

AltA w=Aw. (1.3.38)
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We note that for an additional array B of degree g such thatr=p+g4,
one has

Ba (AJ a)) =w L Ai1...ika1..,k1.

M eettypeg — Oty git.igky kg
It follows that
Bi(Asw)=(A®B)aw=(AAB)w. (1.3.39)
In the particular case of an alternating array w and an array A both
having the same degree r, we write
Avw=w(A)=w-A=w, j, AM". (1.3.40)

For examle, for the r arrays of degree one al,...a"and r arrays of de-

gree one vi,...,Vy,

(A na) (o1, vy) = (@A A ’)11.'.irv§1...V;’r,

1 pk '
1- 1 r ! cen lr
=18 Dékl g vy

(1.3.41)

For r =2, we get

(anB)(v,u) =(anB)(vAau) =} pq l:BJV ul,
=1(aw [Sjuj —aju ,BJVJ) (1.3.42)
= 3(a(v)B(u) —a(u)B(v)).

Equation (1.3.41) may be presented in an alternative form. Using the
¢ — 0-identity in Equation (1 3.11), we can write it as

k .
(' A na) (v, vy) ngn (51”(’)&; o, il S

We note that for [=1,...,r,

00 =00 =0 ), (1343)

and setting Mlj = aJ(v)), we have

WA A )1 vr) ngn Mzi(l)MJ;@) M)
(1.3.44)
- k k k.
- F Zekl ky...ky M11M22 h .M" ’

Using the definition of the determinant (see Section 1.3.6) we may
finally write

S % det[M] = = det[(@i())].  (1345)

r
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In case the alternative definition of the exterior product is used as dis-
cussed in [War83, pp. 59-60], the 1/r! factor does not appear in the
equation above and analog expressions proceeding it. We interpret the
difference in the value as follows: There are r! identical simplexes in a pat-
alleliped. Thus, while in our definition v A... Av, is interpreted as the at-
ray associated with the oriented simples generated by these vectors, in the
alternative definition, it is interpreted as that associated with the oriented
parallelepiped.

1.3.5.1. Duals. We now consider the particular case in which the al-
ternating symbol is used as the alternating array in a contraction opera-
tion.

Let (v1,...,v™) € R” be a vector. There is an induced array, the dual

Vit g1 = 8ij1~--im—1vl

which is clearly completely antisymmetric for transpositions of any pair of
its indices. We note that in the expression for the definition of ¥ there is
only one non-vanishing term in the sum and that the sequence (j;...j,_;)
contains all the values 1,...,m except for the value i for which Vg =
+v'. Thus, each sequence (j1»-++»j,,_1) may be obtained from the sequence
(1,...,7,...,m), where the “hat” denotes an omitted item, by rearrange-
ment. It follows from the antisymmetry of 7 that there is only one inde-
pendent component having a given collection of indices. The other terms
can be obtained from it using the antisymmetry. We may choose this
component to be the one with increasing indices determined by the miss-
ing 7. Thus,

~ _JL.am~ ~
Vi g1 = 81»1“%711/1,,_1,"”4, no sum over 1.

It follows from the definition of 7 that
—~ i-1 . .
1. 7.m=(-1)""¢, nosummation on i.

Using the “hat” notation and renaming indices in the definition of the dual
(i is renamed toj, and for [ > p, j, is renamed tojp+1), the definition of the

alternating symbol implies that
= . _(_1y1 ‘
V_]l"']P"'Jm_( 1) Ejl...jp...‘mvjp'

Given a completely antisymmetric array Wiy 1 such that the indices
Jir-+rjy,—q € 11,...,m}, one may define a dual vector @ € R™
i

- —_ lJlJ -lw:
w € "W

(m—-1)!
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As
o _ d.a.m R ~
Wjljp1 — Sjlnd‘mel...l...m; no sum on i,
one has
. 1 o _
~i__ Uileodyye1 g lovTonttt N
w'= e dm-1g: M
= g’l"-l-"mwl._i“m (no sum on the i, 7indices)

It follows from the last equality that the two operations are inverses of one
another, i.e.,, V' = v\

1.3.6. Determinants and the alternating symbol. Let [A] = (Aj),
i,j=1,...,m, be a square matrix. The determinant of [A] is given by

det[A]=¢, ; Al Ap.

i1l
We note that
g, . AN Alm = JlIm AL Al
eely™ 1 m! e Jp I

This follows because each non-vanishing term in the sum on the j-indices
may be transformed to the expression for the determinant by a rearrange-
ment of the A-factors with a corresponding rearrangement of the i-sequence.
Cleatly, there are m! terms in the sum and we conclude that

det[A] = = li=in At ... A,

m! 1eeim™ Jp

This expression makes it clearer that det [A]T = det[A].
Rewriting the expression for the determinant we obtain the following

. i) Jm—
det[A] =g; ;AL Al Ay
= Ay, A A
using the definition of the dual array. If we use

—~ 1 Qo1 T~

Alh---lﬁq - (m—1)! €Ly S Lidimo
which follows from the antisymmetry of Ayj . j , We can continue the
e

previous equalities to obtain

1 A o . .
— . 1etm—1 AJ1 . Jm-1
- (m _ 1>' Alll...lm,lsjl___jm_lAz Am .

det[A]
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This expression is actuaﬂy the rule for the expansion of the determinant

by determinants sjl J’”‘ 1AJ L A1 of the matrices obtained by deleting
m—1

the first row and the various columns of the matrix and multlplymg them
by the elements of the first row with the appropriate sign, Alq i, inour
case.

We note that an antisymmetric array A;,_; is completely determined
by the values of its of elements for increasing sequence of indices, i.e., i; <
ip <---i, as the other values are determined from the antisymmetry. Thus,
if we use only increasing sequences of indices in completely antisymmetric
arrays (not including the alternating symbol), Ay; ; | in our case, then
the division by (m —1)! is not needed and we write

AT edmet gt pdmel e
det[A] = A111~~~1m—1£jl..jm71A2 Ay, 1 <ip < <ipy_q.
In the sequel we will sometimes use increasing sequences of indices and
will indicate this in the notation. ,

Similarly, if we carry the analog calculation for A} for any value of r

we have

J Jm
dec[A] =¢j,j, A7 - Ay,
= (—1)r_ & iy ewTroyy AJ}’AA --~Ajﬁ---AJ;”

(—1)r_1/\ 0] eeee lm 1 J1 /J\r Jm
ZW(A) E. A Ar"'Am'

elp—1 J1eeTredom
The last expression may be modified further by shuffling using the per-

mutation mapping p: {1,...,m -1} —{1,...,7,...,m} to obtain

= (=1 A) g, AT AT AT

0] e Ly lAjl jg]\r . Ajm o 8111 ...... im_lAjp(l) . .Ajp(m—l)

1o Treesdg r M T T p(1) p(m-1)"
Since
o Si.l ...... im-1
J1edred, prlop(l)"'Jp’loP(m—l)
. —1\ 7. w1
= S19n €. :
() Jp(1)Jp(m-1)
_ 51gn(p) 1o el 1

Ity dpton)
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this may be rewritten as

0] eeeee im—1 AJ1 /77 Jm . e w1 jp(l) .jp(m—l)

gl AL AT - A =sign(p) )el T AF L A

J1edredm 1 r m g <p)) .]p(l)"t]p(m—l) P(l) p(m_]‘)
1 gkl...km_lgi'l"'im—lAjl jm—l

- (m—1)! Jidme1” ke k-1’

where we renamed the sequence p(1),...,p(m—1) toky, ..., k,_1 sosign(p) =

gk1-kn-1 and renamed

Jp(yr++ 2 Tp(r)r++2Jp(m-1)

£ jqy+e-rj,,_1- We conclude that

det[A] = (_1)7_1 (/\) B Y NN Y o QS S

(m- 1)!)2 {0 ERUVES R P M a1 k-1
where the ((m— 1)!)2 may be removed if we use inceasing sequences of
indices only in the alternating tensors.

1.3.7. Differential Forms and Exterior Derivatives in R”. A smooth
field over R™ of alternating array of degree r is a differential r-form in R™.
All the operations defined above for alternating arrays may be applied
pointwise to differential forms. For example, the exterior product of an
r-form w and a p-form 7 is the (r+ p)-form w A T defined by (w A T)(x) =
w(x) At(x).

If vq,...,v, are linearly independent vectors in R, it is natural to in-
terpret vy A--- A v, as the oriented r-oriented area of the simplex deter-
mined by these vectors. Thus, the area parallepiped determined by these
vectors is rlvy A--- Av, For an alternating array w of degree r, the value
w(r!vy A--- Avy) is interpreted as a flux of a certain property across that
parallelepiped. For an r-form w in R” this interpretation can still hold
if we regard the vectors as infinitesimal vectors originating at some point
in R™ and use the value of the form at a point within the parallelepiped
determented by these vectors.

