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Stress Analysis

f

tFor a given structure geometry Ω and an
assumed loading, or a number of loading
cases,

Solve the equations of equilibrium with
boundary conditions

div σ + b = 0, in Ω; σ(ν) = t on ∂Ω.

σ – stress field, b – volume force, t – boundary load, ν – unit normal

Problem: the system is under-determined (statically indeterminate):
6 independent stress components and 3 equations.

Solution: Use constitutive relations (e.g., Hooke’s Law) to relate the stress
and the kinematics. One (hopefully) stress field σ0 will solve the problem.

Use a failure criterion Y(τ) 6 spermitted, where τ is a stress matrix.

Find the maximal stress and check whether maxx Y(σ0(x)) < spermitted.
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Estimates for the Maximum of the Stress Field

Question: For a given load on the structure,
what estimates or bounds apply to the stress field on the basis
of equilibrium alone? (no reference to material properties!)

Signorini [1933], Grioli [1953], Truesdell & Toupin [1960], Day [1979]:
Lower bounds on the maximal stress in terms of the applied load only.

max
x,i,j

{∣∣σij(x)
∣∣} > Bound(t)

for all equilibrating stresses.

Note: the bounds are not exact!

A lower
bound

Collection of
equilibrating
stresses for a
given load

maxx,i,j |σij(x)|
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Greatest Lower Bounds and Optimal Stresses

A lower
bound

Collection of
equilibrating stresses for
a given load

maxx,i,j |σij(x)|

The greatest
lower bound st An optimal stress fieldAnother

optimal

Notes:
What is the greatest
lower bound on the
maximal stress
components?

Is the greatest lower
bound attained for
some stress field
σopt?

A stress field for
which the bound it
attained is optimal
because it has the
least maximum.
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The Setting for the Problem

Definitions of the Main Variables

Ω – a given body (bounded), Γ = ∂Ω – its boundary,

Γ0 – the part of the boundary where the body is fixed,

t – a surface traction field given on Γt ⊂ Γ,

ν – the unit normal to the boundary,

σ – a stress field that is in equilibrium with t,
σmax – the maximal magnitude of the stress

σmax = ess supx∈Ω |σ(x)| = ‖σ‖∞,

|τ| = Y(τ) – a failure criterion function for the stress matrix τ, a norm.

Remark: The treatment may be generalized to include body forces.

There is a class of stress fields that are in equilibrium with t.
We denote this class of stress fields by Σt.
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The Optimization Problem

Find the least value sopt
t of σmax, i.e.,

sopt
t = inf

σ∈Σt
{σmax} = inf

σ∈Σt
{‖σ‖∞}.

I Question: Is there an optimal stress field σopt such that

sopt
t = ‖σopt‖∞ ?
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The Corresponding Scalar Problem:
the Junction Problem

Given the flux density φ on the boundary of Ω with
∫

∂Ω φdA = 0 (this
constraint may be removed and we will get the optimal source
distribution).

Set Vφ = {v : Ω→ R3, vi,i = 0 in Ω, , viνi = φ on ∂Ω}
—compatible velocity fields.

For each v ∈ Vφ, set vmax = ess supx∈Ω |v(x)|.
Find the least value vopt

φ of vmax, i.e.,

vopt
φ = inf

v∈Vφ

{vmax}.

The optimal velocity field for the junction Ω.
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The Result

t

Theorem

The optimal value sopt
t is given by

sopt
t = sup

w∈C∞(Ω,R3)

∣∣∫
∂Ω t ·w dA

∣∣∫
Ω |ε(w)|dV

= sup
w∈C∞(Ω,R3)

|t(w)|
‖ε(w)‖1

,

|ε(w)| is the norm of the value of the stretching ε(w) = 1
2 (∇w +∇wT).

The optimum is attained for some σ
opt
t ∈ Σt.

Mathematically:
sopt

t = ‖Force Functional‖.

Motivation: recall the principle of virtual work:∫
Ω

σijεijdV =
∫

Γt

tiwidA.