If we have r+ 1 vectors, they generate an (r+ 1)-dimensional paral-
lelpiped to which we will refer as the box. The various faces of this box
are obtained by omiting one vector at a time. Thus a face is determined
by {v1,...,7% ..., v,41}. The positive orientation of the face determined by

these vectors is defined to be (—1)’6_1 and so the oriented area of the face

is determined by (—1)k_1r! VI A+ AT, A--- A, 1 Evidently, there are two
such faces seperated by the vector vj,. Thus, using V,f= Vf(v) to denote
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the directional derivative of the function f in the direction of the vector v,
the quantity

Vo, {w[(—l)k_lr! VIA AT A A v,+1]} nosumonk, (1.3.46)

indicates the difference in the flux between these two faces. Adding up
the differences on all pairs of faces, the total flux out of the box is

r+1
=Y (-1 'V, fwlvi A AT A A1) (1.3.47)
k=1
We have
WL A AT A AV 1) = wil..;k_"mlv’ll ---ﬁif e v;’ﬁ (1.3.48)
and
R a . . ,r
Vo lwlinndonav)] = o=@, 5 vl (13.49)
Thus, the total flux out of the box is
r+1 0 . . .
=Y ()L - i i
D= k:1( 1) ! Fwey Wi i V1V Y (1.3.50)

Regarding 0/0x'* as the i,-component V;, of the gradient array V, we may
use Equation (1.3.30) to write

r+1 1 O r+1 o1

Z (_1) Ox'k wil..:i\k...irﬂ = Z (_1) Vik wil..jk...ir+1’ (1 3 51)

k=1 k=1 o N
=(r+1)(VAw), ;.-

The alternating array V A w of degree r+ 1 is traditionally denoted by dw
and is referred to as the exterior derivative of the array w. Thus,

k-1 0
(_1> m i1~~-7k~~ir+1’
= ; (1.3.52)
STy Tml...mp;

e £ . -
(r+ 1)1 bl G

where Example 1.3.2 was used in the second line.

We conclude that

®=(r+Ddw(v,...,v,41),

1.3.
==dw[(r+1)vi A...,Av1], 135)
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and note that (r+1)!v1 A..., Av,,1 is the oriented “volume” of the box.
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CHAPTER 7

Extensive Properties and Fluxes—Analytic
Aspects

1. Multivectors and Differential Forms on Manifolds

Differential forms are roughly the variable counterparts of multilin-
ear forms presented in the previous chapter. Thus, while alternating
multilinear forms operate on multivectors (or sequences of vectors that
induce them) to give the amount of a certain property they contain
within their capacity, differential forms operate on infinitesimal capac-
ities generated by (infinitesimal) tangent vectors to yield the infinites-
imal amount of property they contain. These infinitesimal quantities
can then be integrated to give the total amount of the property within
finite regions as will be presented in the next section.

1.1. The bundles of multivectors and forms. The construc-
tions of the previous chapter on spaces of alternating forms associated
with a vector space W may be applied to the tangent space T, M of any
particular point. Thus one obtains the space \" T, M of r-multivectors
at x. The union of the various spaces of multivectors is the bundle of
r-multivectors \" TM, i.e.,

ATMzU(AﬂM)

zeM

Similarly, we have the space A" (T M) of r-forms at x and the bundle

of r-forms
AWM:U(AﬁM)
reEM
Clearly, for r = 1, A' T*M = T*M and \° T*M = R.

The bundles of multivectors and the bundles of forms have natural
projection mappings A" TM — M and \"T*M — M. These map-
pings assign to a multivector, or respectively an alternating mapping,
the point x such that T, M is the basic vector space for the construction
of the multivector or form.

19



1. MULTIVECTORS AND DIFFERENTIAL FORMS ON MANIFOLDS 20

These spaces have natural manifold and bundle structures as fol-
lows. Let (z!,...,2™) be local coordinates in an open set U C M.
The coordinate system induces at any point in U, a base

9 9
ot D

of T,M and a base {dz?,..., dz™} of T M. Thus, these bases induce

bases
a A A a 2 < e & 7
axil ax“ Y 1 T

of the spaces of multivectors, and bases

Az A Adat, i < e <y,

for the spaces of forms at the various points. Thus, an element v of
N T.M for some x € U is of the form

dxh drir’ ! "

where sum is implied over all increasing sequences of indices. Similarly,
an element w € " T M is represented in the form

W = Wiy i, Azt A - A d:ci’“, <o <t

In case we do not restrict the sequences of indices to be increasing,
the antisymmetry of both the arrays of components and the wedge
products imply that

| 0 1 . .
= —phir A A —— = = wi o dX A ir
= 0 e A A e w o Wiy i, dz™ A Adx'.
Thus, the local coordinate representation of v is (¢, v"r) and
the natural projection is represented by (z*,0%) — (z*). The local
representative of the alternating form w is (2%, w;, ;. ) and the natural

projection is represented by (z%,w;, ;) +— (z%).

v

1.2. Multivector fields and differential forms. We recall that
a section of a bundle 7: £ — M is a mapping £: M — E such that
mo& = 1p—the identity on M. Thus, sections of the bundles of
multivectors and forms are mappings v: M — A"TM and w: M —
AN T*M such that v(z) € \"T,M and w(z) € A" T: M. Note that
for simplifying the notation we use for sections the same scheme of
notation as for the objects in their co-domains. An rmultivector field
is a smooth section of the bundle of r-multivectors, and an r-differential
form is a smooth section of the bundle of forms.

Thus, locally, an r-differentiable form may be written as

w(x) = wyy 4 (x") da™ A+ Ada'r,
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where w;, i, 91 < -+ < i, 1 < i < m are real valued functions
on R™. Hence, the local representatives of the mapping w are the
mappings (z°) — (2%, w;, i (27)). The collection of mappings w;, ;.
will be referred to as the principal part of the local representative.

Various operations on alternating multi-linear forms are extended
to differential forms by performing them on the values the differential
forms assume i.e., performing the operations point-wise. For example,
we have addition of forms w; +w, and exterior products of forms wq Awsy
defined by

(w1 +w2) (@) =wi(z) +wa(z) and (w1 Aws)(z) = wi(z) Aws(z).

For an r-differential form w and r vector fields vy, ... v, w(vy,...,v,)
is the real valued function

W(Ul, s 7’[),,,)(517) = W(.Z') (U1<ZL’), s 7UT(’I)>'
If we have a differential r-form w and a vector field v we have the
(r — 1)-differential form vaw(z) = v(z)aw(z). If k: M — N is a
smooth mapping and w is a differential form on A then x*(w) is a
differential form on M defined by

K (w)(v1, ... 0) = w(Tk(v), ..., Tk(v,)).
Obviously, similar operations may are defined for multivector fields.

fopicicxTHE FOLLOWING COULD APPEAR IN THE AL-

GEBRAIC CONTEXT EARLIER AND MAY BE REFERRED TO
HERE #fflitddiiix Tet k: M — N be a smooth mapping be-
tween two m-dimensional manifolds w an m- form on N. Thus, for
local coordinate systems x' in M and y' 1n N, k is represented by

the m functions 7 : R™ — R such that /" = k(z)’" = &7 (2%). The
differential form w is represented as

w(y) = W (Y ) dy" A A dy™,

for a single real valued function w;_,, (as 1...m is the only increas-
ing sequence of numbers in that range). We wish to find the local
representation of £*(w). Note that locally,

k(W) = K" ()4, dT'A .. AdZ™,

* . 0 0
K (Ld)lm = K ((U) (%, ey &._m)

In order to determine k*(w)
we observe that

where

we use the definition of k*(w), where

1. Tm )

0 o,
T ) =k, —;
(5 ) =5
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to obtain

Using the expression for the determinant of a matrix and the definition
of wi. ., we finally get

K (W)1..m = det(/{f;)wlxmm/,

SO
K (w) = det(/ifil) (Wyr g © K) dT' A - - - Ad™.

This result clearly holds in the particular case where M = N = R™.
In addition, it applies in the case where kK = 1o, K* = 1 pm 7, the
identity mappings on a manifold and the bundle of forms. In this case,
for two coordinate systems (z',...,2™) and (y",...,4") with inter-
secting domains, the mappings /faj represent the coordinate transfor-
mation on the intersection and /ﬁzfi, is the derivative—Jacobian matrix.
The local representatives of an m-differential form w will be of the form

W=wi mdZ A AdZ™ = w1 dyll ARREWAN dym/.

Hence, the last expression gives the transformation rule

oy’
W1y = det( Y . )w1._.m
oxt

for the of representative of the m-differential form.
If one performs the analogous calculation for an m-multivector field
v the resulting transformation represented locally as

8 a / / a a
1..m 1'..m
b=0v — N AN7—=0 — NN,
Ox! ox™ oyt oym

the resulting transformation is

o'\ v
1..m 1..m

0 = det - o :
© ( oxt )
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2. Integration of Forms

Prerequisites: Simplexes (particularly, the r-vector of an ori-
ented r-simplex in R” and that of an r-chain in Whitney
pp. 80-81), open neighborhoods, differentiability, orientation,
affine space, homeomorphism, transformation of the represen-
tations of forms, compact support, manifold, manifold with a
boundary, partition of unity, pullback of vector bundles (used
in the section on restriction of forms), bases for tangent spaces
and dual spaces, equivalence relations and classes, (m — 1)-
multivectors are simple,

References: Abraham, Marsden & Ratiu; Whitney; Spivak

Notes: See notation in the section on local representation of the
flux form etc.

2.1. Overview. This section presents the main aspects of Rie-
mannian integration theory on manifolds. The immediate application
of integration we have in mind is clear. We want to calculate the to-
tal amount of some extensive property in a certain region in space.
We have made a step towards integration theory in the last chapter.
The multivector viA ... Av, induced by the infinitesimal simplex con-
structed by the tangent vectors (vy,...,v,) at T, M is conceived as the
oriented capacity of the simplex to carry an extensive property. Then,
the application of a form representing the property under consideration
to the multivector yields the infinitesimal amount of property in that
infinitesimal simplex. Roughly, in order to calculate the total amount
of property in a region, one should subdivide the region into small sim-
plexes and add up the amount of the property in the various simplexes.
While this prescription is enough in order to follow the continuum me-
chanics track, a few complications to this naive description should be
addressed.

Firstly, it is not clear what a small enough subdivision is because
we do not have a metric that will enable one to measure the “size” of
the simplexes. Secondly, one has to make precise what is meant by
the subdivision and how it is being constructed. An important theo-
rem, the triangulation theorem, asserts that any differentiable manifold
may be divided into simplexes. On the other hand, the theory of in-
tegration on chains considers formal linear combinations of simplexes
as domains of integration thus bypassing the problem. For domains
of integration that are orientable manifolds with boundaries the basic
tool is localization using a partition of unity (see 2.10 below).
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2.2. Simplexes and Chains on Manifolds. Roughly, a simplex
in a manifold is the image of a simplex in a vector space under a smooth
mapping (see Figure 1).

F1GURE 1. The image of a simplex on a manifold

More precisely, we first consider a model simplex, the standard r-
stmplex, as the set

ATZ{(ml,...,xT)E]Rm 0<a2<l, ingl}
i=1

(see Figure 2). The vertices of A, are the r + 1 points ¢o = (0, ...,0),
¢ =(1,0,...,0), ..., ¢ = (0,...,0,1).

The faces of the simplex are numbered such that the i-th face is
that opposing the vertex ¢;. Again, the formal definition views the face
as the mapping k/~': A,_; — A, of the standard (r — 1)-simplex into
the corresponding portion of the boundary, i.e., the O-th face is given

by
r—1
kNt 2 = (1 — ij,xl, . ,x7_1>,
j=1
and for i # 0
Etat o2 = (b0t Lt

Formally, singular r-simplex on a differentiable manifold M is a
smooth map s: U — M, where U is an open neighborhood of A, in
R". We will often abuse the notation and write s: A, — M. The
images under s of the vertices of the standard simplex are the vertices
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ki (Ar)

q0 kL (A) (1,0) =
F1GURE 2. The standard 2-simplex

of the singular simplex. The faces of the simplex are defined as follows.
One can extend the mappings k' to an neighborhood of A,_; in R"~*
using the same formula as above and define the i-th face of the simplex
as the mapping sk ': V — M (see Figure 3).

(0, 12

k(A1)

Ay
vy
W kA) (L0 o

FIGURE 3. A simplex on a manifold

The standard orientation on R” (using the standard basis as an ori-
ented set of vectors) induces an orientation on the standard simplex
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and the mappings &/~ induce orientations on its various faces. Simi-
larly, the mappings s and s o k] induce orientations on their the images
of the simplex and its faces. (see Figure 2), and s induces an orienta-
tion on its image. A formal linear combination a”s, of simplexes on a
manifold is a chain. This induces an infinite dimensional vector space
structure on the space of chains on M. The chain 1s is defined to be s
and (—1)s is interpreted as that simplex corresponding to s but with
the reverse orientation. Thus, s + (—1)s = 0 has a simple interpreta-
tion. Naturally, if in a chain is given as ¢ = Zp sp for r-simplexes s,
whose images do not intersect, then it is interpreted as being associated
with the union of their images [, s,(4,).

The boundary of an r-simplex s is defined as the (r — 1)-chain

r—1
Os =Y (~1)'sokl ™
i=0
where we do not use the summation convention for the various faces.
The boundary is extended to chains by linearity, i.e.,
T
d(aPsy) = Z(—l)iapsp o k.
i=0

2.3. Linear and affine simplexes and chains. We now consider
the situation where the ambient manifold M is replaced by a vector
space W and the simplex mapping s: A, — W is either a restriction
of a linear mapping or an affine mapping R" — W. In the linear case,
the simplex and its orientation are uniquely determined by the images
v1,...,0, of the standard basis elements e, ...,e,. In the affine case
the simplex and its orientation is uniquely determined by the images
Do, P1, - - - ,pr Of the vertices of the standard A,. Alternatively, an affine
simplex is determined by py and the vectors vy, ... ,v, where v; = p; —po
(see Figure 4). Clearly, vy, ...,v, are the images of the standard basis
in R” under the derivative of the simplex mapping—the linear part
of the affine mapping. In the sequel we refer to these vectors as the
defining vectors for the simplex. Clearly, the elements ey, ..., e, are
the defining vectors for the standard simplex.

An affine r-simplex induces an r-multivector v by

1
b= —v A Ay,
rl

where vy, ... ,v, are the defining vectors. The 1/r! factor appears in the
definition as it is the volume of the standard simplex.

An affine chain is a formal linear combination of affine simplexes.
A linear r-chain a”s, induces an r-multivector v = a”v,,, where v,, is the
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€T S

q2
q0

v
€3
Vg — V1 V2
AV
q1
qo el ! ~\
q2

FIGURE 4. Linear and affine simplexes

multivector associated with the r-simplex s,. Clearly, the multivector
induced by the simplex can also be written as
b=uv; A(va —v1) A A (v, — vp_q).

Next, we give some useful examples of affine chains.

2.3.1. The boundary of the standard simplex. The defining vectors
for the i-th face are (k] 1).(e1),..., (kK ).(e,_1). By the definition of
the k~'-mappings,

e —ep,...,e.—ey, fori=0,

€r,...,€,...,e, for i > 0.

(k) u(er). s (K (ers) = {

Hence, taking into account the orientation (—1)*, the (r—1)-multivector
v, defining the i-th face of the standard simples is given by
1
(r—1)! (e
(=1 5

———e AN---ANe;N---Ne for i > 0.
(r—1) " "

When we expand the the expression for vy and drop the vanishing
exterior products where e; appears more then once, we obtain

—e)A---N(e, —ep) fori=0,
v, =

vy = [e2 N Ne,—eNegA---Ne,

(r—1)!
—e2/\e1/\e4~--/\er—---—eg/\---/\er_l/\el}.

Now, skew-symmetry implies that these equation may be rewritten as

JR— ; .
e (T ;(—1) e1N - NG ... Ne,.
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Comparing this last expression with those pertaining to v;, for ¢ > 0
we conclude that
,
Su-0
i=0

i.e., the multivector associated with the boundary of a standard simplex
vanishes.

2.3.2. The boundary of an affine simpler. Let s be an affine r-
simplex with defining vectors vy, ...,v, and consider its boundary 0Js.
As v; = s.(e;), i = 1,...,r and the defining vectors for the j-th face,
g=1...,7r—1, are

(so k;’l)*(el), (8o k;’l)*(er,l)
= 5,0 (l{:;*l)*(el), C., 840 (k;fl)*(eT_l),

the linearity of s, and the previous example imply that the defining
vectors of the j-th face are

Vg —V1,...,U0 —vq, forj=0,and wvy,....0,...,0, for j > 0.
Thus, the (r — 1)-multivectors associated with the faces are

1

e
A W) .
|vl/\--~/\vj/\---/\vr for j > 0.

(r—1)

Expanding the expression for vy as above we obtain again

—v) A A(v, —vy) forj=0

1 a ; .
% =~ ;(—1) VIA - AGA .. Ay,

and we immediately conclude that the multivector associated with the
boundary of an affine simplex vanishes. Furthermore, from its defini-
tion, it follows that the multivector associated with the boundary of
any affine chain vanishes.

2.3.3. Prisms. The standard r-prism is defined as

II, = [0, 1] x A,_; CR".

The volume of the standard prism is 1/(r —1)! and since the volume of
A, is 1/r! we want to regard the prism as a chain made of r simplexes.

A chain structure (actually a complex) for the standard prism may
be constructed as follows (see [11, pp. 365-366] for details). Let p;,
1 =1,...,r be the points defining the standard simplex, i.e., py is the
origin and p;, for ¢ > 0 is on the the i-th axis. Then, denote the vertexes
of the prism as follows: ¢; = (0,p;) and ¢, = (1, p;). Now, if the simplex
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7; is defined by its vertices 7 = qo - ¢iq} - - - ¢, then, I, = >, (=1)'n;
(see Figure 5).

q;

FIGURE 5. A prism complex

An affine prism is an affine mapping applied to the standard prism.
Clearly, this construction holds for any affine prism.

2.4. Simplicial complexes and triangulations. Chains are rather
general geometrical objects. In fact, every differentiable manifold may
be regarded as a particular type of chain—a simplicial complex.

A simplicial complex in an affine space can be regarded roughly as a
collection of simplexes that fit together. Specifically, simplicial complex
K is a finite set of affine simplexes having the following properties.
Each face of a simplex s in K is itself a simplex of K and whenever
two simplexes intersect they do so on a common face.