Note: sopt
λt = λsopt

t , for all λ > 0.
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Realization of an Optimal Stress Field

Question: Can the optimal stress field be realized?
Introduce residual stresses in the structure (e.g., prestressed beams, tree
trunks),

Introduce additional external loading,

Limit design for elastic perfectly plastic materials . . .
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The Yield Condition and (Perfectly) Plastic Materials

Strain

σY

Stress

A Perfectly Plastic Material

Use the yield function as a norm for stress matrices.

Hydrostatic pressure does not
cause failure.

τ = τH + τD, where,
τH = 1

3 tr(τ)I.
τD – deviatoric component
of the stress matrix.

Von Mises yield function:

Y(τ) =
∣∣τD
∣∣ =

√
3
2

∣∣τD
∣∣
2,∣∣τD

∣∣
2 = √τijτij

– the Euclidean norm.

Yield condition:
Y(τ) =

∣∣τD
∣∣ = sY.
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Yield Function and the (Semi-) Norm Induced

Deviatoric projection – πD(τ) = τ − 1
3 τiiI for every matrix τ.

πD : R6 −→ D ⊂ R6, the space of traceless matrices.

Yield function Y – a semi-norm on the space of matrices

Y(τ) = |τ − 1
3 τiiI| , |·| is a norm on the space of matrices.

Yield condition – Y(τ) = sY.

Semi-norms – ‖σ‖Y = ‖Y ◦ σ‖, ‖σ‖Y
∞ = ‖Y ◦ σ‖∞

are norms on the subspaces of trace-less fields.

Thus, in the previous definitions of the optimal stress we have to use the
semi-norms or restrict ourselves to the appropriate subspaces containing
trace-less fields.
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Limit Analysis of Plasticity Theory

The limit analysis problem: Given t and sY, find the largest multiplier of
the force for which collapse will not occur, i.e.,

λ∗t = sup λ, such that there exists σ, ‖σ‖Y
∞ 6 sY, σ ∈ Σλt.

Basic idea, the body can support any stress field σ as long as ‖σ‖Y
∞ 6 sY.

Christiansen and Temam & Strang [1980’s]:

λ∗t = sup
‖σ‖Y

∞6sY

inf
t(w)=1

∫
Ω

σijε(w)ijdV

= inf
t(w)=1

sup
‖σ‖Y

∞6sY

∫
Ω

σijε(w)ijdV

Strain

σY

Stress

A Perfectly Plastic Material
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Optimal Stresses and Limit Analysis

Task: Find the optimal stresses using the yield norm for stresses. Result:

Limit Design ⇔ sopt
t = sY, or,

sY

sopt
t

= λ∗t .

The expression for sopt
t is equivalent to the expression of Temam and

Strang for the limit analysis factor.

Conclusions for Plasticity:
Theoretically, optimal stress fields may be realized by choosing a perfectly
plastic material for which the yield stress is equal to the optimal stress.

Perfectly plastic materials are optimal in the following sense: If for a load
t, the material satisfies sY = sopt

t , the stress distribution will be
automatically optimal. This holds for all loading distributions t satisfying
this condition, independently of their distribution. (The optimality is not
associated with a particular loading condition.)
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Load Capacity Ratio

Notation

Ω – a given perfectly plastic body or a structure,

sY – the yield stress,

t – a loading traction field given on the boundary ∂Ω,

tmax – the maximum of the external loading,
tmax = ess supy∈∂Ω |t(y)| = ‖t‖∞

Result
There is a maximal number C such that the body will not collapse as long as

tmax 6 CsY

independently of the distribution of the external traction t.
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The Expression for the Load Capacity Ratio

The number C, a purely geometric property of the body Ω, is given by

1
C

= sup
w

∫
Γt
|w|dA∫

Ω |ε(w)|dV
= ‖γD‖,

where,

w – an isochoric (incompressible, div w = 0) vector field,
ε(w) – the linear strain associated with w,

ε(w)ij = 1
2 (wi,j + wj,i).
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Stress Concentration for Engineers

2�

�

�

�

Stress Concentration for Engineers
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Generalized Stress Concentration Factors:

Assume a body Ω is given (open, regular with smooth boundary).