A simplicial complex Not a simplicial complex

FIGURE 6
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A triangulation of an m-dimensional manifold M consists of a sim-
plicial complex K and a homeomorphism ¢: K — M having the fol-
lowing property. For each m-simplex s of K, there is a chart (U, ¢),
defined in an open neighborhood U of s and ¢ o is an affine in s (see
Figure 7).

FIGURE 7. Triangulation of a manifold

The triangulation theorem due to Cairns (see Whitney [11, p. 124])
states that every differentiable manifold has a triangulation.

2.5. Integration of forms in R™. Let # be an m-form defined
on an open set U € R™. Then, ¢ may be written uniquely as the
product of a real valued function u on U and the standard m-form
de'A .. Adz™

6 = udz'A ... Ndz™.
The integral of 6 over a polyhedron K C U is defined as

/9:/ud:vm.
K K

It is noted that the sign of the function u is determined by the choice
of the natural basis in R” and the orientation it induces.

2.6. The transformation of variables formula. A stanrdard
result of multivariable calculus in R™ (see Apostol [2, p. 421] or Stern-
berg [9, p. 381]) is the transformation of variables formula for the Rie-
mann integral. It is concerned with a diffeomorphism ¢: U — 9(U)
of a bounded open set U € R™. Using the notation J = det(Dv)), it
asserts that for a continuous integrable function u defined on ¥(U),

/udym:/u]uowdxm.
U

Y(U)
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The formula aslo holds if the domains U, ¢ (U) are replaced by poly-
hedrons K C U and ¢(K) C ¢ (U).

The formula for the transformation of variables has a simple rep-
resentation using the definition of the integral on an m-form in R™.
Let ¥: U — ¢¥(U) C R™ be a diffeomorphism. Then, for an m-form
0 = udy'A--- Ady™ in a neighborhood of (K ), we showed in Section
1.2 that

V*(0) = J(uop)dx' A- - Adx™.

[ [
/MW¢m
_i/J(qu) d

where the sign of the integral is determined by the sign of J. In other
words, if J is positive, then,

[o=[ve
Y(K) K

We will refer below (see Section 2.9) to a diffeomorphism ) with posi-
tive Jacobian determinant as orientation preserving.

Intuitively, if 1*(0) is interpreted as the form representing the den-
sity of a certain extensive property and if a small affine simplex s is
represented by the multivector v = v1A - -+ Avy, /m!, then,

[we

may be approximated by 1*(6)(v) = 6 (¢ (v)).

For a general polyhedron K, we can use triangulation into a complex
of “small” simplexes, approximation and additivity in order to arrive
at the transformation formula (see Whitney [11, p. 87]). Thus, the
transformation rule for forms implies the conservation of the property
p under the diffeomorphism .

Hence,
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2.7. Integration on simplexes and chains. Let s be an r-
simplex on an m-dimensional manifold M and let w be a continuous
r-form defined in a neighborhood of D = s(A,). The integral of w over

D is defined by
/w:/w:/s*(w).
s D Ay

Here, s*(w) is the pullback of w to a neighborhood of A, using the
simplex mapping s. Let ¥: A, — A, be a mapping that may be
extended to a diffeomorphism in a neighborhood of A,, and set s =
s o). Then, using the transformation of variables formula we have

[

s'(Ar

~ [Gevrw

= / V(5" (W)

so the result is independent of the change of variables.

Let w be an r-form on the manifold M having a compact support.
Then, if ¢ is an r-chain on M, the integral of w on ¢ = a's; is defined
by linearity as

/w:Zai/w:Zai/w, D; = si(A,).
c g D; i S5

We note that in particular this may be applied in the case where
the manifold M is a vector space and the simplexes that make up the
chain are affine.

2.8. The mean value theorem for integrals on simplexes.
We recall (e.g., Apostol [2, p. 400]) that the mean value theorem of
multi-variable calculus asserts that if a function u is continuous and
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bounded in a connected subset D C R™, then, there is a point g € D

such that
/u dx™ = u(xg) /dmm.

D D
The mean value theorem for integrals has a particularly simple sim-
ple formulation for integration over a simplex s:
Let w be an r-form on an r-simplex s: A, — M, then, there is a
point q € A,, such that for ¢ = s(q),

o=@ (o).

S
where ¢ is the standard r-multivector in R", i.e.,

1
e = —eN...N\e,
r!

and e; are the standard basis elements.
Let the r-form s*(w) in R" be represented as

s*(w) =ue'A...Ne"

where u is a real valued function defined in a neighborhood of A,.. Then,
the mean value theorem for integration in R" asserts the existence of a

point q € A, such that
/ W= / udz"
s Ay

~u(q) [ dr

= w(q)(5:q(e))-

Ase=eiA...Ne. /1T, s.q(e) = siq(€1) A+ -Asiq(e,) /7!, the simplex
generated by the images of the base vectors (see Figure 8).

This version of the mean value theorem supports the intuitive ap-
proach to integration. We triangulate the manifold into a fine complex
and for each complex we simply evaluate the value of the form on the
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€3

‘q

Ay

61 xl

FiGURE &. Notation for the mean value theorem

image of the defining vectors. The division is assumed to be fine enough
so the value of s, and w at q are close to the respective values at the
origin of R".

2.9. Orientation. Let W be an m-dimensional vector space and
consider an element vy # 0 in the 1-dimensional space of m-multivectors
A" W. Clearly, vy may serve a a basis and any other multivector v
may be written as v = avg for a real a. If we ignore the zero element,
this separates A" W into two separate components, namely, those mul-
tivectors for which the coordinate a is positive and those for which it is
negative. We will refer to them as the positively oriented and negatively
oriented multivectors relative to vy, respectively. Clearly, any posi-
tively oriented multivector v}, will induce the same separation. Thus,
we refer to such a choice of a base vector and the resulting separation
as an orientation of W. If one chooses a multivector vy, v, = avy with
a < 0 as a basis it will reverse the separation. Hence, a vector space
has two distinct orientations.

The orientation of W may be regarded as a separation of the non-
zero m-simplexes in W into two separate collections. Thus, the simplex
formed by the vectors (vy,...,v,,) is positively oriented if vy A -+ A vy,
is. Assume that the simplex generated by (vy,...,v,) is positively
oriented and consider another simplex (v, ..., v,,/). Since the vectors
in each set are linearly independent, there is a nonsingular matrix A,
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such that vy = A%v;. Thus,

(VAR (Alll,v“) VANRREIVAY (A;L;,;L,Ulm>
:A?’..'Aizn’vil/\.'./\vim

= Eil...imA;_I/ ce A:;L"/?)l N Ny

=det(A}) vy A+ A vy,

We conclude that the simplex generated by (vy/,...,v,,/) is positive if
and only if the determinant of the matrix A is positive. Clearly, the
standard basis of R™ induce a natural orientation on it.

Alternatively, an orientation of W may be specified by an m-form
0. An m-multivector v will be positively oriented if §(v) > 0. Clearly,
this is equivalent to the other ways of specification of an orientation.

An orientation on a vector space is only a matter of choice, and
hence the foregoing applies to the tangent space T, M for any x in a
manifold M. However, an orientation on a manifold is the consistent
assignments of orientations to the tangent spaces at the various points.
An orientation is such a global sense does not necessarily exist on a
general manifold. An orientation on a manifold is important when one
wishes to fill the manifold with a certain external property that has a
definite sign, either positive or negative. The amount of the property in
a simplex may be calculated using the mean value theorem by applying
the form p representing the density of the property to a multivector
approximating a simplex on the manifold. However, since the form is
alternating, the sign of the result depends on the orientation of simplex
as reflected by the sign of the multivector. As we want to add up the
amount of the property contained in distinct simplexes finite distant
apart in a consistent manner we have to have a method for prescribing a
“uniform” global orientation. Only this way the addition of the amount
of property in two distinct simplexes is meaningful (see Figure 9).

From the discussion on orientation of vector spaces, it is natural
to define an orientation on a manifold, if the manifold has one, as a
smooth nowhere vanishing field of m-multivector. Alternatively, an
orientation on a manifold is a smooth nowhere vanishing m-differential
form. It is quite clear intuitively that in the case where the manifold
M is not connected, the question whether the manifold is orientable or
not may be applied to each connected component only. If we can define
a nowhere vanishing multivector field on any connected component we
can use these multivector fields to construct a nowhere vanishing field
over the whole manifold.
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FIGURE 9. Orientation on a manifold

We show now how the notion of orientation is related to the trans-
formation of variables formula. Let v be a nowhere vanishing m-
multivector field on M and let (x!,...,2™), (y',...,y™) be two in-
tersecting coordinate systems. Then, as in Section 1.2, for the two
local representations

b =01 ndz' A Ade™ = vy dy A-Ady™,

8y‘7/ ’ /
1..m 1..m
0 = det - o :
( oxt )

Clearly, the functions v;_,, and vy/_,,» are nowhere vanishing. The sign
of each representing function may be inverted by inverting the sign of
any coordinate function or by rearranging them. If v defines the orien-
tation of M, one may always choose coordinate systems, positive co-
ordinates, for which the representing functions are positive. As in the
equation above, if both representatives are positive, it follows from the
the transformation rule that for any two positive coordinate systems
the Jacobian determinant is positive. Hence, for an orientable mani-
fold there is always an atlas such that for any two charts (z!,..., 2™),

(y17 AR 7ym)7
j/
det <<(99y7) > 0.

Conversely, assume that for a manifold M there is an atlas such
that the Jacobian determinant for the coordinate transformations is
always positive. We will construct a nowhere vanishing m-multivector
field on M. The construction uses a partition of unity. Roughly, the
idea is that if one has a property that is invariant under coordinate
transformations, the sign of the Jacobian determinant in this case, one
can use a partition of unity in order to construct a global form of the
property using local representation. Specifically, this is done as follows.

we have,
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Let {U,} be a covering of M by domains of charts in such an atlas.
Then, in each chart  one can define the local form w, = dz'A - - - Adz™,
where (z!,...,2™) are the local coordinates in this chart. In order
to combine the various w, into a nowhere vanishing form on M we
use the real valued functions {u,} that make up a partition of unity
subordinate to this atlas. In other words, the support of u, is included
inU,, 0 < uy, <1, and )  u, = 1. Thus, we may define the m-

multivector field
w = Z UaWa,
o

that is clearly nowhere vanishing. (It is noted that while u,w, is ac-
tually defined on U,, it may be smoothly extended to M. Strictly
speaking, these extensions are added up.) We conclude that orientabil-
ity is equivalent to the existence of an atlas for which the Jacobian
determinants of the coordinate transformations are positive.

The foregoing analysis relates orientability to the transformation
of variables formula of Section 2.6. Using an atlas with positive Ja-
cobian determinants we may omit the absolute value function and the
multiplicity of signs.

2.10. Integration on oriented manifolds. Integration theory
on chains is rather general. For example, it allows for a covering of
a manifold by a chain, where the various simplexes do not have the
same orientation. It allows also integration on regions that are only
piecewise smooth. Furthermore, it was not required earlier that the
simplex mappings are diffeomorphisms and it is possible that the image
of a singular simplex has a lower dimension than the standard simplex
although this was not shown in the illustrations. In other words, in-
tegration on chains allows one to integrate r-forms on domains whose
dimensions are smaller than r although the mean value theorem implies
that the result will vanish.

We now develop the theory further and specialize it to the case
where the domain of integration is an m-dimensional oriented manifold
that may have a boundary. As expected the integrand is an m-form.
Integration on manifolds can be developed on the basis of the theory
of integration on chains using triangulations (see Whitney [11, p. 93]).
However, following the classical presentations (e.g., [9, 10]), we use the
approach that utilizes a partition of unity.

Simplexes enable the extension of integration of forms on R"™ to
chains. In integration theory of forms on oriented manifolds, this role
is assumed by charts. Assume that (¢, U) is a positively oriented chart
in an oriented manifold M. Then, the integral of an m-form w over U
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is defined by

where 1!, the analog of the simplex mapping s, is used to pull the
form w to ¥(U) C R™. It follows from the transformation of variables
formula 2.6 that any other chart defined on U will yield the same result.
For the integration of a form defined on the manifold M, a partition of
unity is used in order to localize the form to the domains of charts. A
more detailed description of the construction that is used in the proof of
Stokes’ theorem for integrals on manifolds with boundaries is outlined
below.

We consider for an orientable m-dimensional manifold M equipped with
a particular orientation, an m-dimensional submanifold R C M that may
have a boundary. The orientation of M induces a specific orientation on
the boundary OR as follows. We first note that a a tangent vector to R
at a point x € OR may be inwards pointing, outwards pointing, or tangent
to the boundary. These properties are invariant and do not depend on
the chart. For example, if one chooses a 1-form ¢ that annihilates the
tangent vectors to the boundary, the sign of ¢(v) will determine whether v
is outwards pointing. Thus, we may set the collection of vectors vy, ..., vm—1
to be positively oriented on OR if the collection v, v1,...,v,_1 has positive
orientation on M.

A simplex s is reqular if it extends to a diffeomorphism in a neighborhood
of the standard simplex A,, and we will often refer to the extension as s
also. Using the standard orientation on R™, one considers oriented regular
m-simplex, i.e., a simplex for which the orientation it induces on its image
conforms to that chosen on M. In order to integrate a form w having a
compact support in M over R, we consider a partition of unity subordinate
to a special cover Uy,..., U, as follows. Each open set U in the cover,
is contained in the interior of the image of an oriented regular simplex s
(see Figure 10). The simplexes should serve to induce an atlas for the
manifold with boundary R as follows. If s is such that s(4A,,) C Int(R),
then the corresponding set U is contained in in interior of s(A,,). Otherwise,
5(Ap,) C R such that s(A,,) NOR = so k™~ L. In other words, the subset of
the standard simplex whose image intersects OR is the m-th face. In this case
U is chosen such that it is compatible with the submanifold with boundary
structure of R. So, there is an open set Uy C R™ which is a neighborhood
of a point on the m-th face of A,, such that Uy intersects the boundary of
A, only on a subset of the m-th face and U = s(Up) "R C s(A,). (In
the last condition we used s to denote the extension of the simplex to a
neighborhood of A,,.)

Assuming that w has a compact support, one can cover R U Supp(w) by
a finite number of such open sets Uy, ... ,U; such that for each U; there is a
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FIGURE 10. Simplexes and partition of unity for integration

corresponding oriented regular simplex s; as above. Setting V =M — RN
Supp (w), let w,uq,...,ur be a partition of unity subordinate to the cover
V,Uy,...,Ug of M. Finally the integral of w over R is defined as

k
Jo=3 [ue
R =l

One can show that the result is independent of the cover and partition of
unity.

2.11. Restriction of forms and integration on submanifolds.
Among other differences between the theory of integration on chains
and integration on oriented manifolds, it is noted that for an m-dimensional
manifold M, the former considers integration on any r-chain, r < m,
while the latter considers integration of m-forms on m-dimensional sub-
manifolds with boundary of M. This difference is not substantial and
is settled as follows.

Let N be an r-dimensional submanifold with boundary of M.
Then, we have the natural inclusion mapping

v N — M
with ¢(z) = z. The inclusion induces the tangent mapping
te: TN — TM,

and the conjugate mapping of g-forms, g < r,

L (/(]\T*M>‘N—>/(]\T*N



3. SMOOTH EXTENSIVE PROPERTIES AND FLUXES 40

(w)(vg, .o 0p) = w(ts(vr), ..o te(vy)). (Note that we may write o* AT T* M
for ( N’ T*./\/l) ‘N where here ¢* is the pullback of vector bundles.) We

will refer to *(w) as the restriction of w to N.

It follows that a g-form w on M, g < r, gives the ¢g-form ¢*(w) on NV.
In the particular case where ¢ = r, the form (*(w) may be integrated
on V. We conclude that given an r-form w on M, the integral

[r@

N
is well defined for every r-dimensional submanifold with boundary N

of M,

3. Smooth Extensive Properties and Fluxes

One of the basic notions of continuum mechanics is that of an ex-
tensive property. The term extensive property is used to describe a
property that may be assigned to subsets of a given universe. These
include for example, the mass of the various parts of a material body,
the electrical charge enclosed in a certain region in space, etc. Thus,
an extensive property is a real valued set function p. Even in the most
general treatments, it is usually assumed that the extensive propety is
additive so that for disjoint regions R; and R,

p(R1+R2) = p(R1) + p(Ra).

With the proper regularity assumptions, additivity means that mathe-
matically an extensive property is a measure either in space on on the
material universe. Furthermore, it is assumed in most cases that the
extensive property has a smooth density associated with it.

The balance of an extensive property is concerned with the rate of
change of the property in the various regions. Of particular importance
is the idea of flux of the property through the boundary of regions. The
flux measures the rate of change of the property in any region as a result
of interaction with other regions. Thus, it is assumed that exchange of
the property between the various regions is done on mutual boundaries.

While the flux is a set function on the boundaries of the various
regions, Cauchy’s postulates and theorem reduce this complicated de-
pendence to to a pointwise dependence on a global field.

3.1. Densities of extensive properties. The basic setting for
the basic theory of extensive properties we present in this section is that
of a fixed physical space modelled by an m-dimensional differentiable
manifold &/. (This Greek view of the physical world implies that a point
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x in space has an invariant meaning and it clearly contradicts Galilean
invariance and relativity. Nevertheless, this restriction is removed if one
considers balance principles in the setting of spacetime.) Alternatively,
one may wish to interpret & as the material manifold so a point x € U
is a material point having an invariant meaning. Since we are going to
use integration later on, we will assume that U is orientable and that
a particular orientation was chosen.

Continuous extensive properties have densities associated with them.
This implies that the property cannot be concentrated on subsets of
dimensions lower than m. Thus, it is assumed that there is an m-form
p defined on U that model the density of the property p. Using integra-
tion theory presented above, one can now calculate the total amount
of the property

in any “region” R for which the integral is defined.