Assume a surface traction t is given and let σ be a stress field that is in
equilibrium with t.
The stress concentration factor associated with the pair t, σ is

Kt,σ =
ess supx {|σ(x)|}
ess supy {|t(y)|} , x ∈ Ω, y ∈ ∂Ω.
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Generalized Stress Concentration (Continued)

Denote by Σt the collection of all possible stress fields that are in
equilibrium with t. (There are many such stress fields because material
properties are not specified.)

The optimal stress concentration factor for the force t is defined by

Kt = inf
σ∈Σt
{Kt,σ} .

The generalized stress concentration factor K—a purely geometric
property of Ω—is defined by

K = sup
t
{Kt} = sup

t
inf

σ∈Σt

{
ess supx {|σ(x)|}
ess supy {|t(y)|}

}
.
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Concerning the Generalized Stress Concentration Factor

Theorem
Define the generalized stress concentration factor K by

K = sup
t

sopt
t

ess supy∈∂Ω |t(y)| .

Then,
K = ‖γ‖ = sup

w∈C∞(Ω,R3)0

∫
Γt
|w|dA∫

Ω |ε(w)|dV
.

Motivation again: recall the principle of virtual work:∫
Ω

σijεijdV =
∫

Γt

tiwidA.

We have an analogous expression for cases where the allowed load is
applied in an a-priori known part of the boundary (or body).
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The Generalized Stress Concentration
and the Load Capacity Ratio: Illustration

π
π(t)

t

Collape
manifold
containing
collapse loads

Ψ

Space of all
forces

C sY

Ψ =
{

t | sopt
t = sY

}
, π(t) =

sY

sopt
t

t.
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The Generalized Stress Concentration
and the Load Capacity Ratio

π
π(t)

t

Collape
manifold
containing
collapse loads

Ψ

Space of all
forces

C sY

Given sY, consider the collapse manifold

Ψ =
{

t | sopt
t = sY

}
, with a projection π(t) =

sY

sopt
t

t

Find the load capacity ratio

C =
1
sY

inf
t∈Ψ
‖t‖∞, ⇒ no collapse for t with ‖t‖∞ 6 CsY

Easy to see that
C =

1
K

.

The expression for K using the yield norms

K = sup
t∈L∞(Γt,R3)

sopt
t = sup

w incomp

∫
Γt
|w|dA∫

Ω |ε(w)|dV
= ‖γD‖.
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A Truss Example:

b

a a

b

a − 2d

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Rectangular truss
Trapezoidal truss

C

b/a
0.5 1 1.5 2 2.5

0.35

0.4

0.45

0.5

0.55

Rectangular truss
Trapezoidal truss

C

S1/S
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A Frame Example:

θ

a

a

a

(a)

θ

a

a

a

(b)

(a) (b)
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A Plane Stress Example:

Distribution of a collapse load Maximizing virtual displacement
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A Plane Strain Example:

A dam like structure Collapse load Maximizing
virtual displacement
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Tools Used in the Analysis

Forces as linear functionals (all forces are generalized forces):
I Representation theorems for forces
I Equilibrium operator as a dual mapping

Solutions of equilibrium equations using extensions of functionals
Optimal extensions with Hahn-Banach Theorem.

The right classes of functions: Sobolev spaces and LD-spaces

Trace theorems
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Force as Linear Functionals: Geometric Point of View

The mechanical system is
characterized by its
configuration space—a
manifold Q.

Velocities are tangent vectors
to the manifold—elements of
TQ.

A Force at the configuration κ
is a continuous linear
mapping F : TκQ → R.

73'

&

$

%

Review of Basic Kinematics and Statics on Manifolds

• The mechanical system is
characterized by its con-
figuration space—a man-
ifold Q.

• Velocities are tangent vec-
tors to the manifold—
elements of TQ.

• A Force at the configura-
tion κ is a linear mapping
F : TκQ → R.

Q

κ

TκQ

Can we apply this framework to Continuum Mechanics?

Reuven Segev: Geometric Methods, March 2001

For a force F and a velocity w, the value P = F(w) is interpreted as
mechanical power.
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Generalized Forces in Continuum Mechanics
A virtual velocity w is a vector field on Ω.
The tangent space at a point, the space of generalized velocities, is an
infinite dimensional vector space W . Forces are continuous linear
functionals.
One should specify the class of admissible vector fields and the norm
used (or any other way to define the topology).
Representation theorems will determine the nature of forces. Examples:

I If we admit integrable vector fields with the L1-norm, forces are
represented by essentially bounded vector fields, F(w) =

∫
Ω f ·w dV.

I If we admit continuous vector fields with the supremum norm, forces are
represented by measures.

The relevant class: Vector fields whose components and corresponding
linear strain (rate) are integrable over the body: LD-vector fields (a
variation on the Sobolev spaces where all the derivatives are integrable).

‖w‖ = ∑
i

∫
Ω
|wi| dV︸ ︷︷ ︸

omitted if rigidly supported

+ ∑
i,j

∫
Ω

∣∣ε(w)ij
∣∣ dV.
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The Representation Theorem for the LD-Class:
The action of every force F may be represented by a tensor field σ in the
form

F(w) =
∫

Ω
σij ε(w)ij dV.

The tensor field σ representing F is not unique (unlike the previous
examples). Implying: existence of stress and principle of virtual work.
The norm of a linear operator such as F is defined as

‖F‖ = sup
w∈W

|F(w)|
‖w‖ .

We have (using the Hahn-Banach Theorem),

‖F‖ = inf
σ
‖σ‖ = inf

σ

{
ess sup x,i,j

∣∣σij(x)
∣∣} = ‖σopt‖.

The inf is taken over all tensor fields σ representing F.
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Extensions and Equilibrium

( f1, f2)

u1

u2

ε1
σ1

ε2 ε3
σ3

σ2

u2

u1

W

f

R

ε

ε−1

f ◦ ε−1σ
ε3

ε1

ε2
S = Strain Space

Image ε

compatible strains

not necessarily
compatible
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Extension of Functions and the Trace Mapping
How do you incorporate the boundary load?

y

xx
Extension of a Funcion
Defined on an Open Set

Differentiability of a function defined
on an open set does not guarantee
that it can be extended to the
boundary.

If the function has an integrable
derivative, a Sobolev function, it may
be extended to the boundary.

For a vector field w, it is also
sufficient that the corresponding
linear strain ε(w) has integrable
components, an LD-vector field.
The boundary values mapping

γ : LD(Ω,R3) −→ L1(∂Ω,R3)
is a well defined continuous, linear onto mapping.
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Forces on Ω Induced by Boundary Forces

L1(∂Ω,R3) (Boundary velocities)

t

R

γ

F = t ◦ γ = γ∗(t)

W = LD(Ω,R3) Velocity Space

Boundary values
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Dual Mappings

x ∈ X A−−−→ Y 3 A(x)

A∗(g) ∈ X∗ A∗←−−− Y∗ 3 g

Defined by A∗(g)(x) = g(A(x)), for all g ∈ Y∗, x ∈ X.
The condition t(γ(w)) = F(w) may be written as F = γ∗(t).

Equilibrium, γ∗(t)(w) = σ(ε(w)), may be written as
γ∗(t)(w) = ε∗(σ)(w), ∀w. Hence,

Equilibrium ⇐⇒ γ∗(t) = ε∗(σ).

‖A∗‖ = ‖A‖,
sup
x∈X

‖A(x)‖
‖x‖ = sup

g∈Y∗

‖A∗(g)‖
‖g‖ .
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Forces on Ω Induced by Boundary Forces

The mapping γ∗ : (L1(∂Ω,R3))∗ −→ LD(Ω)∗ is injective. Thus,
equilibrated surface forces t induce equilibrated forces F = γ∗(t) on Ω,
uniquely.