3.2. Control regions and subbodies. We will refer to “regions”
for which integration is defined as control regions when we interpret U
as the space manifold and as subbodies when we interpret U as the
material manifold. The term “region” will be used when the particular
interpretation is immaterial. Thus, we may consider a restricted the-
ory where the regions are compact m-dimensional submanifolds with
boundary of U and a more general theory where the regions of integra-
tion are chains. (We used the double quotes because chains for which
the real numbers multiplying the various simplexes in the formal linear
combinations are different than 1 do not represent actual subsets of U.)

More general integration theories (some of which will be described
later) consider even more general “regions”. In many cases, such theo-
ries start with simpler, restricted class of regions and complement them
by adding the limits of some sequences to obtain a larger class.

3.3. The time axis and density rates. Continuing with our
naive view of spacetime, we assume that any physical event can be
assigned a specific time and will model the time manifold by R. As
customary, we will use t to denote the time variable. Our ability to
assign a particular pair of time and place to any event implies that we
have a particular global frame on spacetime. This means that in gen-
eral, the density p of a property p should be time dependent although
usually we do not exhibit this explicitly in the notation. Since the value
p(t,z) € N T:U—a vector space, we may differentiate it with respect
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to the time variable and obtain the m-form
dp
5=
onl.
Thus, for a fixed region R

Lt

represents the rate of change of the amount of the property p inside R.

3.4. Classical balance laws, flux densities and sources. In
the classical setting of continuum mechanics it is assumed that the
change of the amount of property within the region R is a result of two
phenomena: the rate at which the property is produced inside R which
increases the amount of p and the rate at which the property leaves
R through its boundaries. This rate at which the property leaves R
through its boundary is referred to as the flurz of p. The equality be-
tween the rate of change of the property and the difference between the
production the the property and the flux is the balance equation for p.
Very roughly, the property p may be thought of as a product produced
in a certain country, the region R, with the rate at which the amount
of p in the country increases due to production and decreases due to
export through the borders. (This of course rules out export through
airports inside the country and requires the production, storage and
export to be distributed continuously.) Another example that one may
think of is the balance of thermal energy due to heat production and
heat flux through the boundaries.

As mentioned, the flux of the property is assumed to be distributed
continuously on the boundary of R. Hence, whether the admissible re-
gions are compact submanifolds of ¢ or chains, integration of (m — 1)-
forms on their boundaries is well defined. Thus, it is assumed that for
each region R, there is an (m — 1)-form 7 called the flux density such
that the flux of p is given as

/’TR.

IR
In the sequel when no confusion can occur, we will omit the R subscript
and use only 7.

The production rate of the property inside R is assumed to be
represented by an m-form s, the source density which is a global form
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[+

R

on U and independent of R, as

Thus, the classical balance law assumes the form

[ ]~

R OR

In case the source term vanishes, s = 0, the property is conserved
and the balance equation becomes the conservation equation.

For various results we present later, in particular Cauchy’s theorem
on the existence of flux forms, even a weaker form of the balance prin-
ciple is sufficient. In the weaker form, the balance principle is regarded
as a boundedness or regularity postulate on the fluxes for the various
bodies. The boundedness postulate for the fluxes states that there is
a positive m-form ¢ (relative to the given orientation) on U such that

for any region R
/ TR| S / S.
R
R

Clearly, if the various flux densities satisfy a conservation equation,
such a bounding form exists and the boundedness postulate is satisfied.

3.5. Flux forms and Cauchy’s formula. Only 2 m-forms on U,
namely 3 and s, are required in order to specify the rate of change of
the property p and its production in any region. On the other hand, in
order to specify the flux for the various regions it seems that one has to
specify 7 for any region R. In other words, while the rate of change of
the property and the production term are specified by functions whose
domain is space, the flux term is specified by means of a set-function
whose domain is the collection of all regions. It is customary to refer
to the set function R — 7% as a system of flux densities. To emphasize
the dependence of the flux density on the region under consideration
it is noted that for a fixed point x € U that is on the boundary of two
distinct regions R and R’ the values fluxes densities 7 (z) € A" ' TR
and 7r/(z) € N™ ' T*R’ actually belong to different spaces and surely
cannot be compared. From the physical point of view this is expected.
For example, one expects that the number of fish that meet a particular
point on a net would depend on the way the net is situated. See Fig. 11
where on the left the fish move towards the net and on the right the
move along it.
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FIGURE 11. Fish, nets, and flux densities

Nevertheless, the integration theories presented above provide a
simple means for specifying the flux densities for the various regions.
Let J be an (m — 1)-form on Y. Then, if we use chains as regions,
J may be integrated on the chains that make up the boundaries of
regions. If we use m-dimensional manifolds with boundary as regions,
then, the boundaries are (m — 1)-submanifolds (without boundaries) of
U. Hence, for every region R, the inclusion ¢z : OR — U induces the
restriction ¢}, (J) as in Subsection 2.11. Note that we add the subscript
OR in order to specify the particular region under consideration. We
will refer to such an (m — 1)-form as a fluz form.

Thus, a flux form J induce a collection of flux densities for the
boundaries of the various subbodies by

TR = Ly (J).

The last equation will be referred to as the Cauchy formula and we will
often omit the OR-index if the particular region under consideration
is clear from the context. The definition of the restriction of forms
implies that for a point o € U and any region R such that zy € OR,

we have for any collection vy, ... ,v,,—1 of vectors in T, 0R,
TRV, - Omo1) = J(L(v1), . (V1))
= J(Ul, c ,Umfl).

Alternatively, for the multivector v A - - - Av,,_1 induced by these tan-
gent, vectors to the boundary OR at xg,

TR(’Ul/\ cee /\Umfl) = J(Ul/\ cee /\Um,1>,
where we arrive at the last equation using

Vu(VIA -+ Avp) = (1) A A(vy)

In crude words
this means that
J “knows” how
to calculate the
flux through
any infinitesimal
(m — 1)-simplex
at o and then
in particular
through the
simplexes
tangent to

IOR.
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for any linear linear mapping v and in particular for the inclusion ¢.

It is one of the main results of continuum mechanics, namely Cauchy’s
theorem (see Section 5), that under rather general assumptions—Cauchy’s
postulates—every system of flux densities is induced by a unique flux
form using Cauchy’s formula. In other words, it will be shown that if
the system of flux densities satisfies Cauchy’s postulates then there is
a unique (m — 1)-flux form J such that the various flux densities are
given by Cauchy’s formula.

3.6. Extensive properties—Ilocal representation. We now present
the coordinate description of the objects and relations given above. Let

xl,...,2™ be a coordinate system in a neighborhood of a point xy and
let 5 5
1 m
{%,,ax—m} and {de,,dl‘ }

be the induces bases of the tangent and cotangent spaces. Then, as the
space \" T:U is one dimensional, the m-forms p and [ are represented
locally using the scalar functions p;._,(2°) and By ,.(z") as

p(x) = pr.m(z?) dz' A - - - Adz™

and

B(x) = Br.m(z’) dz' A Adz™,
respectively. We remark that the local representatives are indicated
here by the inclusion of the indices only without any additional change
in the notation.

The flux density 7z should be represented using a coordinate system
on the (m — 1)-dimensional manifold OR, say y',...,y™ !. Thus, in
such a coordinate, 7% is represented on neighborhood of the boundary
point yo using the scalar function 7. (m—1) in the form

TR(Y) = TR1.(m-1) () dy* A - - - Ady™
The basic identity
a o 8 a ..o
dy 1/\/\dy (ay617“.7W)_€61“'6T

implies that

Y
TR1..m—-1 — TR ayl PR 3ym_1 :

The value at xo € U of the flux form .J is an element of A\™ " T3 —
an m-dimensional vector space. We recall that the natural basis of
A" THU s

{davi1 A dz® /\---/\dxi’”*l}, 1 <ty < - <tpo1, 14 <m.
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Thus, we write locally
J(x) = Jiy o (@) ds™ Adx Ao AdTmY, iy <dg < e <y

Henceforth, unless it is explicitly indicated otherwise, whenever a form
is written as above, we will omit the indication that the indices are
increasing and this will be implied. Thus, the sum will be carried over
only over increasing sequences of indices. The expression for the local
components of the flux form is obtained by applying it to a typical
collection of basis vectors (whose exterior product is a basis element of
the space of multivectors) as

0 0
Jii o= J =y —— ),
m (83:’1 Him—1 )

where we omitted the dependence on x in the notation.

Alternatively, an ordered set of (m — 1) indices i1, ..., out of
1,...,mis of the form 1, ... ,/k\:, ...,m where a superimposed hat indi-
cates the omission of an item or a term. Hence, the natural basis of
A" TU may be written as

{de* AvoAdab A Ada™}, 1<k <m.

It follows that the flux form is locally represented by m functions J; in
a neighborhood of z( as

J(z) = Jdz' A- - Adak A Ada™,

where summation over the omitted repeated index is implied.

Locally, the inclusion R — U is represented by m functions 2 =
7' (y*) where Greek indices range up to m — 1, ie,, 1 < a < m— 1.
Thus, using a comma to denote partial differentiation we have

Y (cam
\oye) ~ "o or

and for a vector v € T,,,OR represented locally by v = v* 0/0y* we have
L(v) = 2',v* 9/0z" which we may write with some abuse of notation
as v’ = x' v°.
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The evaluation 7(vy, . ..,0,_1) is represented as
T(Ul, e ,Umfl)
0 0

J— 1 - m—1 o] Am—1
= T1..m—-1 d?/ A /\dy (Ul ayal e Ut 8yam—l)

0 0
=m0 S Ayt A Ady™ e, ———

1.m—1V1 m—1 Y Yy (ayal ayam1>

_ aq
=T1.m-10] ***0

= T1..m-1det(vs"),

where we used the antisymmetry to arrive at the 4-th line and the def-
inition of the determinant in terms of the Levi-Civita epsilon to arrive
at the last line (v;* is of course the matrix whose (3, a)-component is
the oo component of the vector vg).

The evaluation of the flux form J is represented locally as

J(Ul, ce 7Um—1)

. 4 ) . D)

— T. . J1 .. Jm—1 11 tm—1__
=Jj g dx? N ANdx <v1 S Vm 5

. : ‘ : 0 )
- 7J. . 1, gytmel J1 ce Jm—1
= Jj GVl vy da?t A Ndx (8xi1 S B
I ir ., bme1 J1eJm—1 . . . .
= Jj1jma 1 Umn—1 €y i1 0 J1<J2< <n
_ i1 Im—1 _ _J1Jm—1
- Ji1-~~im—1 U1 Upo1s Ji1-~~im—1 = €y it Jj1~~~j7n—17

so in the last line the i sequences are not increasing. (Note the dif-
ference in the ranges of the indices as implied by using roman letters
to denote them.) Finally, comparing the third equality with the last
expression for the determinant we obtained in Section 6.3, we conclude
that J(vy,...,u,_1) is represented by the determinant of the matrix
constructed by the components of J in the first column and the com-
ponents of the vectors vy, ... ,v,,_1 in the rest of the columns. (Clearly,
we could replace “columns” by “rows” in the last sentence.)
We may denote this by

Coy- 01 Ly tm—l
Tedme11U1 33 Unp_q )7

J(Ul, ces ,Um_l) = det(J]

where the square matrix is constructed by inserting the vectors sepa-
rated by semi-colons in the columns according to the free indices. Since
the expression is invariant we may also write

J(v1, .. Um—1) = det[J;vr; .5 U]
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We can now combine the representations of the various variables
and use them in Cauchy’s formula

T(Ul, R ,’Um_1> = J(L*(Ul), ceey L*(Um—l))

to obtain

= J[ 2 4 pimt 76
A ggin 7ML iy )7

im—1 _J1---Jm—1

=141 i1 le.ujm—l? J1<J2 < < Jm-1.

T
_x’:l.cnx

which is simply the determinant of the matrix [J, Dz| whose first col-
umn consists of the components of flow and the rest of the columns
are occupied by the matrix of the derivative of the local representative
of the inclusion mapping.

4. Cauchy’s Theorem

This section considers the theory of existence of Cauchy fluxes.
That is, we consider the conditions that the flux density fields {7} for
the various regions are given using the Cauchy formula by a flux form.
As mentioned earlier, if such a form exists, then it is unique. If indeed
there is a flux-form J such that

T = L;’;R('])a

we will say that the flux density system {7z} is consistent.

4.1. Locality. The dependence of the flux density 77 on the re-
gion R is in general a set function—to each region R it assigns the
differential form 7 on its boundary. Recalling that with an orienta-
tion on U a region defines a unique orientation on its boundary, it is
natural to replace the dependence on the region R by dependence on
the boundary OR. This even makes the set function more symmetric,
it assigns to any closed surface OR a flux density (m — 1)-form on it.
Clearly, it is difficult to specify such a set function in general. Locality
assumptions simplify this dependence.

Consider a point € U. Then, z may be on the boundary of various
bodies and in general we want to find the dependence of the value of
the flux density 7x(x) at x on OR. The boundary OR is an (m — 1)-
chain and it suffices to know the values of the flux form only at the
interior points of the simplexes that constitute it. Thus, it is enough
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to consider regions that contain x as an interior point on the simplexes
that constitute the boundaries as shown in Figure 12.

u

FIGURE 12. A point on the boundary of a region

Locality means that 7g(z) does not depend on the “shape” of IR
away from z. In other words, if the two (m — 1)-dimensional manifolds
OR and OR' have the same "shape“ in a neighborhood of x they will
have identical flux density at = (see Figure 13).

FiGURE 13. Locality

Specifically, the two boundaries have the "same shape* in a neigh-
borhood of x if there is an (m — 1)-dimensional manifold U containing
x which is an open submanifold of both OR and OR’. In such a case
(no matter how small this neighborhood may be) we will say that the
two boundaries have the same germ at x. This is clearly an equivalence
relation and we will refer to a an equivalence class of boundaries as a
germ. Thus, the locality requirement we described above means that
the value of the flux density 7z (z) depends on R only through the germ
of OR at x. We will refer to such form of locality as germ locality.
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4.2. Tangent space locality and the Cauchy mapping. A
stronger locality assumption may be postulated if we note that the
small neighborhood of z in OR may be “approximated” by the tangent
space T,OR (see Figure 14). Thus, we will refer as tangent space locality
to the assumption that the value of 7z (x) depends only on the tangent
space to the boundary at x and its orientation. In this part of the
book, only tangent space locality will be considered. The next section
describes the way such a dependence is described mathematically.

u

FIGURE 14. Tangent space locality

The tangent space T, 0R is an (m — 1)-dimensional oriented sub-
space of T,U—an oriented hyperplane. Thus, tangent space locality
implies that at x there is a mapping t, that assigns to any oriented hy-
perplane h = T, OR the (m — 1)-alternating mapping 7 (z) € /\m*1 h*
defined on it. We will refer to t, as the Cauchy mapping. Thus, in
general we write 7 (z) = t,(h).

In the traditional formulations of continuum mechanics in which
the the manifold i/ is a Euclidean space, the oriented tangent space
is represented by the unit normal vector to the boundary at x and
the flux density at a point is a given by a real number. Thus, in a
Euclidean setting 7z (x) depends on the region through the normal n
to the boundary of R at x. This is traditional written as 7r = 7(z, n).

We recall that the sign of an integral of a form on an orientable
manifold is meaningful only in relative to a given orientation. Thus,
the Cauchy mapping is assumed to conform to the induced orientations
on the various regions, i.e., the form t,(h) = 7r(z) is indeed the flux
density with respect to the natural orientation of OR. Similarly, the
sign of the value t,(h)(v) is meaningful only if the multivector v has
the same orientation as h (and OR).
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4.3. Whitney’s function. In order to consider properties of the
Cauchy mapping such a continuity, the collection of oriented hyper-
planes should be given a topological structure. While this may be
done using Grassmann manifolds, we present here Whitney’s function
as the mathematical framework for the formulation of tangent space
locality.

Following Whitney [11, p. 165] we note that with the tangent
space locality assumption we can represent the Cauchy mapping t,
with a real valued function t, of (m — 1)-multivectors as follows. Re-
calling that every (m — 1)-multivector is simple, any multivector v =
A -+ Aup,_1 determines a unique oriented hyperplane A containing
the vectors vy,...,v,,_1 and oriented accordingly. The flux density
Tr(z) = t.(h) may then be evaluated on v to yield

r(x)(v) = t.(h)(v) € R.

Thus, we may set t,(v) = t,(h)(v), where h is the oriented hyperplane
determined by v. From its definition it is clear that for a positive a € R,
t' (av) = t,(h)(av) = at,(h)(v) as v and av induce the same oriented
hyperplane. It is noted that unlike the traditional Cauchy mapping,
Whitney’s function does not have the redundancy of specifying both
the the oriented hyperplane and the multivector on it. A Whitney
mapping t, clearly defines a Cauchy mapping t, by the same relation.
Thus, in the following we will use the same notation for both.

Since Whitney’s mapping t, is defined on the vector space of (m — 1)-
multivectors at x one can vary x and consider the global Whitney map-
ping

m—1

t: /\TL{—>R.

As the global Whitney mapping is defined on the bundle of multivectors
continuity and differentiability requirements may be postulated for it.
We will refer to the assumptions for existence of a Whitney mapping
and its continuity as Cauchy’s postulate.

4.4. The dependence on the orientation. The definition of the
Whitney mapping implies that t(v) = 7% (z)(v) only if v is positively
oriented with respect to to the orientation of OR.h

Consider a point x on the boundary of a region R and an open
neighborhood V' of = in OR so that V' is an (m — 1)-dimensional sub-
manifold of . Clearly, V' is an open subset of the boundary of some
manifold R’ situated on the other side of IR (see Figure 15). The
orientation of U induces an outwards-pointing orientation on T,0R =
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T,0OR'. As a vector pointing out of R points into R’, the orientation
on T,0R' is opposite to that of T,0R.

Assume that an (m — 1)-multivector v at x is positively oriented
with respect to the orientation of T,0R so t(v) = 7r(z)(v). Then, —v
has the opposite orientation, that corresponding to T,0R’, so t(—b) =
Tr/(—0). So far, we did not postulate or prove any relation between
Tre and 7 for a change in orientation only. Thus, we do not have a
relation between t(v) and t(—v).