We have

‖γ∗(t)‖ = sup
w∈LD(Ω)

|γ∗(t)(w)|
‖w‖ = sup

w∈LD(Ω)

|t(γ(w))|
‖ε(w)‖L1

.
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General Mathematical Structure

L1(Γt,R3)
γ0←−−− LD(Ω)0

ε0−−−→ L1(Ω,R6)∥∥∥ xι ι

xyπ◦D

L1(Γt,R3)
γD←−−− LD(Ω)D

εD−−−→ L1(Ω, D)

boundary velocities
boundary value←−−−−−−− velocity fields

ε0−−−→ strain fields∥∥∥ xinclusion inclusion

xyπ◦D

L1(Γt,R3)
γD←−−− incompressible

velocity fields

εD−−−→ incompressible
strain fields
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General General Mathematical Structure - Continued

L∞(Γt,R3)
γ∗0−−−→ LD(Ω)∗0

ε∗0←−−− L∞(Ω,R6)∥∥∥ yι∗ ι∗
yxπ◦∗D

L∞(Γt,R3)
γ∗D−−−→ LD(Ω)∗D

ε∗D←−−− L∞(Ω, D).

boundary tractions
γ∗0−−−→ forces

ε∗0←−−− stress fields∥∥∥ yinclusion∗ restriction

yxπ◦∗D

boundary tractions
γ∗D−−−→ forces with devi-

atoric stresses

ε∗D←−−− deviatoric stress
fields

R. Segev & L. Falach (B.G.U.) Optimal Stresses and Load Capacity UCSD, Oct. 2008 36 / 43



Properties of the Mappings

boundary velocities
γ, (b.v.)←−−− velocity fields

ε0−−−→ strain fields∥∥∥ xinclusion inclusion

xyπ◦D

L1(Γt,R3)
γD←−−− incompressible

velocity fields

εD−−−→ incompressible
strain fields

ε0 – the strain mapping for velocity fields that satisfy the boundary
conditions (zero on an open subset of the boundary).

Injective and norm preserving.
γ – the trace mapping. Sujective.
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End
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Appendix
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Introducing LD(Ω) (Temam 85)

Recall: ess supx |σ(x)| = ‖σ‖∞ suggests:

Stress Fields = L∞(Ω,R6) so Stretching Fields = L1(Ω,R6).

Conclusion:

Body Velocities =
{

w : Ω→ R3; ε(w) ∈ L1(Ω,R6)
}

.

Set

LD(Ω) =
{

w : Ω→ R3; w ∈ L1(Ω,R3), ε(w) ∈ L1(Ω,R6)
}

,

‖w‖LD = ‖w‖1 + ‖ε(w)‖1.
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Equivalent Norm for LD(Ω)

Let
πR : LD(Ω) −→ R3 × o(3)

be any projection on the space of rigid velocity fields on the body.

An equivalent norm for LD(Ω):

‖w‖LD = ‖πR(w)‖+ ‖ε(w)‖1.

Displacement boundary conditions imply no rigid motion component:

‖w‖ = ‖ε(w)‖1.

ε0 : LD(Ω)0 −→ L1(Ω,R6) is norm preserving.
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Properties of LD(Ω)

Approximations: C∞(Ω,R3) is dense in LD(Ω).

Traces: There is a unique, continuous, linear trace mapping

γ : LD(Ω) −→ L1(∂Ω,R3)

such that γ(u
∣∣
Ω

) = u
∣∣
∂Ω

, u ∈ C(Ω,R3).
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Proof of The Expression for the GSCF
We had

sopt
t = sup

w∈LD(Ω)0

∣∣∫
∂Ω t ·w dA

∣∣∫
Ω |ε(w)|dV

= sup
w∈LD(Ω)0

|t(γ0(w))|
‖ε(w)‖1

,

= sup
w∈LD(Ω)0

|γ∗0(t)(w)|
‖w‖LD

= ‖γ∗0(t)‖,

so,

K = sup
t∈L∞(Γt,R3)

sopt
t
‖t‖ = sup

t∈L∞(Γt,R3)

{‖γ∗0(t)‖
‖t‖

}
= ‖γ∗0‖ = ‖γ0‖

where the last equality is the standard equality between the norm of a
mapping and the norm of its dual.
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