FIGURE 15

Since we interpret 7g(z)(v) and 7/(x)(—b) as the flux densities
out of an infinitesimal elements in OR and R’ respectively, we expect
intuitively that

t(v) = —t(—v).

This indeed follows from the boundedness postulate for the fluxes
of Section 3.4 and from continuity of Whitney’s mapping as follows.
Let ¢ be the positive bounding m-differential form such that

/ TR </§7
OR
R

and consider a region R and a point xy on its boundary. For a mul-
tivector v, let vq,...,v,,—1 € T,,0R be tangent vectors such that
v = A+ Avpy_q. The definition of a manifold with a boundary im-
plies that we can choose a chart (¢, U), inducing the coordinate system
(z',...,2™) in a neighborhood U C U of xq such that z™ = 0 on IR,
2™ >20on UNR and 2™ < 0 in U —'R. Without loss of generality we
may assume that xy is represented locally by (0,...,0) and that the
chart is such that the vector v; is represented by 9/0x'. We choose a
positive ag < 1 such that ¢(U) contains the cube (—ayg, ag)™ of side 2ag
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centered at the origin or R™. Let ¢ = (¢7!)*(s) be the local representa-
tive of ¢, 7r = (¢ 71)*(7r) the local representatives of the flux densities
for the regions contained in U, and let t be the local representative of
t so

e (v) A A (Ugm1)) = HOIA - Avgq).

For p = 1,2,... set a, = 27Pag and consider the boundedness
postulate for the region R, such that R, = ¢¥(R,) = A, x [—a2,a?],

where A, is the standard (m — 1)-simplex multiplied by a,, i.e., A, =
$p(Apm_1), with s,(y) = a,y, y € R™. Thus, the various R, form
a sequence of small prisms whose heights are an order of magnitude
smaller than their bases (see Figure 16).

FIGURE 16

Evaluating the various integrals in ¢(U) we obtain for R,

/~ TR, </§~-
ORy )

Rp

It is noted that

IR, = k2 x [—a, 2] U A, x {—al,a?
where kg;” = sp 0 k"2 (Aps) is the j-th face of A, (the illustration
does not depict the standard A,,_» and the various s, but only the
images.) The integral over this union of disjoint sets may be obtained
by adding the individual integrals.

Consider the the integral over the face &'~* x [~aj, a]. The mean
value theorem implies that there is a point y,; on the j-th face, kg;_Q X
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—a}, az], such that

- N m— 0
/ TRy = TRp(ypj) ((Sp ° kj 2)*(em72> A 2@;27 &E—m> )

kg;fZ x[—a2,a2]

where e, _» is the standard (m — 2)-vector in R™~2. We did not specify
where the derivative is evaluated as it is constant.
Using the multi-linearity of the flux density and the definition of

Whitney’s mapping we have

- - — 0
/ TR, = TRp(ypj) ((Sp ° kj 2)*(9m—2) A 2%2, Gaj—m)

gy x o aj]
T m—2 m—2 2 a
= TRy (Yps) (ap (kj )x(em—2) A 2a, &B—m)
noz m—2 0
my m—2 a

We now consider the integrals over AY = A, x {a2} and A =
A, X {—CLZ}- In analogy with the foregoing notation we have

/%Rp — 7, (Yps) (£5p(em 1))

Ay
m—17

= a, tRp(ypzl:)(j:em—l)a

where, y,, and y,_ are the integration points in A’ and A, respec-
tively, and it is noted that it is the simplex —e that is positively oriented

on A
Similarly,

[e=ctw) <Sp<em—1> N2 @%)

Rp
L 9
= 2ap +1§(yp) (em1 N a];—m>

for some point y, € 7~€p.
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The boundedness assumption may be rewritten now as

m—2
TR, + TR, T E Ry < [ €,
+ - —2
Ap A ; kTZ x[—a2,a2] J

P ]:O P B
D
implying (as |[A+ (—B)| < |A| + |B| etc.)
m—2
/%Rp+/ %RP<Z/ %Rp+/<~.
AF Ay =0 kg}fQX[fag,a%] A
P

We may now substitute the expression we obtained using the mean
value theorem to get for each p,

m—1

ap ERp(prr)(%—l)JrCLZI_I{RP(?Jzo—)(—?m—l) <

m—2

2

T
J=0 0

i) (02 o) A 5 )

ox™

. 0
+ 2a7 < (y,) <em1 A —)

Dividing the inequality by a?‘l and considering the limit as p — oo

we observe that all points ypi+, Yp—, Ypj, ¥p converge to (0,...,0)
(representing z) so the evaluation of the various forms are bounded.
Hence, as a, — 0 we conclude that the limit of the right-hand side of
the inequality vanishes. We conclude that

tr, (0)(em—1) + tr, (0)(=em1) =0
which implies that t(v) = —t(—v).

4.5. Relation to classical formulation. In this paragraph we
discuss the differences and similarities between the classical formulation
of the anti-symmetry of the Cauchy mapping and the one given above
that uses differential forms. Consider a hyperplane H at a point x €
U. As a result of anti-symmetry, the property t,(ab) = at,(v), v €
A" " H, (see Section 4.3) now holds for both positive and negative
real numbers a. Thus, the restriction t,|H is an (m — 1)-form on H.
Let R be a region such that H = T,0R. Then, for a multivector v,
t.(v) = 7r(v) only if v is positively oriented relative to the orientation
induced on OR. Assume that v is negatively oriented with respect to
OR. Then, if R’ is on the other side of H, —v is positively oriented
with respect to the orientation of OR’, hence,

TR (—0) = t,(—0) = —t,(b) = —7r(v).
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Thus, as forms on H, 7/ = Tx.

The last equation seems to contradict the classical formulation
where one usually writes for the situation under consideration t(R) =
—t(R'), where t is the flux vector field. In the classical formulation
the area elements do not have orientations and the sense in which the
property flows through a surface element is included in the sense of the
vector t. For integration of forms, there is only one form 7 = 7r,. The
difference in the senses by which the property flows relative to R and
R’ is accounted for by the convention that the flux out of a boundary
of a region is calculated by applying the form to multivectors that are
positively oriented relative to the orientation of OR. (Equivalently, for
integration of forms the chart used for the evaluation of the integral is
positively oriented.) Thus, the sense of the flow of the property is ac-
counted for by requiring a particular scheme of orientation which gives
opposite results for R and R’.

4.6. Cauchy’s Theorem. In this section we prove that under the
boundedness assumption and Cauchy’s postulate there is a unique flux
form J such that the Cauchy formula holds, i.e.,

If we consider the algebraic Cauchy theorem of the previous chapter,

in order to prove the assertion of the Cauchy theorem it is enough to
show that for any linear m-simplex s in the tangent space T,.U4, we have

zm: tx(nz> = 0,
=1

where v; is the multivector associated with the i-th face of s.

As in the previous section we let ¢ be a positive bounding m-form
and we consider an arbitrary linear simplex s in T,/ having vy, - ,0,,
as defining vectors. Thus, as in 2.3.2

1 - ;
ST (1) A ATA. . Avy, for =0,
(m—1)! Z
v, = . i=1
) e 5 |
(—1)|Ul/\/\vj/\/\vm forj>07
m— 1)!

and ) . v; = 0. Using the same scheme of notation as in the previ-
ous section, we use for example t for the local representative of t in a
coordinate system (z',...,2™) in a chart (¢, U) containing z, and we
assume that the coordinates of x are (0,...,0). Again, without loss
of generality, we may assume that v;, the local representative of v; is

parallel to e;. Choose a positive ag < 1 such that the linear simplex
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So induced by agvq,...,a00,, in R™ is contained in the image of the
coordinate neighborhood. For p =1,2,... we set a, = 27Pq, and con-
sider the boundedness postulate for regions R, such that R, = 1(R,)
is the linear m-simplex 5, generated by the vectors a,v,,...,a,0, . In
other words, the various simplexes 5, form a sequence of decreasing
linear simplexes §, = a,5p such that Sy(e;) = ag?;. The multivector
v, associated with §, satisfies v, = s,.(¢;,). The local representa-
tives v; of the multivectors v, associated with the faces of §, satisfy
0, = (500 k™ 1).(em_1) (see Figure 17 where only the images of the
various s, are shown on the left).

FIGURE 17

Evaluating the various integrals in ¢ (U) we have for R,
[ <
R,

The mean value theorem implies that there are points y,; € 3, o k"',
1=1,....m+1,p=1,2,...
/ Ry = TR, (Upi) (3 © K" s (em—1))
oK A, (i) (30 © K" )e(em-1))
(=LY 7, (4 (00)
(=1)'a ) (00).

P

We did not indicate the point where the derivative of the mapping
5o o k! is evaluated since it is affine. Similarly, there are points Yp €
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/s

Ry

5p such that

S(yp) (3pe(em))

=a (yp) (50*(8m))

§(yp) (~>

Since IR, = 3..(—1)%5, o k™!, the boundedness postulate becomes

Z {(ypi)(ﬁi)

i

m
p
a™
P

< apS(yp) (U)

Taking the limit as p — oo, we have a, — 0, y,; — (0,...,0) =
(), hence, > £(0,...,0)(0;) = 0 and we conclude that

7
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